Skip to main content
Top
Published in: Physics of Metals and Metallography 6/2022

01-06-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure Formation Patterns and Crystallographic Texture in Welded Joints of Medium-Carbon Alloy Steels in the Process of Rotary Friction Welding

Authors: E. Yu. Priymak, M. L. Lobanov, S. V. Belikov, M. S. Karabanalov, I. L. Yakovleva

Published in: Physics of Metals and Metallography | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using the method of scanning microscopy in the mode of electron backscatter diffraction (EBSD), the structural and textural states of two medium-carbon alloy steels near the joint obtained by rotational friction welding are investigated. In both steels, martensitic structures are detected in the zone of thermal deformation influence, which is characterized by the presence of a pronounced crystallographic texture close to that of the (110)[001] plane with the axis normal to the surface of the joint. Assuming the formation of new phase nuclei at special boundaries Ʃ3, the formation of a practically one-component crystallographic texture is explained by shear transformation of deformed austenite in accordance with multivariate orientation relations of the Kurdyumov–Zaks type.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. I. Vil’, Friction Welding of Metals (Mashinostroenie, Moscow, 1970) [in Russian]. V. I. Vil’, Friction Welding of Metals (Mashinostroenie, Moscow, 1970) [in Russian].
2.
go back to reference M. A. Shtremel’, Strength of Alloys. Part II. Deformation (MISIS, Moscow, 1997) [in Russian]. M. A. Shtremel’, Strength of Alloys. Part II. Deformation (MISIS, Moscow, 1997) [in Russian].
3.
go back to reference M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, and L. M. Voronova, “Structure of iron deformed at 250°C by torsion under a pressure,” Phys. Met. Metallogr. 120 (12), 1193–1199 (2019).CrossRef M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, and L. M. Voronova, “Structure of iron deformed at 250°C by torsion under a pressure,” Phys. Met. Metallogr. 120 (12), 1193–1199 (2019).CrossRef
4.
go back to reference E. Y. Priymak, I. L. Yakovleva, A. S. Atamashkin, and A. V. Stepanchukova, “Evolution of microstructure in the thermomechanically affected zone of welded joints of medium-carbon steels in the process of rotary friction welding,” Met. Sci. Heat Treat. 62, 731–737 (2021).CrossRef E. Y. Priymak, I. L. Yakovleva, A. S. Atamashkin, and A. V. Stepanchukova, “Evolution of microstructure in the thermomechanically affected zone of welded joints of medium-carbon steels in the process of rotary friction welding,” Met. Sci. Heat Treat. 62, 731–737 (2021).CrossRef
5.
go back to reference E. Yu. Priymak, A. V. Stepanchukova, E. V. Bashirova, A. P. Fot, and N. V. Firsova, “Special features of induction annealing of friction stir welded joints of medium-alloy steels,” Met. Sci. Heat Treat. 59, Nos. 9–10, 624–629 (2018).CrossRef E. Yu. Priymak, A. V. Stepanchukova, E. V. Bashirova, A. P. Fot, and N. V. Firsova, “Special features of induction annealing of friction stir welded joints of medium-alloy steels,” Met. Sci. Heat Treat. 59, Nos. 9–10, 624–629 (2018).CrossRef
6.
go back to reference M. Stutz, R. Buzolin, F. Pixner, C. Poletti, and N. Enzinger, “Microstructure development of molybdenum during rotary friction welding,” Mater. Charact. 151, 506–518 (2019).CrossRef M. Stutz, R. Buzolin, F. Pixner, C. Poletti, and N. Enzinger, “Microstructure development of molybdenum during rotary friction welding,” Mater. Charact. 151, 506–518 (2019).CrossRef
9.
go back to reference S. Mironov, K. Inagaki, Y. S. Sato, and H. Kokawa, “Effect of welding temperature on microstructure of friction-stir welded aluminum alloy 1050,” Metall. Mater. Trans. A 46, 783–790 (2015).CrossRef S. Mironov, K. Inagaki, Y. S. Sato, and H. Kokawa, “Effect of welding temperature on microstructure of friction-stir welded aluminum alloy 1050,” Metall. Mater. Trans. A 46, 783–790 (2015).CrossRef
12.
go back to reference J. Jeon, S. Mironov, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, “Grain structure development during friction stir welding of single-crystal austenitic stainless steel,” Metall. Mater. Trans. A 44, 3157–3166 (2013).CrossRef J. Jeon, S. Mironov, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, “Grain structure development during friction stir welding of single-crystal austenitic stainless steel,” Metall. Mater. Trans. A 44, 3157–3166 (2013).CrossRef
13.
go back to reference S. Mironov, Y. S. Sato, and H. Kokawa, “Structural response of superaustenitic stainless steel to friction stir welding,” Acta Mater. 59, 5472–5481 (2011).CrossRef S. Mironov, Y. S. Sato, and H. Kokawa, “Structural response of superaustenitic stainless steel to friction stir welding,” Acta Mater. 59, 5472–5481 (2011).CrossRef
15.
go back to reference E. Yu. Priymak, A. S. Atamashkin, E. A. Kuzmina, and E. S. Tulibaev, “The use of rotational friction welding for manufacture of exploration drill pipes: Industrial experience and research,” Chernye Metally., No. 4, 37–42 (2020). E. Yu. Priymak, A. S. Atamashkin, E. A. Kuzmina, and E. S. Tulibaev, “The use of rotational friction welding for manufacture of exploration drill pipes: Industrial experience and research,” Chernye Metally., No. 4, 37–42 (2020).
16.
go back to reference A. A. Kichkina, M. Yu. Matrosov, L. I. Efron, and M. V. Klyukvin, and A. V. Golovanov, “Effect of structural anisotropy of ferrite-bainite pipe steel of mechanical properties in tensile and impact bending tests,” Metallurgist 54 (11–12), 808–816 (2011).CrossRef A. A. Kichkina, M. Yu. Matrosov, L. I. Efron, and M. V. Klyukvin, and A. V. Golovanov, “Effect of structural anisotropy of ferrite-bainite pipe steel of mechanical properties in tensile and impact bending tests,” Metallurgist 54 (11–12), 808–816 (2011).CrossRef
17.
go back to reference M. L. Lobanov, M. D. Borodina, S. V. Danilov, I. Yu. Pyshmintsev, and A. O. Struin, “Texture inheritance on phase transition in low-carbon, low-alloy pipe steel after thermomechanical controlled processing,” Steel Trans. 60 (11), 710–716 (2017).CrossRef M. L. Lobanov, M. D. Borodina, S. V. Danilov, I. Yu. Pyshmintsev, and A. O. Struin, “Texture inheritance on phase transition in low-carbon, low-alloy pipe steel after thermomechanical controlled processing,” Steel Trans. 60 (11), 710–716 (2017).CrossRef
18.
go back to reference Lobanov M. L. Lobanov, I. Y. Pyshmintsev, V. N. Urtsev, S. V. Danilov, N. V. Urtsev, and A. A. Redikultsev, “Texture inheritance in the ferrito-martensite structure of low-alloy steel after thermomechanical controlled processing,” Phys. Met. Metallogr. 120 (12), 1180–1186 (2019).CrossRef Lobanov M. L. Lobanov, I. Y. Pyshmintsev, V. N. Urtsev, S. V. Danilov, N. V. Urtsev, and A. A. Redikultsev, “Texture inheritance in the ferrito-martensite structure of low-alloy steel after thermomechanical controlled processing,” Phys. Met. Metallogr. 120 (12), 1180–1186 (2019).CrossRef
19.
go back to reference M. L. Lobanov, G. M. Rusakov, A. A. Redikul’tsev, S. V. Belikov, M. S. Karabanalov, E. R. Struina, and A. M. Gervas’ev, “Investigation of special misorientations in lath martensite of low carbon steel using the method of orientation microscopy,” Phys. Met. Metallogr. 117 (3), 254–259 (2016).CrossRef M. L. Lobanov, G. M. Rusakov, A. A. Redikul’tsev, S. V. Belikov, M. S. Karabanalov, E. R. Struina, and A. M. Gervas’ev, “Investigation of special misorientations in lath martensite of low carbon steel using the method of orientation microscopy,” Phys. Met. Metallogr. 117 (3), 254–259 (2016).CrossRef
20.
go back to reference V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastlivtsev, “Crystallographic analysis of the fcc → bcc martensitic transformation in high-carbon steel,” Phys. Met. Metallogr. 115 (10), 973–980 (2014).CrossRef V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastlivtsev, “Crystallographic analysis of the fcc → bcc martensitic transformation in high-carbon steel,” Phys. Met. Metallogr. 115 (10), 973–980 (2014).CrossRef
21.
go back to reference V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastliv-tsev, “Orientation relationship and the mechanism of martensite transformation in medium-carbon steel with batch martensite,” Bull. Russ. Acad. Sci.: Phys. 81 (11), 1289–1294 (2014).CrossRef V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastliv-tsev, “Orientation relationship and the mechanism of martensite transformation in medium-carbon steel with batch martensite,” Bull. Russ. Acad. Sci.: Phys. 81 (11), 1289–1294 (2014).CrossRef
22.
go back to reference W. Gong, Y. Toyota, A. M. Paradowska, J. F. Kelleher, and S. Y. Zhang, “Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel,” Acta Mater., No. 61, 4142–4154 (2013). W. Gong, Y. Toyota, A. M. Paradowska, J. F. Kelleher, and S. Y. Zhang, “Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel,” Acta Mater., No. 61, 4142–4154 (2013).
23.
go back to reference H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, “Crystallographic features of lath martensite in low-carbon steel,” Acta Mater. 54, 1279–1288 (2006).CrossRef H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, “Crystallographic features of lath martensite in low-carbon steel,” Acta Mater. 54, 1279–1288 (2006).CrossRef
24.
go back to reference E. V. Pereloma, Al-H. Fayez, and A. A. Gazder, “The crystallography of carbide-free bainites in thermo-mechanically processed low Si transformation-induced plasticity steels,” J. Alloys Compd. 615, 96–110 (2014).CrossRef E. V. Pereloma, Al-H. Fayez, and A. A. Gazder, “The crystallography of carbide-free bainites in thermo-mechanically processed low Si transformation-induced plasticity steels,” J. Alloys Compd. 615, 96–110 (2014).CrossRef
25.
go back to reference M. L. Lobanov, V. I. Pastukhov, and A. A. Redikul’tsev, “Effect of special boundaries on γ → α transformation in austenitic stainless steel,” Phys. Met. Metallogr. 122 (4), 396–402 (2021).CrossRef M. L. Lobanov, V. I. Pastukhov, and A. A. Redikul’tsev, “Effect of special boundaries on γ → α transformation in austenitic stainless steel,” Phys. Met. Metallogr. 122 (4), 396–402 (2021).CrossRef
26.
go back to reference M. L. Lobanov, M. A. Zorina, P. L. Reznik, V. I. Pastukhov, A. A. Redikultsev, and S. V. Danilov, “Specific features of crystallographic texture formation in BCC–FCC transformation in extruded brass,” J. Alloys Compd. 882, 160231 (2021).CrossRef M. L. Lobanov, M. A. Zorina, P. L. Reznik, V. I. Pastukhov, A. A. Redikultsev, and S. V. Danilov, “Specific features of crystallographic texture formation in BCC–FCC transformation in extruded brass,” J. Alloys Compd. 882, 160231 (2021).CrossRef
27.
go back to reference M. Holscher, D. Raabe, and K. Lucke, “Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals,” Acta Metall. Mater. 42 (3), 879–886 (1994).CrossRef M. Holscher, D. Raabe, and K. Lucke, “Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals,” Acta Metall. Mater. 42 (3), 879–886 (1994).CrossRef
28.
go back to reference J. Hirsch, “Textures in industrial aluminum alloys,” in Advances in the Metallurgy of Aluminum Alloys. (ASM-International, Materials Park, 2001), pp. 276–281. J. Hirsch, “Textures in industrial aluminum alloys,” in Advances in the Metallurgy of Aluminum Alloys. (ASM-International, Materials Park, 2001), pp. 276–281.
Metadata
Title
Structure Formation Patterns and Crystallographic Texture in Welded Joints of Medium-Carbon Alloy Steels in the Process of Rotary Friction Welding
Authors
E. Yu. Priymak
M. L. Lobanov
S. V. Belikov
M. S. Karabanalov
I. L. Yakovleva
Publication date
01-06-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 6/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22060126

Other articles of this Issue 6/2022

Physics of Metals and Metallography 6/2022 Go to the issue