Skip to main content
Top

2024 | OriginalPaper | Chapter

Structure of Cyclotomic Polynomials and Several Applications

Authors : Ala’a Al-Kateeb, Hoon Hong, Eunjeong Lee

Published in: Mathematical Analysis and Numerical Methods

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the intricate structure of cyclotomic polynomials, defined as the monic polynomials whose complex roots are the primitive n-th roots of unity. These polynomials play a fundamental role in number theory and algebra, with applications ranging from cryptography to computational efficiency. The author lists several interesting structures of cyclotomic polynomials, including relations among blocks obtained by suitable partitioning. Some of these structures are newly discovered, while others are explicitly stated and proven using a uniform technique. The chapter also illustrates the practical applications of these structural results, deriving properties such as the number of terms with prescribed coefficients, the norm of coefficients, and the coefficient of the middle term. These properties are shown to exhibit linear and parallel relationships, providing valuable insights into the behavior of cyclotomic polynomials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arnold, A., Monagan, M.: A high-performance algorithm for calculating cyclotomic polynomials, pp. 112–120. Proceedings of PASCO, ACM Press (2010) Arnold, A., Monagan, M.: A high-performance algorithm for calculating cyclotomic polynomials, pp. 112–120. Proceedings of PASCO, ACM Press (2010)
2.
go back to reference Arnold, A., Monagan, M.: Calculating cyclotomic polynomials of very large height. Math. Comp. 80, 2359–2379 (2011)MathSciNetCrossRef Arnold, A., Monagan, M.: Calculating cyclotomic polynomials of very large height. Math. Comp. 80, 2359–2379 (2011)MathSciNetCrossRef
3.
5.
go back to reference Beiter, M.: The midterm coefficient of the cyclotomic polynomial \({{F}}_{pq} (x)\). Amer. Math. Monthly 71, 769–770 (1964)MathSciNetCrossRef Beiter, M.: The midterm coefficient of the cyclotomic polynomial \({{F}}_{pq} (x)\). Amer. Math. Monthly 71, 769–770 (1964)MathSciNetCrossRef
6.
go back to reference Beiter, M.: Magnitude of the coefficients of the cyclotomic polynomial \({F}_{pqr}(x)\). Amer. Math. Monthly 75(4), 370–372 (1968)MathSciNetCrossRef Beiter, M.: Magnitude of the coefficients of the cyclotomic polynomial \({F}_{pqr}(x)\). Amer. Math. Monthly 75(4), 370–372 (1968)MathSciNetCrossRef
8.
go back to reference Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des., Codes Crypt. 37, 133–141 (2005)MathSciNetCrossRef Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des., Codes Crypt. 37, 133–141 (2005)MathSciNetCrossRef
12.
go back to reference Carlitz, L.: The number of terms in the cyclotomic polynomial \({F}_{ pq}(x)\). Amer. Math. Monthly 73(9), 979–981 (1966)MathSciNetCrossRef Carlitz, L.: The number of terms in the cyclotomic polynomial \({F}_{ pq}(x)\). Amer. Math. Monthly 73(9), 979–981 (1966)MathSciNetCrossRef
13.
go back to reference Dredsen, G.: On the middle coefficient of a cyclotomic polynomial. Amer. Math. Monthly 18(6), 979–981 (2004)MathSciNet Dredsen, G.: On the middle coefficient of a cyclotomic polynomial. Amer. Math. Monthly 18(6), 979–981 (2004)MathSciNet
14.
go back to reference Gallot, Y., Moree, P., Wilms, R.: The family of ternary cyclotomic polynomials with one free prime. Involve 4(4), 317–341 (2011)MathSciNetCrossRef Gallot, Y., Moree, P., Wilms, R.: The family of ternary cyclotomic polynomials with one free prime. Involve 4(4), 317–341 (2011)MathSciNetCrossRef
15.
go back to reference Hong, H., Lee, E., Lee, H.-S.: Explicit formula for optimal ate pairing over cyclotomic family of elliptic curves. Finite Fields Appl. 34, 45–74 (2015)MathSciNetCrossRef Hong, H., Lee, E., Lee, H.-S.: Explicit formula for optimal ate pairing over cyclotomic family of elliptic curves. Finite Fields Appl. 34, 45–74 (2015)MathSciNetCrossRef
17.
19.
go back to reference Lam, T.Y., Leung, K.H.: On the cyclotomic polynomial \(\phi _{pq} (x)\). Am. Math. Monthly 103(7), 562–564 (1996)MathSciNet Lam, T.Y., Leung, K.H.: On the cyclotomic polynomial \(\phi _{pq} (x)\). Am. Math. Monthly 103(7), 562–564 (1996)MathSciNet
20.
go back to reference Lehmer, E.: On the magnitude of the coefficients of the cyclotomic polynomials. Bull. Amer. Math. Soc. 42, 389–392 (1936)MathSciNetCrossRef Lehmer, E.: On the magnitude of the coefficients of the cyclotomic polynomials. Bull. Amer. Math. Soc. 42, 389–392 (1936)MathSciNetCrossRef
21.
go back to reference Lenstra, A.: Using cyclotomic polynomials to construct efficient discrete logarithm cryptosystems over finite fields. In: ACISP’97 Proceedings of the Second Australasian Conference on Information Security and Privacy, pp. 127–138 (1997) Lenstra, A.: Using cyclotomic polynomials to construct efficient discrete logarithm cryptosystems over finite fields. In: ACISP’97 Proceedings of the Second Australasian Conference on Information Security and Privacy, pp. 127–138 (1997)
23.
go back to reference Tanaka, S., Nakamula, K.: Pairing-Friendly Elliptic Curves Using Factorization of Cyclotomic Polynomials, pp. 136–145. Pairing-Based Cryptography. Springer, Berlin Heidelberg (2008) Tanaka, S., Nakamula, K.: Pairing-Friendly Elliptic Curves Using Factorization of Cyclotomic Polynomials, pp. 136–145. Pairing-Based Cryptography. Springer, Berlin Heidelberg (2008)
24.
Metadata
Title
Structure of Cyclotomic Polynomials and Several Applications
Authors
Ala’a Al-Kateeb
Hoon Hong
Eunjeong Lee
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4876-1_14

Premium Partner