Skip to main content
Top

2019 | OriginalPaper | Chapter

2. Structures, Properties and Applications of 2D Materials

Authors : Leonard W. T. Ng, Guohua Hu, Richard C. T. Howe, Xiaoxi Zhu, Zongyin Yang, Christopher G. Jones, Tawfique Hasan

Published in: Printing of Graphene and Related 2D Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Early scientific investigations into graphene date back to the 1950s. The interest in graphene intensified when Konstantin Novosolev and Andre Geim were awarded the Nobel prize in physics for ‘groundbreaking experiments regarding the two-dimensional material graphene’. Since then, other two-dimensional (2D) materials have (re)gained increasing research interest. The most studied 2D materials to date include transition metal dichalcogenides (TMDs), black phosphorus (BP), hexagonal boron nitride (h-BN) and transition metal carbides and/or carbonitrides (MXenes). This chapter introduces these key material groups, and provides a review of the current understanding of their structures and properties. In particular, this chapter will focus on the (opto)electronic properties of the individual 2D materials and their potential applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Garašanin, The Eneolithic period in the Central Balkan Area, in The Cambridge Ancient History, ed. by J. Boardman, I.E.S. Edwards, N.G.L. Hammond, E. Sollberger (Cambridge University Press, Cambridge, 1982), pp. 136–162 M. Garašanin, The Eneolithic period in the Central Balkan Area, in The Cambridge Ancient History, ed. by J. Boardman, I.E.S. Edwards, N.G.L. Hammond, E. Sollberger (Cambridge University Press, Cambridge, 1982), pp. 136–162
2.
go back to reference R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3(1), 20–30 (2011)CrossRef R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3(1), 20–30 (2011)CrossRef
3.
go back to reference B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 149, 249–259 (1859)CrossRef B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 149, 249–259 (1859)CrossRef
4.
go back to reference H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Dunnste Kohlenstoff-Folien. Z. fur Naturforsch. Sect. B J. Chem. Sci. 17(3), 150–153 (1962) H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Dunnste Kohlenstoff-Folien. Z. fur Naturforsch. Sect. B J. Chem. Sci. 17(3), 150–153 (1962)
5.
go back to reference A.K. Bodenmann, A.H. MacDonald, Graphene: exploring carbon flatland. Phys. Today 60(8), 35–41 (2007)CrossRef A.K. Bodenmann, A.H. MacDonald, Graphene: exploring carbon flatland. Phys. Today 60(8), 35–41 (2007)CrossRef
6.
go back to reference G. Ruess, F. Vogt, Hochstlamellarer kohlenstoff aus graphitoxyhydroxyd. Monatsh. Chem. 78(3-4), 222–242 (1948) G. Ruess, F. Vogt, Hochstlamellarer kohlenstoff aus graphitoxyhydroxyd. Monatsh. Chem. 78(3-4), 222–242 (1948)
7.
go back to reference S. Mouras, A. Hamm, D. Djurado, J.-C. Cousseing, Synthesis of first stage graphite intercalation compounds with fluorides. Rev. Chim. minér. 24(5), 572–582 (1987) S. Mouras, A. Hamm, D. Djurado, J.-C. Cousseing, Synthesis of first stage graphite intercalation compounds with fluorides. Rev. Chim. minér. 24(5), 572–582 (1987)
8.
go back to reference K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005)CrossRef K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005)CrossRef
9.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef
10.
go back to reference M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)CrossRef M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)CrossRef
11.
go back to reference L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)CrossRef L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)CrossRef
12.
go back to reference A. Lipp, K.A. Schwetz, K. Hunold, Hexagonal boron nitride: fabrication, properties and applications. J. Eur. Ceram. Soc. 5(1), 3–9 (1989)CrossRef A. Lipp, K.A. Schwetz, K. Hunold, Hexagonal boron nitride: fabrication, properties and applications. J. Eur. Ceram. Soc. 5(1), 3–9 (1989)CrossRef
13.
go back to reference F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)CrossRef F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)CrossRef
14.
go back to reference V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419–1226437 (2013)CrossRef V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419–1226437 (2013)CrossRef
15.
go back to reference R.F. Frindt, A.D. Yoffe, Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. A Math. Phys. Eng. Sci. 273(1352), 69–83 (1963)CrossRef R.F. Frindt, A.D. Yoffe, Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. A Math. Phys. Eng. Sci. 273(1352), 69–83 (1963)CrossRef
16.
go back to reference P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21(4), 457–461 (1986)CrossRef P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21(4), 457–461 (1986)CrossRef
17.
go back to reference B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)CrossRef B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)CrossRef
18.
go back to reference P.W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 36(7), 1344–1363 (1914)CrossRef P.W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 36(7), 1344–1363 (1914)CrossRef
19.
go back to reference B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)CrossRef B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)CrossRef
20.
go back to reference M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014) M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014)
21.
go back to reference F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 8(12), 899–907 (2014)CrossRef F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 8(12), 899–907 (2014)CrossRef
22.
go back to reference A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B.H. Hong, J.-H. Ahn, J.M. Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598–4810 (2015)CrossRef A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B.H. Hong, J.-H. Ahn, J.M. Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598–4810 (2015)CrossRef
23.
go back to reference A. Castellanos-Gomez, Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6(21), 4280–4291 (2015)CrossRef A. Castellanos-Gomez, Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6(21), 4280–4291 (2015)CrossRef
24.
go back to reference R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015) R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015)
25.
go back to reference A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef
26.
go back to reference A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)CrossRef A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)CrossRef
27.
go back to reference A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily, I. Godwin, J. Coelho, V. Nicolosi, J. Lauth, A. Kulkarni, S. Kinge, L.D.A. Siebbeles, G.S. Duesberg, J.N. Coleman, All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356(6333), 69–73 (2017)CrossRef A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily, I. Godwin, J. Coelho, V. Nicolosi, J. Lauth, A. Kulkarni, S. Kinge, L.D.A. Siebbeles, G.S. Duesberg, J.N. Coleman, All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356(6333), 69–73 (2017)CrossRef
28.
go back to reference R.S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A.C. Ferrari, P. Avouris, M. Steiner, Electroluminescence in single layer MoS2. Nano Lett. 13(4), 1416–1421 (2013)CrossRef R.S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A.C. Ferrari, P. Avouris, M. Steiner, Electroluminescence in single layer MoS2. Nano Lett. 13(4), 1416–1421 (2013)CrossRef
29.
go back to reference A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010)CrossRef A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010)CrossRef
30.
go back to reference N. Youngblood, C. Chen, S.J. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9(4), 247 (2015)CrossRef N. Youngblood, C. Chen, S.J. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9(4), 247 (2015)CrossRef
31.
go back to reference Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317(5840), 932–934 (2007)CrossRef Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317(5840), 932–934 (2007)CrossRef
32.
go back to reference F. Hui, C. Pan, Y. Shi, Y. Ji, E. Grustan-Gutierrez, M. Lanza, On the use of two dimensional hexagonal boron nitride as dielectric. Microelectron. Eng. 163, 119–133 (2016)CrossRef F. Hui, C. Pan, Y. Shi, Y. Ji, E. Grustan-Gutierrez, M. Lanza, On the use of two dimensional hexagonal boron nitride as dielectric. Microelectron. Eng. 163, 119–133 (2016)CrossRef
33.
go back to reference A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)CrossRef A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)CrossRef
34.
go back to reference J. Ye, M.F Craciun, M. Koshino, S. Russo, S. Inoue, H. Yuan, H. Shimotani, A.F. Morpurgo, Y. Iwasa, Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. 108(32), 13002–13006 (2011)CrossRef J. Ye, M.F Craciun, M. Koshino, S. Russo, S. Inoue, H. Yuan, H. Shimotani, A.F. Morpurgo, Y. Iwasa, Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. 108(32), 13002–13006 (2011)CrossRef
35.
go back to reference Y. Huang, E. Sutter, N.N. Shi, J. Zheng, T. Yang, D. Englund, H.J. Gao, P. Sutter, Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9(11), 10612–10620 (2015)CrossRef Y. Huang, E. Sutter, N.N. Shi, J. Zheng, T. Yang, D. Englund, H.J. Gao, P. Sutter, Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9(11), 10612–10620 (2015)CrossRef
36.
37.
go back to reference Y.-J. Kim, Y. Kim, K. Novoselov, B.H. Hong, Engineering electrical properties of graphene: chemical approaches. 2D Mater. 2(4), 042001 (2015)CrossRef Y.-J. Kim, Y. Kim, K. Novoselov, B.H. Hong, Engineering electrical properties of graphene: chemical approaches. 2D Mater. 2(4), 042001 (2015)CrossRef
38.
go back to reference A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3(4), 210–215 (2008)CrossRef A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3(4), 210–215 (2008)CrossRef
39.
go back to reference R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1308 (2008)CrossRef R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1308 (2008)CrossRef
40.
go back to reference Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010)CrossRef Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010)CrossRef
41.
go back to reference U. Keller, Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)CrossRef U. Keller, Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)CrossRef
42.
go back to reference F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef
43.
go back to reference L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, X. Duan, High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313), 305–308 (2010)CrossRef L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, X. Duan, High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313), 305–308 (2010)CrossRef
44.
go back to reference F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRef F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRef
45.
go back to reference L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan, Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10(5), 1917–1921 (2010)CrossRef L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan, Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10(5), 1917–1921 (2010)CrossRef
46.
go back to reference X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Graphene-based electrodes. Adv. Mater. 24(45), 5979–6004 (2012)CrossRef X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Graphene-based electrodes. Adv. Mater. 24(45), 5979–6004 (2012)CrossRef
47.
go back to reference S. De, J.N. Coleman, Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4(5), 2713–2720 (2010)CrossRef S. De, J.N. Coleman, Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4(5), 2713–2720 (2010)CrossRef
48.
go back to reference M.F. Craciun, T.H. Bointon, S. Russo, Is graphene a good transparent electrode for photovoltaics and display applications? IET Circuits Devices Syst. 9(6), 403–412 (2015) M.F. Craciun, T.H. Bointon, S. Russo, Is graphene a good transparent electrode for photovoltaics and display applications? IET Circuits Devices Syst. 9(6), 403–412 (2015)
49.
go back to reference S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRef S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRef
50.
go back to reference C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRef C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRef
51.
go back to reference S. De, P.J. King, M. Lotya, A. O’Neill, E.M. Doherty, Y. Hernandez, G.S. Duesberg, J.N. Coleman, Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 6(3), 458–464 (2010)CrossRef S. De, P.J. King, M. Lotya, A. O’Neill, E.M. Doherty, Y. Hernandez, G.S. Duesberg, J.N. Coleman, Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 6(3), 458–464 (2010)CrossRef
52.
go back to reference X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 3(9), 538–542 (2008)CrossRef X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 3(9), 538–542 (2008)CrossRef
53.
go back to reference J. Shim, J.M. Yun, T. Yun, P. Kim, K.E. Lee, W.J. Lee, R. Ryoo, D.J. Pine, G.-R. Yi, S.O. Kim, Two-minute assembly of pristine large-area graphene based films. Nano Lett. 14(3), 1388–1393 (2014)CrossRef J. Shim, J.M. Yun, T. Yun, P. Kim, K.E. Lee, W.J. Lee, R. Ryoo, D.J. Pine, G.-R. Yi, S.O. Kim, Two-minute assembly of pristine large-area graphene based films. Nano Lett. 14(3), 1388–1393 (2014)CrossRef
54.
go back to reference M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12(11), 5714–5718 (2012)CrossRef M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12(11), 5714–5718 (2012)CrossRef
55.
go back to reference D. Dodoo-Arhin, R.C.T. Howe, G. Hu, Y. Zhang, P. Hiralal, A. Bello, G. Amaratunga, T. Hasan, Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 105, 33–41 (2016)CrossRef D. Dodoo-Arhin, R.C.T. Howe, G. Hu, Y. Zhang, P. Hiralal, A. Bello, G. Amaratunga, T. Hasan, Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 105, 33–41 (2016)CrossRef
56.
go back to reference E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, M.C. Hersam, Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chem. Mater. 29, 2332–2340 (2017)CrossRef E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, M.C. Hersam, Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chem. Mater. 29, 2332–2340 (2017)CrossRef
59.
go back to reference P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, I. Goykhman, Y. Su, S.V. Mesite, D.N. Johnstone, R.K. Leary, P.A. Midgley, N.M. Pugno, F. Torrisi, A.C. Ferrari, Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11(3), 2742–2755 (2017)CrossRef P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, I. Goykhman, Y. Su, S.V. Mesite, D.N. Johnstone, R.K. Leary, P.A. Midgley, N.M. Pugno, F. Torrisi, A.C. Ferrari, Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11(3), 2742–2755 (2017)CrossRef
60.
go back to reference Y. Liu, Z. Xu, J. Zhan, P. Li, C. Gao, Superb electrically conductive graphene fibers via doping strategy. Adv. Mater. 28(36), 7941–7947 (2016)CrossRef Y. Liu, Z. Xu, J. Zhan, P. Li, C. Gao, Superb electrically conductive graphene fibers via doping strategy. Adv. Mater. 28(36), 7941–7947 (2016)CrossRef
61.
go back to reference A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4), 507–514 (2001)CrossRef A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4), 507–514 (2001)CrossRef
62.
go back to reference F. Yavari, N. Koratkar, Graphene-based chemical sensors. J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)CrossRef F. Yavari, N. Koratkar, Graphene-based chemical sensors. J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)CrossRef
63.
go back to reference F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)CrossRef F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)CrossRef
64.
go back to reference P. Martin, Electrochemistry of graphene: new horizons for sensing and energy storage. Chem. Rec. 9(4), 211–223 (2009) P. Martin, Electrochemistry of graphene: new horizons for sensing and energy storage. Chem. Rec. 9(4), 211–223 (2009)
65.
go back to reference S. Rumyantsev, G. Liu, M.S. Shur, R.A. Potyrailo, A.A. Balandin, Selective gas sensing with a single pristine graphene transistor. Nano Lett. 12(5), 2294–2298 (2012)CrossRef S. Rumyantsev, G. Liu, M.S. Shur, R.A. Potyrailo, A.A. Balandin, Selective gas sensing with a single pristine graphene transistor. Nano Lett. 12(5), 2294–2298 (2012)CrossRef
66.
go back to reference W. Yuan, G. Shi, Graphene-based gas sensors. J. Mater. Chem. A 1(35), 10078 (2013)CrossRef W. Yuan, G. Shi, Graphene-based gas sensors. J. Mater. Chem. A 1(35), 10078 (2013)CrossRef
67.
go back to reference K. Shehzad, T. Shi, A. Qadir, X. Wan, H. Guo, A. Ali, W. Xuan, H. Xu, Z. Gu, X. Peng, J. Xie, L. Sun, Q. He, Z. Xu, C. Gao, Y.-S. Rim, Y. Dan, T. Hasan, P. Tan, E. Li, W. Yin, Z. Cheng, B. Yu, Y. Xu, J. Luo, X. Duan, Designing an efficient multimode environmental sensor based on graphene-silicon heterojunction. Adv. Mater. Technol. 2(4), 1600262 (2017) K. Shehzad, T. Shi, A. Qadir, X. Wan, H. Guo, A. Ali, W. Xuan, H. Xu, Z. Gu, X. Peng, J. Xie, L. Sun, Q. He, Z. Xu, C. Gao, Y.-S. Rim, Y. Dan, T. Hasan, P. Tan, E. Li, W. Yin, Z. Cheng, B. Yu, Y. Xu, J. Luo, X. Duan, Designing an efficient multimode environmental sensor based on graphene-silicon heterojunction. Adv. Mater. Technol. 2(4), 1600262 (2017)
68.
go back to reference Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10), 1027–1036 (2010)CrossRef Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10), 1027–1036 (2010)CrossRef
69.
go back to reference V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012)CrossRef V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012)CrossRef
70.
go back to reference G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe, C. Jones, M.C. Hersam, T. Hasan, Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47(9), 3265–3300 (2018)CrossRef G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe, C. Jones, M.C. Hersam, T. Hasan, Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47(9), 3265–3300 (2018)CrossRef
71.
go back to reference Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44(11), 3639–3665 (2015)CrossRef Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44(11), 3639–3665 (2015)CrossRef
72.
go back to reference M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)CrossRef M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)CrossRef
73.
go back to reference T. Liu, M. Leskes, W. Yu, A.J. Moore, L. Zhou, P.M. Bayley, G. Kim, C.P. Grey, Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350(6260), 530–533 (2015)CrossRef T. Liu, M. Leskes, W. Yu, A.J. Moore, L. Zhou, P.M. Bayley, G. Kim, C.P. Grey, Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350(6260), 530–533 (2015)CrossRef
74.
go back to reference Y. Xie, Y. Liu, Y. Zhao, Y.H. Tsang, S.P. Lau, H. Huang, Y. Chai, Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2(24), 9142–9149 (2014)CrossRef Y. Xie, Y. Liu, Y. Zhao, Y.H. Tsang, S.P. Lau, H. Huang, Y. Chai, Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2(24), 9142–9149 (2014)CrossRef
75.
go back to reference J. Cao, Y. Wang, Y. Zhou, J.-H. Ouyang, D. Jia, L. Guo, High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J. Electroanal. Chem. 689, 201–206 (2013)CrossRef J. Cao, Y. Wang, Y. Zhou, J.-H. Ouyang, D. Jia, L. Guo, High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J. Electroanal. Chem. 689, 201–206 (2013)CrossRef
76.
go back to reference L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, W.Y. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011)CrossRef L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, W.Y. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011)CrossRef
77.
go back to reference T. Ramanathan, A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327–331 (2008)CrossRef T. Ramanathan, A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327–331 (2008)CrossRef
78.
go back to reference A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)CrossRef A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)CrossRef
79.
go back to reference S.H. Song K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun, D.J. Lee, B.-S. Kong, K.-W. Paik, S. Jeon, Enhanced thermal conductivity of epoxy–graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25(5), 732–737 (2013)CrossRef S.H. Song K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun, D.J. Lee, B.-S. Kong, K.-W. Paik, S. Jeon, Enhanced thermal conductivity of epoxy–graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25(5), 732–737 (2013)CrossRef
80.
go back to reference A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, Graphite nanoplatelet - epoxy composite thermal interface materials. J. Phys. Chem. C 111, 7565–7569 (2007)CrossRef A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, Graphite nanoplatelet - epoxy composite thermal interface materials. J. Phys. Chem. C 111, 7565–7569 (2007)CrossRef
81.
go back to reference P. Dollfus, V.H. Nguyen, Thermoelectric effects in graphene nanostructures. J. Phys. Condens. Matter 27, 133204 (2015) P. Dollfus, V.H. Nguyen, Thermoelectric effects in graphene nanostructures. J. Phys. Condens. Matter 27, 133204 (2015)
82.
go back to reference T. Juntunen, H. Jussila, M. Ruoho, S. Liu, G. Hu, T. Albrow-Owen, L.W.T. Ng, R.C.T. Howe, T. Hasan, Z. Sun, I. Tittonen, Inkjet printed large-area flexible graphene thermoelectrics. Adv. Funct. Mater. 28(22), 1800480 (2018)CrossRef T. Juntunen, H. Jussila, M. Ruoho, S. Liu, G. Hu, T. Albrow-Owen, L.W.T. Ng, R.C.T. Howe, T. Hasan, Z. Sun, I. Tittonen, Inkjet printed large-area flexible graphene thermoelectrics. Adv. Funct. Mater. 28(22), 1800480 (2018)CrossRef
83.
go back to reference J. Saint-Martin, V.H. Nguyen, P. Dollfus, M.C. Nguyen, High thermoelectric figure of merit in devices made of vertically stacked graphene layers, in 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (2015), pp. 169–172 J. Saint-Martin, V.H. Nguyen, P. Dollfus, M.C. Nguyen, High thermoelectric figure of merit in devices made of vertically stacked graphene layers, in 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (2015), pp. 169–172
84.
go back to reference M. Breusing, C. Ropers, T. Elsaesser, Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102(8), 086809 (2009) M. Breusing, C. Ropers, T. Elsaesser, Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102(8), 086809 (2009)
85.
go back to reference D. Sun, Z.-K. Wu, C. Divin, X. Li, C. Berger, W.A. de Heer, P.N. First, T.B. Norris, Ultrafast relaxation of excited dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101(15), 157402 (2008) D. Sun, Z.-K. Wu, C. Divin, X. Li, C. Berger, W.A. de Heer, P.N. First, T.B. Norris, Ultrafast relaxation of excited dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101(15), 157402 (2008)
86.
go back to reference K. Seibert, G.C. Cho, W. Kütt, H. Kurz, D.H. Reitze, J.I. Dadap, H. Ahn, M.C. Downer, A.M. Malvezzi, Femtosecond carrier dynamics in graphite. Phys. Rev. B 42(5), 2842–2851 (1990)CrossRef K. Seibert, G.C. Cho, W. Kütt, H. Kurz, D.H. Reitze, J.I. Dadap, H. Ahn, M.C. Downer, A.M. Malvezzi, Femtosecond carrier dynamics in graphite. Phys. Rev. B 42(5), 2842–2851 (1990)CrossRef
87.
go back to reference T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, A.C. Ferrari, Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi B 247(11–12), 2953–2957 (2010)CrossRef T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, A.C. Ferrari, Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi B 247(11–12), 2953–2957 (2010)CrossRef
88.
go back to reference T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 21(38–39), 3874–3899 (2009) T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 21(38–39), 3874–3899 (2009)
89.
go back to reference R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335(6067), 442–444 (2012)CrossRef R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335(6067), 442–444 (2012)CrossRef
90.
go back to reference R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343(6172), 752–754 (2014)CrossRef R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343(6172), 752–754 (2014)CrossRef
91.
go back to reference J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546–550 (2017)CrossRef J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546–550 (2017)CrossRef
92.
go back to reference Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)CrossRef Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)CrossRef
93.
go back to reference M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013)CrossRef M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013)CrossRef
94.
go back to reference E.A. Marseglia, Transition metal dichalcogenides and their intercalates. Int. Rev. Phys. Chem. 3(2), 177–216 (1983)CrossRef E.A. Marseglia, Transition metal dichalcogenides and their intercalates. Int. Rev. Phys. Chem. 3(2), 177–216 (1983)CrossRef
95.
go back to reference K.P. Dhakal, D.L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y.H. Lee, J. Kim, Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6(21), 13028–13035 (2014)CrossRef K.P. Dhakal, D.L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y.H. Lee, J. Kim, Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6(21), 13028–13035 (2014)CrossRef
96.
go back to reference X. Wang, Y. Gong, G. Shi, W.L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B.K. Tay, P.M. Ajayan, Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 8(5), 5125–5131 (2014)CrossRef X. Wang, Y. Gong, G. Shi, W.L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B.K. Tay, P.M. Ajayan, Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 8(5), 5125–5131 (2014)CrossRef
97.
go back to reference M. Amani, D.-H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S.R. Madhvapathy, R. Addou, S. KC, M. Dubey, K. Cho, R.M. Wallace, S.-C. Lee, J.-H. He, J.W. Ager III, X. Zhang, E. Yablonovitch, A. Javey, Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015)CrossRef M. Amani, D.-H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S.R. Madhvapathy, R. Addou, S. KC, M. Dubey, K. Cho, R.M. Wallace, S.-C. Lee, J.-H. He, J.W. Ager III, X. Zhang, E. Yablonovitch, A. Javey, Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015)CrossRef
98.
go back to reference S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703–9709 (2011)CrossRef S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703–9709 (2011)CrossRef
99.
go back to reference A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Molybdenum sulfides - efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5(2), 5577 (2012)CrossRef A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Molybdenum sulfides - efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5(2), 5577 (2012)CrossRef
100.
go back to reference K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010) K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)
101.
go back to reference G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011)CrossRef G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011)CrossRef
102.
go back to reference A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83(24), 245213 (2011) A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83(24), 245213 (2011)
103.
go back to reference Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo, Z. Hussain, A. Bansil, Z.-X. Shen. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9(2), 111–115 (2013)CrossRef Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo, Z. Hussain, A. Bansil, Z.-X. Shen. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9(2), 111–115 (2013)CrossRef
104.
go back to reference W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, J.D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85(3), 033305 (2012) W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, J.D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85(3), 033305 (2012)
105.
go back to reference X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44(24), 8859–8876 (2015)CrossRef X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44(24), 8859–8876 (2015)CrossRef
106.
go back to reference K.K. Kam, B.A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 86(4), 463–467 (1982)CrossRef K.K. Kam, B.A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 86(4), 463–467 (1982)CrossRef
107.
go back to reference S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12(11), 5576–5580 (2012)CrossRef S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12(11), 5576–5580 (2012)CrossRef
108.
go back to reference C. Ruppert, O.B. Aslan, T.F. Heinz, Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14(11), 6231–6236 (2014)CrossRef C. Ruppert, O.B. Aslan, T.F. Heinz, Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14(11), 6231–6236 (2014)CrossRef
109.
go back to reference W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1), 791–797 (2013) W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1), 791–797 (2013)
110.
go back to reference O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013)CrossRef O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013)CrossRef
111.
go back to reference D. Kufer, G. Konstantatos, Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 15(11), 7307–7313 (2015)CrossRef D. Kufer, G. Konstantatos, Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 15(11), 7307–7313 (2015)CrossRef
112.
go back to reference N. Perea-López, A.L. Elías, A. Berkdemir, A. Castro-Beltran, H.R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, M. Terrones, Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23(44), 5511–5517 (2013)CrossRef N. Perea-López, A.L. Elías, A. Berkdemir, A. Castro-Beltran, H.R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, M. Terrones, Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23(44), 5511–5517 (2013)CrossRef
113.
go back to reference Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, Q. Bao, Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 10(1), 573–580 (2016) Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, Q. Bao, Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 10(1), 573–580 (2016)
114.
go back to reference C. Palacios-Berraquero, M. Barbone, D.M. Kara, X. Chen, I. Goykhman, D. Yoon, A.K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A.C. Ferrari, M. Atatüre, Atomically thin quantum light-emitting diodes. Nat. Commun. 7, 12978 (2016)CrossRef C. Palacios-Berraquero, M. Barbone, D.M. Kara, X. Chen, I. Goykhman, D. Yoon, A.K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A.C. Ferrari, M. Atatüre, Atomically thin quantum light-emitting diodes. Nat. Commun. 7, 12978 (2016)CrossRef
115.
go back to reference F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A.P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S.J. Haigh, A.K. Geim, A.I. Tartakovskii, K.S. Novoselov, Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14(3), 301–306 (2015)CrossRef F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A.P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S.J. Haigh, A.K. Geim, A.I. Tartakovskii, K.S. Novoselov, Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14(3), 301–306 (2015)CrossRef
116.
go back to reference S. Jo, N. Ubrig, H. Berger, A.B. Kuzmenko, A.F. Morpurgo, Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 14(4), 2019–2025 (2014)CrossRef S. Jo, N. Ubrig, H. Berger, A.B. Kuzmenko, A.F. Morpurgo, Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 14(4), 2019–2025 (2014)CrossRef
117.
go back to reference M. Shanmugam, T. Bansal, C.A. Durcan, B. Yu, Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Appl. Phys. Lett. 100(15), 153901 (2012)CrossRef M. Shanmugam, T. Bansal, C.A. Durcan, B. Yu, Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Appl. Phys. Lett. 100(15), 153901 (2012)CrossRef
118.
go back to reference A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499(7459), 419–425 (2013)CrossRef A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499(7459), 419–425 (2013)CrossRef
119.
go back to reference M.S. Fuhrer, J. Hone, Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8(3), 146–147 (2013)CrossRef M.S. Fuhrer, J. Hone, Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8(3), 146–147 (2013)CrossRef
120.
go back to reference K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang, K.F. Mak, C.-J. Kim, D. Muller, J. Park, High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656–660 (2015)CrossRef K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang, K.F. Mak, C.-J. Kim, D. Muller, J. Park, High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656–660 (2015)CrossRef
121.
go back to reference T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y.-J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, A. Mishchenko, Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100–103 (2012)CrossRef T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y.-J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, A. Mishchenko, Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100–103 (2012)CrossRef
122.
go back to reference B. Radisavljevic, A. Kis, Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 12(9), 815–820 (2013)CrossRef B. Radisavljevic, A. Kis, Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 12(9), 815–820 (2013)CrossRef
123.
go back to reference M. Zhang, R.C.T. Howe, R.I. Woodward, E.J.R. Kelleher, F. Torrisi, G. Hu, S.V. Popov, J.R. Taylor, T. Hasan, Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Res. 8(5), 1522–1534 (2015)CrossRef M. Zhang, R.C.T. Howe, R.I. Woodward, E.J.R. Kelleher, F. Torrisi, G. Hu, S.V. Popov, J.R. Taylor, T. Hasan, Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Res. 8(5), 1522–1534 (2015)CrossRef
124.
go back to reference R.I. Woodward, R.C.T. Howe, T.H. Runcorn, G. Hu, F. Torrisi, E.J.R. Kelleher, T. Hasan, Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers. Opt. Express 23(15), 20051 (2015)CrossRef R.I. Woodward, R.C.T. Howe, T.H. Runcorn, G. Hu, F. Torrisi, E.J.R. Kelleher, T. Hasan, Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers. Opt. Express 23(15), 20051 (2015)CrossRef
125.
go back to reference S. Wachter, D.K. Polyushkin, O. Bethge, T. Mueller, A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017)CrossRef S. Wachter, D.K. Polyushkin, O. Bethge, T. Mueller, A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017)CrossRef
127.
go back to reference K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J.N. Coleman, L. Zhang, W.J. Blau, Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7(10), 9260–9267 (2013)CrossRef K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J.N. Coleman, L. Zhang, W.J. Blau, Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7(10), 9260–9267 (2013)CrossRef
128.
go back to reference K. Wu, X. Zhang, J. Wang, X. Li, J. Chen, WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt. Express 23(9), 11453 (2015)CrossRef K. Wu, X. Zhang, J. Wang, X. Li, J. Chen, WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt. Express 23(9), 11453 (2015)CrossRef
129.
go back to reference Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nat. Photonics 10(4), 227–238 (2016)CrossRef Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nat. Photonics 10(4), 227–238 (2016)CrossRef
130.
go back to reference L.A.B. Marçal, M.S.C. Mazzoni, L.N. Coelho, E. Marega, G.J. Salamo, R. Magalhães-Paniago, A. Malachias, Quantitative measurement of manganese incorporation into (In,Mn)As islands by resonant x-ray scattering. Phys. Rev. B 96(24), 245301 (2017) L.A.B. Marçal, M.S.C. Mazzoni, L.N. Coelho, E. Marega, G.J. Salamo, R. Magalhães-Paniago, A. Malachias, Quantitative measurement of manganese incorporation into (In,Mn)As islands by resonant x-ray scattering. Phys. Rev. B 96(24), 245301 (2017)
131.
go back to reference R.I. Woodward, E.J.R. Kelleher, R.C.T. Howe, G. Hu, F. Torrisi, T. Hasan, S.V. Popov, J.R. Taylor, Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt. Express 22(25), 31113 (2014)CrossRef R.I. Woodward, E.J.R. Kelleher, R.C.T. Howe, G. Hu, F. Torrisi, T. Hasan, S.V. Popov, J.R. Taylor, Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt. Express 22(25), 31113 (2014)CrossRef
132.
go back to reference M. Zhang, G. Hu, G. Hu, R.C.T. Howe, L. Chen, Z. Zheng, T. Hasan, Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber. Sci. Rep. 5, 17482 (2015) M. Zhang, G. Hu, G. Hu, R.C.T. Howe, L. Chen, Z. Zheng, T. Hasan, Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber. Sci. Rep. 5, 17482 (2015)
133.
go back to reference R.I. Woodward, R.C.T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, E.J.R. Kelleher, Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives. Photonics Res. 3, A30–A42 (2015) R.I. Woodward, R.C.T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, E.J.R. Kelleher, Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives. Photonics Res. 3, A30–A42 (2015)
134.
go back to reference S. Liu, N. Huo, S. Gan, Y. Li, Z. Wei, B. Huang, J. Liu, J. Li, H. Chen, Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. J. Mater. Chem. C 3(42), 10974–10980 (2015)CrossRef S. Liu, N. Huo, S. Gan, Y. Li, Z. Wei, B. Huang, J. Liu, J. Li, H. Chen, Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. J. Mater. Chem. C 3(42), 10974–10980 (2015)CrossRef
135.
go back to reference L. Kou, C. Chen, S.C. Smith, Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6(14), 2794–2805 (2015)CrossRef L. Kou, C. Chen, S.C. Smith, Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6(14), 2794–2805 (2015)CrossRef
136.
go back to reference X. Ling, H. Wang, S. Huang, F. Xia, M.S. Dresselhaus, The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112(15), 4523–4530 (2015)CrossRef X. Ling, H. Wang, S. Huang, F. Xia, M.S. Dresselhaus, The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112(15), 4523–4530 (2015)CrossRef
137.
go back to reference A. Jain, A.J.H. McGaughey, Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015) A. Jain, A.J.H. McGaughey, Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015)
138.
go back to reference R. Fei, L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014)CrossRef R. Fei, L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014)CrossRef
139.
go back to reference Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104(25), 251915 (2014)CrossRef Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104(25), 251915 (2014)CrossRef
140.
go back to reference X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10(6), 517–521 (2015)CrossRef X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10(6), 517–521 (2015)CrossRef
141.
go back to reference H. Yang, H. Jussila, A. Autere, H.-P. Komsa, G. Ye, X. Chen, T. Hasan, Z. Sun, Optical waveplates based on birefringence of anisotropic two-dimensional layered materials. ACS Photonics 4, 3023–3030 (2017)CrossRef H. Yang, H. Jussila, A. Autere, H.-P. Komsa, G. Ye, X. Chen, T. Hasan, Z. Sun, Optical waveplates based on birefringence of anisotropic two-dimensional layered materials. ACS Photonics 4, 3023–3030 (2017)CrossRef
142.
go back to reference J. Li, M.M. Naiini, S. Vaziri, M.C. Lemme, M. Östling, Inkjet printing of MoS2. Adv. Funct. Mater. 24(41), 6524–6531 (2014)CrossRef J. Li, M.M. Naiini, S. Vaziri, M.C. Lemme, M. Östling, Inkjet printing of MoS2. Adv. Funct. Mater. 24(41), 6524–6531 (2014)CrossRef
143.
go back to reference H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014)CrossRef H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014)CrossRef
144.
go back to reference J. Kang, J. Wood, S. Wells, J.-H. Lee, X. Liu, K.-S. Chen, M. Hersam, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9(4), 3596–3604 (2015)CrossRef J. Kang, J. Wood, S. Wells, J.-H. Lee, X. Liu, K.-S. Chen, M. Hersam, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9(4), 3596–3604 (2015)CrossRef
145.
go back to reference M. Engel, M. Steiner, P. Avouris, Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14(11), 6414–6417 (2014)CrossRef M. Engel, M. Steiner, P. Avouris, Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14(11), 6414–6417 (2014)CrossRef
146.
go back to reference G. Hu, T. Albrow-Owen, X. Jin, A. Ali, G. Hu, C.T. Richard, Z. Yang, X. Zhu, R. Woodward, T.-C. Wu, H. Jussila, P. Tan, Z. Sun, E. Kelleher, Y. Xu, M. Zhang, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8, 278 (2017) G. Hu, T. Albrow-Owen, X. Jin, A. Ali, G. Hu, C.T. Richard, Z. Yang, X. Zhu, R. Woodward, T.-C. Wu, H. Jussila, P. Tan, Z. Sun, E. Kelleher, Y. Xu, M. Zhang, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8, 278 (2017)
147.
go back to reference M. Buscema, D.J. Groenendijk, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014) M. Buscema, D.J. Groenendijk, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014)
148.
go back to reference D. Hanlon, C. Backes, E. Doherty, C. Cucinotta, N. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q. Ramasse, N. McEvoy, W. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D. O’Regan, G.S. Duesberg, V. Nicolosi, J. Coleman, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015) D. Hanlon, C. Backes, E. Doherty, C. Cucinotta, N. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q. Ramasse, N. McEvoy, W. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D. O’Regan, G.S. Duesberg, V. Nicolosi, J. Coleman, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015)
149.
go back to reference Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, D. Fan, Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Opt. Express 23(10), 12823 (2015)CrossRef Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, D. Fan, Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Opt. Express 23(10), 12823 (2015)CrossRef
150.
go back to reference J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K.M. Abramski, Black phosphorus saturable absorber for ultrashort pulse generation. Appl. Phys. Lett. 107(5), 051108 (2015)CrossRef J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K.M. Abramski, Black phosphorus saturable absorber for ultrashort pulse generation. Appl. Phys. Lett. 107(5), 051108 (2015)CrossRef
151.
go back to reference H. Mu, S. Lin, Z. Wang, S. Xiao, P. Li, Y. Chen, H. Zhang, H. Bao, S.P. Lau, C. Pan, D. Fan, Q. Bao, Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater. 10, 1446 (2015) H. Mu, S. Lin, Z. Wang, S. Xiao, P. Li, Y. Chen, H. Zhang, H. Bao, S.P. Lau, C. Pan, D. Fan, Q. Bao, Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater. 10, 1446 (2015)
152.
go back to reference D. Li, R. Cheng, H. Zhou, C. Wang, A. Yin, Y. Chen, N.O. Weiss, Y. Huang, X. Duan, Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. Nat. Commun. 6, 7509 (2015) D. Li, R. Cheng, H. Zhou, C. Wang, A. Yin, Y. Chen, N.O. Weiss, Y. Huang, X. Duan, Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. Nat. Commun. 6, 7509 (2015)
153.
go back to reference Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X.-F. Yu, P.K. Chu, From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015)CrossRef Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X.-F. Yu, P.K. Chu, From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015)CrossRef
154.
go back to reference S.-Y. Cho, Y. Lee, H.-J. Koh, H. Jung, J.-S. Kim, H.-W. Yoo, J. Kim, H.-T. Jung, Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016)CrossRef S.-Y. Cho, Y. Lee, H.-J. Koh, H. Jung, J.-S. Kim, H.-W. Yoo, J. Kim, H.-T. Jung, Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016)CrossRef
155.
go back to reference J. Sun, G. Zheng, H.-W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, Y. Cui, Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 14(8), 4573–4580 (2014)CrossRef J. Sun, G. Zheng, H.-W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, Y. Cui, Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 14(8), 4573–4580 (2014)CrossRef
156.
go back to reference A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya, S.I. Blanter, D.J. Groenendijk, M. Buscema, G.A. Steele, J.V. Alvarez, H.W. Zandbergen, J.J. Palacios, H.S.J. van der Zant, Isolation and characterization of few-layer black phosphorus. 2D Mater. 1(2), 025001 (2014)CrossRef A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya, S.I. Blanter, D.J. Groenendijk, M. Buscema, G.A. Steele, J.V. Alvarez, H.W. Zandbergen, J.J. Palacios, H.S.J. van der Zant, Isolation and characterization of few-layer black phosphorus. 2D Mater. 1(2), 025001 (2014)CrossRef
157.
go back to reference A. Favron, E. Gaufres, F. Fossard, A.-L. Phaneuf-L’Heureux, N.Y.-W. Tang, P.L. Levesque, A. Loiseau, R. Leonelli, S. Francoeur, R. Martel, Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14(8), 826–832 (2015)CrossRef A. Favron, E. Gaufres, F. Fossard, A.-L. Phaneuf-L’Heureux, N.Y.-W. Tang, P.L. Levesque, A. Loiseau, R. Leonelli, S. Francoeur, R. Martel, Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14(8), 826–832 (2015)CrossRef
158.
go back to reference J.O. Island, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Environmental instability of few-layer black phosphorus. 2D Mater. 2(1), 011002 (2015)CrossRef J.O. Island, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Environmental instability of few-layer black phosphorus. 2D Mater. 2(1), 011002 (2015)CrossRef
159.
go back to reference S.-Z. Huang, J. Jin, Y. Cai, Y. Li, Z. Deng, J.-Y. Zeng, J. Liu, C. Wang, T. Hasan, B.-L. Su, Three-dimensional (3D) bicontinuous hierarchically porous Mn2O3 single crystals for high performance lithium-ion batteries. Sci. Rep. 5, 14686 (2015) S.-Z. Huang, J. Jin, Y. Cai, Y. Li, Z. Deng, J.-Y. Zeng, J. Liu, C. Wang, T. Hasan, B.-L. Su, Three-dimensional (3D) bicontinuous hierarchically porous Mn2O3 single crystals for high performance lithium-ion batteries. Sci. Rep. 5, 14686 (2015)
160.
go back to reference X.-F. Jiang, Q. Weng, X.-B. Wang, X. Li, J. Zhang, D. Golberg, Y. Bando, Recent progress on fabrications and applications of boron nitride nanomaterials: a review. J. Mater. Sci. Technol. 31(6), 589–598 (2015)CrossRef X.-F. Jiang, Q. Weng, X.-B. Wang, X. Li, J. Zhang, D. Golberg, Y. Bando, Recent progress on fabrications and applications of boron nitride nanomaterials: a review. J. Mater. Sci. Technol. 31(6), 589–598 (2015)CrossRef
161.
go back to reference P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43(18), 6537 (2014)CrossRef P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43(18), 6537 (2014)CrossRef
162.
go back to reference C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)CrossRef C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)CrossRef
163.
go back to reference Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H. Li, A. Haque, L.-Q. Chen, T. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576–579 (2015)CrossRef Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H. Li, A. Haque, L.-Q. Chen, T. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576–579 (2015)CrossRef
164.
go back to reference L. Liu, Y.P. Feng, Z.X. Shen, Structural and electronic properties of h-BN. Phys. Rev. B 68(10), 104102 (2003) L. Liu, Y.P. Feng, Z.X. Shen, Structural and electronic properties of h-BN. Phys. Rev. B 68(10), 104102 (2003)
165.
go back to reference I. Jo, M.T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, L. Shi, Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13(2), 550–554 (2013)CrossRef I. Jo, M.T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, L. Shi, Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13(2), 550–554 (2013)CrossRef
166.
go back to reference H. Liem, H.S. Choy, Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers. Solid State Commun. 163, 41–45 (2013)CrossRef H. Liem, H.S. Choy, Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers. Solid State Commun. 163, 41–45 (2013)CrossRef
167.
go back to reference K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404–409 (2004)CrossRef K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404–409 (2004)CrossRef
168.
go back to reference A. Pakdel, Y. Bando, D. Golberg, Nano boron nitride flatland. Chem. Soc. Rev. 43(3), 934–959 (2014)CrossRef A. Pakdel, Y. Bando, D. Golberg, Nano boron nitride flatland. Chem. Soc. Rev. 43(3), 934–959 (2014)CrossRef
169.
go back to reference D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979–2993 (2010)CrossRef D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979–2993 (2010)CrossRef
170.
go back to reference I. Meric, C. Dean, A. Young, J. Hone, P. Kim, K.L. Shepard, Graphene field-effect transistors based on boron nitride gate dielectrics, in 2010 International Electron Devices Meeting (IEEE, New York, 2010), pp. 2321–2324 I. Meric, C. Dean, A. Young, J. Hone, P. Kim, K.L. Shepard, Graphene field-effect transistors based on boron nitride gate dielectrics, in 2010 International Electron Devices Meeting (IEEE, New York, 2010), pp. 2321–2324
171.
go back to reference I. Meric, C.R. Dean, N. Petrone, L. Wang, J. Hone, P. Kim, K.L. Shepard, Graphene field-effect transistors based on boron-nitride dielectrics. Proc. IEEE 101(7), 1609–1619 (2013)CrossRef I. Meric, C.R. Dean, N. Petrone, L. Wang, J. Hone, P. Kim, K.L. Shepard, Graphene field-effect transistors based on boron-nitride dielectrics. Proc. IEEE 101(7), 1609–1619 (2013)CrossRef
172.
go back to reference L.H. Li, E.J.G. Santos, T. Xing, E. Cappelluti, R. Roldán, Y. Chen, K. Watanabe, T. Taniguchi, Dielectric screening in atomically thin boron bitride nanosheets. Nano Lett. 15(1), 218–223 (2015)CrossRef L.H. Li, E.J.G. Santos, T. Xing, E. Cappelluti, R. Roldán, Y. Chen, K. Watanabe, T. Taniguchi, Dielectric screening in atomically thin boron bitride nanosheets. Nano Lett. 15(1), 218–223 (2015)CrossRef
173.
go back to reference F. Withers, H. Yang, L. Britnell, A.P. Rooney, E. Lewis, A. Felten, C.R. Woods, V. Sanchez Romaguera, T. Georgiou, A. Eckmann, Y.J. Kim, S.G. Yeates, S.J. Haigh, A.K. Geim, K.S. Novoselov, C. Casiraghi, Heterostructures produced from nanosheet-based inks. Nano Lett. 14(7), 3987–3992 (2014)CrossRef F. Withers, H. Yang, L. Britnell, A.P. Rooney, E. Lewis, A. Felten, C.R. Woods, V. Sanchez Romaguera, T. Georgiou, A. Eckmann, Y.J. Kim, S.G. Yeates, S.J. Haigh, A.K. Geim, K.S. Novoselov, C. Casiraghi, Heterostructures produced from nanosheet-based inks. Nano Lett. 14(7), 3987–3992 (2014)CrossRef
174.
go back to reference X. Wang, A. Pakdel, J. Zhang, Q. Weng, T. Zhai, C. Zhi, D. Golberg, Y. Bando, Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Res. Lett. 7(1), 662 (2012)CrossRef X. Wang, A. Pakdel, J. Zhang, Q. Weng, T. Zhai, C. Zhi, D. Golberg, Y. Bando, Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Res. Lett. 7(1), 662 (2012)CrossRef
175.
go back to reference M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011)CrossRef M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011)CrossRef
176.
go back to reference Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 111(47), 16676–16681 (2014)CrossRef Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 111(47), 16676–16681 (2014)CrossRef
177.
go back to reference M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23(17), 2185–2192 (2013)CrossRef M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23(17), 2185–2192 (2013)CrossRef
178.
go back to reference Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2 X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916(2012) Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2 X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916(2012)
179.
go back to reference Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R.C. Kent, Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8(9), 9606–9615 (2014)CrossRef Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R.C. Kent, Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8(9), 9606–9615 (2014)CrossRef
180.
go back to reference D. Sun, M. Wang, Z. Li, G. Fan, L.-Z. Fan, A. Zhou, Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 47, 80–83 (2014) D. Sun, M. Wang, Z. Li, G. Fan, L.-Z. Fan, A. Zhou, Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 47, 80–83 (2014)
181.
go back to reference D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6(14), 11173–11179 (2014)CrossRef D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6(14), 11173–11179 (2014)CrossRef
182.
go back to reference X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015) X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015)
183.
go back to reference Y. Dall’Agnese, P.-L. Taberna, Y. Gogotsi, P. Simon, Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J. Phys. Chem. Lett. 6(12), 2305–2309 (2015)CrossRef Y. Dall’Agnese, P.-L. Taberna, Y. Gogotsi, P. Simon, Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J. Phys. Chem. Lett. 6(12), 2305–2309 (2015)CrossRef
184.
go back to reference R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 27(15), 5314–5323 (2015)CrossRef R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 27(15), 5314–5323 (2015)CrossRef
185.
go back to reference B. Xu, M. Zhu, W. Zhang, X. Zhen, Z. Pei, Q. Xue, C. Zhi, P. Shi, Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 28(17), 3333–3339 (2016)CrossRef B. Xu, M. Zhu, W. Zhang, X. Zhen, Z. Pei, Q. Xue, C. Zhi, P. Shi, Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 28(17), 3333–3339 (2016)CrossRef
186.
go back to reference F. Wang, C. Yang, C. Duan, D. Xiao, Y. Tang, J. Zhu, An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. J. Electrochem. Soc. 162(1), B16–B21 (2014)CrossRef F. Wang, C. Yang, C. Duan, D. Xiao, Y. Tang, J. Zhu, An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. J. Electrochem. Soc. 162(1), B16–B21 (2014)CrossRef
187.
go back to reference J. Xu, J. Shim, J.-H. Park, S. Lee, MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv. Funct. Mater. 26(29), 5328–5334 (2016) J. Xu, J. Shim, J.-H. Park, S. Lee, MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv. Funct. Mater. 26(29), 5328–5334 (2016)
188.
go back to reference Z. Ma, Z. Hu, X. Zhao, Q. Tang, D. Wu, Z. Zhou, L. Zhang, Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C 118(10), 5593–5599 (2014)CrossRef Z. Ma, Z. Hu, X. Zhao, Q. Tang, D. Wu, Z. Zhou, L. Zhang, Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C 118(10), 5593–5599 (2014)CrossRef
189.
go back to reference Z. Guo, N. Miao, J. Zhou, B. Sa, Z. Sun, Strain-mediated type-I/type-II transition in MXene/blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. J. Mater. Chem. C 5(4), 978–984 (2017)CrossRef Z. Guo, N. Miao, J. Zhou, B. Sa, Z. Sun, Strain-mediated type-I/type-II transition in MXene/blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. J. Mater. Chem. C 5(4), 978–984 (2017)CrossRef
190.
go back to reference F. Annabi-Bergaya, Layered clay minerals. Basic research and innovative composite applications. Microporous Mesoporous Mater. 107(1–2), 141–148 (2008)CrossRef F. Annabi-Bergaya, Layered clay minerals. Basic research and innovative composite applications. Microporous Mesoporous Mater. 107(1–2), 141–148 (2008)CrossRef
191.
go back to reference B. Chen, J.R.G. Evans, H.C. Greenwell, P. Boulet, P.V. Coveney, A.A. Bowden, A. Whiting, A critical appraisal of polymer clay nanocomposites. Chem. Soc. Rev. 37(3), 568–594 (2008)CrossRef B. Chen, J.R.G. Evans, H.C. Greenwell, P. Boulet, P.V. Coveney, A.A. Bowden, A. Whiting, A critical appraisal of polymer clay nanocomposites. Chem. Soc. Rev. 37(3), 568–594 (2008)CrossRef
192.
go back to reference T.P. Dolley, 2008 Minerals Yearbook: Mica (National Minerals Information Center, Reston, 2008) T.P. Dolley, 2008 Minerals Yearbook: Mica (National Minerals Information Center, Reston, 2008)
193.
go back to reference W.-G. Kim, S. Nair, Membranes from nanoporous 1D and 2D materials: a review of opportunities, developments, and challenges. Chem. Eng. Sci. 104, 908–924 (2013)CrossRef W.-G. Kim, S. Nair, Membranes from nanoporous 1D and 2D materials: a review of opportunities, developments, and challenges. Chem. Eng. Sci. 104, 908–924 (2013)CrossRef
194.
go back to reference A. Harvey, J.B. Boland, I. Godwin, A.G. Kelly, B.M. Szydłowska, G. Murtaza, A. Thomas, D.J. Lewis, P. O’Brien, J.N. Coleman, Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand. 2D Mater. 4(2), 25054 (2017)CrossRef A. Harvey, J.B. Boland, I. Godwin, A.G. Kelly, B.M. Szydłowska, G. Murtaza, A. Thomas, D.J. Lewis, P. O’Brien, J.N. Coleman, Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand. 2D Mater. 4(2), 25054 (2017)CrossRef
195.
go back to reference C. Delmas, C. Fouassier, P. Hagenmuller, Structural classification and properties of the layered oxides. Physica B+C 99(1–4), 81–85 (1980)CrossRef C. Delmas, C. Fouassier, P. Hagenmuller, Structural classification and properties of the layered oxides. Physica B+C 99(1–4), 81–85 (1980)CrossRef
196.
go back to reference R. Ma, T. Sasaki, Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22(45), 5082–5104 (2010)CrossRef R. Ma, T. Sasaki, Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22(45), 5082–5104 (2010)CrossRef
197.
go back to reference M. Osada, T. Sasaki, Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 19(17), 2503 (2009)CrossRef M. Osada, T. Sasaki, Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 19(17), 2503 (2009)CrossRef
198.
go back to reference A.R. Pray, R.F. Heitmiller, S. Strycker, V.D. Aftandilian, T. Muniyappan, D. Choudhury, M. Tamres, Anhydrous metal chlorides, in Inorganic Syntheses: Reagents for Transition Metal Complex and Organometallic Syntheses, ed. by R.J. Angelici (Wiley, New York, 1990), pp. 321–323 A.R. Pray, R.F. Heitmiller, S. Strycker, V.D. Aftandilian, T. Muniyappan, D. Choudhury, M. Tamres, Anhydrous metal chlorides, in Inorganic Syntheses: Reagents for Transition Metal Complex and Organometallic Syntheses, ed. by R.J. Angelici (Wiley, New York, 1990), pp. 321–323
199.
go back to reference N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Butterworth-Heinemann, Oxford, 1997) N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Butterworth-Heinemann, Oxford, 1997)
200.
go back to reference E. Carroll, D. Buckley, N.V.V. Mogili, D. McNulty, M.S. Moreno, C. Glynn, G. Collins, J.D. Holmes, K.M. Razeeb, C. O’Dwyer. 2D nanosheet paint from solvent-exfoliated Bi2Te3 ink. Chem. Mater. 29, 7390–7400 (2017)CrossRef E. Carroll, D. Buckley, N.V.V. Mogili, D. McNulty, M.S. Moreno, C. Glynn, G. Collins, J.D. Holmes, K.M. Razeeb, C. O’Dwyer. 2D nanosheet paint from solvent-exfoliated Bi2Te3 ink. Chem. Mater. 29, 7390–7400 (2017)CrossRef
201.
go back to reference W. Zheng, T. Xie, Y. Zhou, Y.L. Chen, W. Jiang, S. Zhao, J. Wu, Y. Jing, Y. Wu, G. Chen, Y. Guo, J. Yin, S. Huang, H.Q. Xu, Z. Liu, H. Peng, Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat. Commun. 6, 6972 (2015)CrossRef W. Zheng, T. Xie, Y. Zhou, Y.L. Chen, W. Jiang, S. Zhao, J. Wu, Y. Jing, Y. Wu, G. Chen, Y. Guo, J. Yin, S. Huang, H.Q. Xu, Z. Liu, H. Peng, Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat. Commun. 6, 6972 (2015)CrossRef
202.
go back to reference V.D. Das, N. Soundararajan, Thermoelectric power and electrical resistivity of crystalline antimony telluride (Sb2Te3) thin films: temperature and size effects. J. Appl. Phys. 65, 2332–2341 (1989)CrossRef V.D. Das, N. Soundararajan, Thermoelectric power and electrical resistivity of crystalline antimony telluride (Sb2Te3) thin films: temperature and size effects. J. Appl. Phys. 65, 2332–2341 (1989)CrossRef
203.
go back to reference S.K. Mishra, S. Satpathy, O. Jepsen, Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J. Phys. Condens. Matter 9, 461–470 (1997)CrossRef S.K. Mishra, S. Satpathy, O. Jepsen, Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J. Phys. Condens. Matter 9, 461–470 (1997)CrossRef
204.
go back to reference R.B. Jacobs-Gedrim, M. Shanmugam, N. Jain, C.A. Durcan, M.T. Murphy, T.M. Murray, R.J. Matyi, R.L. Moore, B. Yu, Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano 8, 514–521 (2014)CrossRef R.B. Jacobs-Gedrim, M. Shanmugam, N. Jain, C.A. Durcan, M.T. Murphy, T.M. Murray, R.J. Matyi, R.L. Moore, B. Yu, Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano 8, 514–521 (2014)CrossRef
205.
go back to reference D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zólyomi, S.V. Morozov, R.K. Kumar, R.V. Gorbachev, Z.R. Kudrynskyi, S. Pezzini, Z.D. Kovalyuk, U. Zeitler, K.S. Novoselov, A. Patanè, L. Eaves, I.V. Grigorieva, V.I. Fal’ko, A.K. Geim, Y. Cao, High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017)CrossRef D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zólyomi, S.V. Morozov, R.K. Kumar, R.V. Gorbachev, Z.R. Kudrynskyi, S. Pezzini, Z.D. Kovalyuk, U. Zeitler, K.S. Novoselov, A. Patanè, L. Eaves, I.V. Grigorieva, V.I. Fal’ko, A.K. Geim, Y. Cao, High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017)CrossRef
206.
go back to reference S. Ghosh, P.D. Patil, M. Wasala, S. Lei, A. Nolander, P. Sivakumar, R. Vajtai, P. Ajayan, S. Talapatra, Fast photoresponse and high detectivity in copper indium selenide (CuIn7Se11) phototransistors. 2D Mater. 5, 015001 (2017)CrossRef S. Ghosh, P.D. Patil, M. Wasala, S. Lei, A. Nolander, P. Sivakumar, R. Vajtai, P. Ajayan, S. Talapatra, Fast photoresponse and high detectivity in copper indium selenide (CuIn7Se11) phototransistors. 2D Mater. 5, 015001 (2017)CrossRef
207.
go back to reference J.O. Island, S.I. Blanter, M. Buscema, H.S.J. van der Zant, A. Castellanos-Gomez, Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett. 15, 7853–7858 (2015)CrossRef J.O. Island, S.I. Blanter, M. Buscema, H.S.J. van der Zant, A. Castellanos-Gomez, Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett. 15, 7853–7858 (2015)CrossRef
Metadata
Title
Structures, Properties and Applications of 2D Materials
Authors
Leonard W. T. Ng
Guohua Hu
Richard C. T. Howe
Xiaoxi Zhu
Zongyin Yang
Christopher G. Jones
Tawfique Hasan
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-91572-2_2