Skip to main content
Top
Published in: Topics in Catalysis 10-12/2011

01-07-2011 | Original Paper

Structures, Mechanisms, and Kinetics of Ammoxidation and Selective Oxidation of Propane Over the M2 Phase of MoVNbTeO Catalysts

Published in: Topics in Catalysis | Issue 10-12/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We report here first-principles-based predictions of the structures, mechanisms, and activation barriers for propane activation by the M2 phase of the MoVNbTeO multi-metal oxide catalysts capable of the direct conversion of propane to acrylonitrile. Our approach is to combine extensive quantum mechanical (QM) calculations to establish the mechanisms for idealized representations of the surfaces for these catalytic systems and then to modify the parameters in the ReaxFF reactive force field for molecular dynamics (MD) calculations to describe accurately the activation barriers and reaction mechanisms of the chemical reactions over complex mixed metal oxides. The parameters for ReaxFF are derived entirely from QM without the use of empirical data so that it can be applied to novel systems on which there is little or no data. To understand the catalysis in these systems it is essential to determine the surface structures that control the surface chemistry. High quality three-dimensional (3D) Rietveld structures are now available for the M1 and M2 phases of the MoVNbTeO catalysts. However the details of the chemical mechanisms controlling selectivity and activity have remained elusive because the catalytically important sites in these Rietveld structures are occupied by mixtures of Mo and V atoms, obscuring the actual distributions of the metals and oxides at the active sites. To solve this problem we use a supercell of the Rietveld structure sufficiently large that all atoms can be whole, then we use Monte Carlo techniques based on ReaxFF to resolve these partial occupations into the optimum configuration of whole atoms still consistent with the X-ray data. We will report the ReaxFF resolved 3D structures for the M2 phase of the MoVNbTeO system. Using the resolved 3D structures we consider the distribution of sites on the important surfaces and carry out ReaxFF Reactive Dynamics (RD) calculations to follow the initial steps of the reactions. Such studies provide insights into the chemical reaction steps on MMO catalysts that should be useful in designing more selective and more active systems. We find that this suggests the critical role of the TeIV oxo chains for activating propene but not propane in the M2 phase. This suggests a new mechanism for this phase.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P, Lugmair CG, Volpe AF, Weingand T (2003) Multifunctionality of active centers in (amm)oxidation catalysts: from Bi-Mo-O-x to Mo-V-Nb-(Te, Sb)-O-x. Top Catal 23(1–4):5–22CrossRef Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P, Lugmair CG, Volpe AF, Weingand T (2003) Multifunctionality of active centers in (amm)oxidation catalysts: from Bi-Mo-O-x to Mo-V-Nb-(Te, Sb)-O-x. Top Catal 23(1–4):5–22CrossRef
2.
go back to reference Castarlenas R, Esteruelas MA, Onate E (2007) Preparation of [C, N, O]-pincer osmium complexes by alkylidene metathesis with a methyl group of 2,6-diacetylpyridine. Organometallics 26(13):3082–3084CrossRef Castarlenas R, Esteruelas MA, Onate E (2007) Preparation of [C, N, O]-pincer osmium complexes by alkylidene metathesis with a methyl group of 2,6-diacetylpyridine. Organometallics 26(13):3082–3084CrossRef
3.
go back to reference Ushikubo T, Oshima K, Kayo V, Umezawa T, Kiyono T, Sawaki I (1994) US Patent # 5,281,745 Ushikubo T, Oshima K, Kayo V, Umezawa T, Kiyono T, Sawaki I (1994) US Patent # 5,281,745
4.
go back to reference Allison Janet N, Goddard William A (1985) Active sites on molybdate surfaces, mechanistic considerations for selective oxidation, and ammoxidation of propene. In: Solid state chemistry in catalysis, vol 279. American Chemical Society, pp 23–36 Allison Janet N, Goddard William A (1985) Active sites on molybdate surfaces, mechanistic considerations for selective oxidation, and ammoxidation of propene. In: Solid state chemistry in catalysis, vol 279. American Chemical Society, pp 23–36
5.
go back to reference Jang YH, Goddard WA (2002) Mechanism of selective oxidation and ammoxidation of propene on bismuth molybdates from DFT calculations on model clusters. J Phys Chem B 106(23):5997–6013CrossRef Jang YH, Goddard WA (2002) Mechanism of selective oxidation and ammoxidation of propene on bismuth molybdates from DFT calculations on model clusters. J Phys Chem B 106(23):5997–6013CrossRef
7.
go back to reference Goddard WA, Chenoweth K, Pudar S, van Duin ACT, Cheng MJ (2008) Structures, mechanisms, and kinetics of selective ammoxidation and oxidation of propane over multi-metal oxide catalysts. Top Catal 50(1–4):2–18CrossRef Goddard WA, Chenoweth K, Pudar S, van Duin ACT, Cheng MJ (2008) Structures, mechanisms, and kinetics of selective ammoxidation and oxidation of propane over multi-metal oxide catalysts. Top Catal 50(1–4):2–18CrossRef
8.
go back to reference Grasselli RK (2007) COMP 229-selectivity issues in ammoxidation catalysis: MoV(Nb,Ta)(Te,Sb)O System. In: Abstracts of Papers of the American Chemical Society, vol 234, p 229-COMP Grasselli RK (2007) COMP 229-selectivity issues in ammoxidation catalysis: MoV(Nb,Ta)(Te,Sb)O System. In: Abstracts of Papers of the American Chemical Society, vol 234, p 229-COMP
9.
go back to reference Baca M, Pigamo A, Dubois JL, Millet JMM (2003) Propane oxidation on MoVTeNbO mixed oxide catalysts: study of the phase composition of active and selective catalysts. Top Catal 23(1):39–46CrossRef Baca M, Pigamo A, Dubois JL, Millet JMM (2003) Propane oxidation on MoVTeNbO mixed oxide catalysts: study of the phase composition of active and selective catalysts. Top Catal 23(1):39–46CrossRef
10.
go back to reference Grasselli RK, Buttrey DJ, Burrington JD, Andersson A, Holmberg J, Ueda W, Kubo J, Lugmair CG, Volpe AF (2006) Active centers, catalytic behavior, symbiosis and redox properties of MoV(Nb, Ta)TeO ammoxidation catalysts. Top Catal 38(1–3):7–16CrossRef Grasselli RK, Buttrey DJ, Burrington JD, Andersson A, Holmberg J, Ueda W, Kubo J, Lugmair CG, Volpe AF (2006) Active centers, catalytic behavior, symbiosis and redox properties of MoV(Nb, Ta)TeO ammoxidation catalysts. Top Catal 38(1–3):7–16CrossRef
11.
go back to reference Murayama H, Vitry D, Ueda W, Fuchs G, Anne M, Dubois JL (2007) Structure characterization of orthorhombic phase in MoVTeNbO catalyst by powder X-ray diffraction and XANES. Appl Catal A Gen 318:137–142CrossRef Murayama H, Vitry D, Ueda W, Fuchs G, Anne M, Dubois JL (2007) Structure characterization of orthorhombic phase in MoVTeNbO catalyst by powder X-ray diffraction and XANES. Appl Catal A Gen 318:137–142CrossRef
12.
go back to reference DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2003) Structural characterization of the orthorhombic phase M1 in MoVNbTeO propane ammoxidation catalyst. Top Catal 23(1–4):23–38CrossRef DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2003) Structural characterization of the orthorhombic phase M1 in MoVNbTeO propane ammoxidation catalyst. Top Catal 23(1–4):23–38CrossRef
13.
go back to reference DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2004) Structural aspects of the M1 and M2 phases in MoVNbTeO propane ammomidation catalysts. Zeitschrift Fur Kristallographie 219(3):152–165CrossRef DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2004) Structural aspects of the M1 and M2 phases in MoVNbTeO propane ammomidation catalysts. Zeitschrift Fur Kristallographie 219(3):152–165CrossRef
14.
go back to reference Grasselli RK, Buttrey DJ, DeSanto P, Burrington JD, Lugmair CG, Volpe AF, Weingand T (2004) Active centers in Mo-V-Nb-Te-Ox (amm)oxidation catalysts. Catal Today 91–92:251–258CrossRef Grasselli RK, Buttrey DJ, DeSanto P, Burrington JD, Lugmair CG, Volpe AF, Weingand T (2004) Active centers in Mo-V-Nb-Te-Ox (amm)oxidation catalysts. Catal Today 91–92:251–258CrossRef
15.
go back to reference Chenoweth K, van Duin ACT, Goddard WA (2009) The ReaxFF Monte Carlo reactive dynamics method for predicting atomistic structures of disordered ceramics: application to the Mo3VO x catalyst. Angew Chem Int Ed Engl 48(41):7630–7634CrossRef Chenoweth K, van Duin ACT, Goddard WA (2009) The ReaxFF Monte Carlo reactive dynamics method for predicting atomistic structures of disordered ceramics: application to the Mo3VO x catalyst. Angew Chem Int Ed Engl 48(41):7630–7634CrossRef
16.
go back to reference Strachan A, Kober EM, van Duin ACT, Oxgaard J, Goddard WA (2005) Thermal decomposition of RDX from reactive molecular dynamics. J Chem Phys 122(5):54502 Strachan A, Kober EM, van Duin ACT, Oxgaard J, Goddard WA (2005) Thermal decomposition of RDX from reactive molecular dynamics. J Chem Phys 122(5):54502
17.
go back to reference Zhang LZ, Zybin SV, van Duin ACT, Dasgupta S, Goddard WA, Kober EM (2009) Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. J Phys Chem A 113(40):10619–10640CrossRef Zhang LZ, Zybin SV, van Duin ACT, Dasgupta S, Goddard WA, Kober EM (2009) Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. J Phys Chem A 113(40):10619–10640CrossRef
18.
go back to reference Goddard WA, van Duin A, Chenoweth K, Cheng MJ, Pudar S, Oxgaard J, Merinov B, Jang YH, Persson P (2006) Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoO x . Top Catal 38(1–3):93–103CrossRef Goddard WA, van Duin A, Chenoweth K, Cheng MJ, Pudar S, Oxgaard J, Merinov B, Jang YH, Persson P (2006) Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoO x . Top Catal 38(1–3):93–103CrossRef
19.
go back to reference Chenoweth K, van Duin ACT, Persson P, Cheng MJ, Oxgaard J, Goddard WA (2008) Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts. J Phys Chem C 112(37):14645–14654CrossRef Chenoweth K, van Duin ACT, Persson P, Cheng MJ, Oxgaard J, Goddard WA (2008) Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts. J Phys Chem C 112(37):14645–14654CrossRef
20.
go back to reference Mueller JE, van Duin ACT, Goddard WA (2010) Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel. J Phys Chem C 114(11):4939–4949CrossRef Mueller JE, van Duin ACT, Goddard WA (2010) Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel. J Phys Chem C 114(11):4939–4949CrossRef
21.
go back to reference Cheung S, Deng WQ, van Duin ACT, Goddard WA (2005) ReaxFF(MgH) reactive force field for magnesium hydride systems. J Phys Chem A 109(5):851–859CrossRef Cheung S, Deng WQ, van Duin ACT, Goddard WA (2005) ReaxFF(MgH) reactive force field for magnesium hydride systems. J Phys Chem A 109(5):851–859CrossRef
22.
go back to reference Liu Y, Goddard WA (2009) A universal damping function for empirical dispersion correction on density functional theory. Mater Trans 50(7):1664–1670CrossRef Liu Y, Goddard WA (2009) A universal damping function for empirical dispersion correction on density functional theory. Mater Trans 50(7):1664–1670CrossRef
23.
go back to reference Liu Y, Goddard WA (2010) First-principles-based dispersion augmented density functional theory: from molecules to crystals. J Phys Chem Lett 1(17):2550–2555CrossRef Liu Y, Goddard WA (2010) First-principles-based dispersion augmented density functional theory: from molecules to crystals. J Phys Chem Lett 1(17):2550–2555CrossRef
24.
go back to reference Chenoweth K, van Duin ACT, Dasgupta S, Goddard WA (2009) Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. J Phys Chem A 113(9):1740–1746CrossRef Chenoweth K, van Duin ACT, Dasgupta S, Goddard WA (2009) Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. J Phys Chem A 113(9):1740–1746CrossRef
25.
go back to reference Pudar S, Oxgaard J, Goddard WA (2010) Mechanism of selective ammoxidation of propene to acrylonitrile on bismuth molybdates from quantum mechanical calculations. J Phys Chem C 114(37):15678–15694CrossRef Pudar S, Oxgaard J, Goddard WA (2010) Mechanism of selective ammoxidation of propene to acrylonitrile on bismuth molybdates from quantum mechanical calculations. J Phys Chem C 114(37):15678–15694CrossRef
26.
go back to reference Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard WA, Honig B (1994) Accurate first principles calculation of molecular charge-distributions and solvation energies from Ab initio quantum-mechanics and continuum dielectric theory. J Am Chem Soc 116(26):11875–11882CrossRef Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard WA, Honig B (1994) Accurate first principles calculation of molecular charge-distributions and solvation energies from Ab initio quantum-mechanics and continuum dielectric theory. J Am Chem Soc 116(26):11875–11882CrossRef
27.
go back to reference Dobson JC, Meyer TJ (1988) Redox properties and ligand loss chemistry in aqua hydroxo oxo complexes derived from cis-(Bpy)2ru2(Oh2)2 2+ and trans-(Bpy)2ruii(Oh2)2 2+. Inorg Chem 27(19):3283–3291CrossRef Dobson JC, Meyer TJ (1988) Redox properties and ligand loss chemistry in aqua hydroxo oxo complexes derived from cis-(Bpy)2ru2(Oh2)2 2+ and trans-(Bpy)2ruii(Oh2)2 2+. Inorg Chem 27(19):3283–3291CrossRef
28.
go back to reference Martin JML, Sundermann A (2001) Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: the atoms Ga-Kr and In-Xe. J Chem Phys 114(8):3408–3420CrossRef Martin JML, Sundermann A (2001) Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: the atoms Ga-Kr and In-Xe. J Chem Phys 114(8):3408–3420CrossRef
29.
go back to reference Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRef Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRef
30.
go back to reference Lee CT, Yang WT, Parr RG (1988) development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37(2):785–789CrossRef Lee CT, Yang WT, Parr RG (1988) development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37(2):785–789CrossRef
31.
go back to reference Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241CrossRef Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241CrossRef
32.
go back to reference Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, Arco PhD, Llunell M (2006) CRYSTAL06 user’s manual. University of Torino, Torino Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, Arco PhD, Llunell M (2006) CRYSTAL06 user’s manual. University of Torino, Torino
34.
go back to reference Jaguar (2007) version 7.0; Schrodinger, LLC, New York, NY Jaguar (2007) version 7.0; Schrodinger, LLC, New York, NY
35.
go back to reference Shao Y et al (2007) Q-Chem, version 3.1; Q-Chem, Inc.: Pittsburgh, PA Shao Y et al (2007) Q-Chem, version 3.1; Q-Chem, Inc.: Pittsburgh, PA
36.
go back to reference Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic-structure system. J Comput Chem 14(11):1347–1363CrossRef Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic-structure system. J Comput Chem 14(11):1347–1363CrossRef
Metadata
Title
Structures, Mechanisms, and Kinetics of Ammoxidation and Selective Oxidation of Propane Over the M2 Phase of MoVNbTeO Catalysts
Publication date
01-07-2011
Published in
Topics in Catalysis / Issue 10-12/2011
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-011-9688-8

Other articles of this Issue 10-12/2011

Topics in Catalysis 10-12/2011 Go to the issue

Premium Partners