Skip to main content
Top

2015 | OriginalPaper | Chapter

Studies on CO2 Laser Micromachining on PMMA to Fabricate Micro Channel for Microfluidic Applications

Authors : Rishi Kant, Ankur Gupta, S. Bhattacharya

Published in: Lasers Based Manufacturing

Publisher: Springer India

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microfluidic devices are highly commonplace in the field of biomedical technology, point of care diagnostics and chemical analysis. The rapid and low cost manufacturing of these devices have always been a challenge. CO2 laser micromachining has played an important role in micro-machining of devices at a scale similar to the microfluidic devices although it renders the machined surfaces with high surface roughness. The chapter reports an initiative to do process optimization of laser micromachining technique for producing smooth machined surfaces in the micro scale devices. The chapter discusses the impact of process parameters like raster speed, laser power, print resolution etc. and its optimization using two target functions of dimensional precision and surface roughness on micro-channels made in PMMA (Poly methyl metha acrylate) substrates. The laser machined PMMA samples are analyzed using 3D-profilometry and Field emission scanning electron microscope (FESEM) for surface quality and dimensional precision. To investigate optimum process parameters of CO2 laser for fabricating the micro-channel on PMMA with dimensional accuracy and good surface quality, Analysis of variance (ANOVA) and regression analysis is conducted. It is found that optimum surface roughness of this process is around 7.1 µm at the optimum value of the process parameters 7.5 mm/s (50 % of maximum machine limit) raster speed, 17.9 W (51 % of maximum machine limit) laser power and 1200 DPI (100 % of maximum machine limit) printing resolution. The static contact angle of the micro-machined surface has also been observed for analyzing the amenability of these channels to flow of water like fluids for micro-fluidic applications. The chapter also covers a review of work done by various researchers in which they developed different methodology for successful manufacturing of microfluidic devices by employing CO2 laser micromachining.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Choi, W. C., & Chryssolouris, G. (1995). Analysis of the laser grooving and cutting processes. Journal of Applied Physics, 28, 873–878. Choi, W. C., & Chryssolouris, G. (1995). Analysis of the laser grooving and cutting processes. Journal of Applied Physics, 28, 873–878.
go back to reference Chung, C. K., & Lin, S. L. (2011). On the fabrication of minimizing bulges and reducing the feature dimensions of microchannels using novel CO2 laser micromachining. Journal of Micromechanics and Microengineering, 21(06), 5023.CrossRef Chung, C. K., & Lin, S. L. (2011). On the fabrication of minimizing bulges and reducing the feature dimensions of microchannels using novel CO2 laser micromachining. Journal of Micromechanics and Microengineering, 21(06), 5023.CrossRef
go back to reference Davim, J. P., Barricas, N., Marta, C., & Oliveira, C. (2008a). Some experimental studies on CO2 laser cutting quality of polymeric materials. Journal of Materials Processing Technology, 198, 99–104.CrossRef Davim, J. P., Barricas, N., Marta, C., & Oliveira, C. (2008a). Some experimental studies on CO2 laser cutting quality of polymeric materials. Journal of Materials Processing Technology, 198, 99–104.CrossRef
go back to reference Davim, J. P., Oliveira, C., Barricas, N., & Conceição, M. (2008b). Evaluation of cutting quality of PMMA using CO2 lasers. International Journal of Advanced Manufacturing Technology, 35, 875–879.CrossRef Davim, J. P., Oliveira, C., Barricas, N., & Conceição, M. (2008b). Evaluation of cutting quality of PMMA using CO2 lasers. International Journal of Advanced Manufacturing Technology, 35, 875–879.CrossRef
go back to reference Dinger, C., Sterkenburgh, T., Holler, T., & Franke, H. (1993). Nonconducting Photopolymers and Applications (pp. 278–287). San Diego, Bellingham: SPIE.CrossRef Dinger, C., Sterkenburgh, T., Holler, T., & Franke, H. (1993). Nonconducting Photopolymers and Applications (pp. 278–287). San Diego, Bellingham: SPIE.CrossRef
go back to reference Heng, Q., Tao, C., & Zho, T. (2006). Surface roughness analysis and improvement of micro-fluidic channel with excimer laser. Microfluidics and Nanofluidics, 2, 357–360.CrossRef Heng, Q., Tao, C., & Zho, T. (2006). Surface roughness analysis and improvement of micro-fluidic channel with excimer laser. Microfluidics and Nanofluidics, 2, 357–360.CrossRef
go back to reference Huang, Y., Liu, S., Yang, W., & Yu, C. (2010). Surface roughness analysis and improvement of PMMA-based microfluidic chip chambers by CO2 laser cutting. Applied Surface Science, 256, 1675–1678.CrossRef Huang, Y., Liu, S., Yang, W., & Yu, C. (2010). Surface roughness analysis and improvement of PMMA-based microfluidic chip chambers by CO2 laser cutting. Applied Surface Science, 256, 1675–1678.CrossRef
go back to reference Kant, R., Singh, H., Nayak, M., & Bhattacharya, S. (2013). Optimization of design and characterization of a novel micro-pumping system with peristaltic motion. Microsystem Technologies, 19, 563–575.CrossRef Kant, R., Singh, H., Nayak, M., & Bhattacharya, S. (2013). Optimization of design and characterization of a novel micro-pumping system with peristaltic motion. Microsystem Technologies, 19, 563–575.CrossRef
go back to reference Lawrence, J., & Li, L. (2001). Modification of the wettability characteristics of polymethyl methacrylate (PMMA) by means of CO2, Nd: YAG, excimer and high power diode laser radiation. Materials Science and Engineering A, 303, 142–149.CrossRef Lawrence, J., & Li, L. (2001). Modification of the wettability characteristics of polymethyl methacrylate (PMMA) by means of CO2, Nd: YAG, excimer and high power diode laser radiation. Materials Science and Engineering A, 303, 142–149.CrossRef
go back to reference Li, J. M., Liu, C., & Zhu, L. Y. (2009). The formation and elimination of polymer bulges in CO2 laser microfabrication. Journal of Materials Processing Technology, 209, 4814–4821.CrossRef Li, J. M., Liu, C., & Zhu, L. Y. (2009). The formation and elimination of polymer bulges in CO2 laser microfabrication. Journal of Materials Processing Technology, 209, 4814–4821.CrossRef
go back to reference Lippert, T., Webb, R. L., Langford, S. C., & Dickinson, J. T. (1999). Dopant induced ablation of poly(methyl methacrylate) at 308 nm. Journal of Applied Physics, 85(3), 1838–1847.CrossRef Lippert, T., Webb, R. L., Langford, S. C., & Dickinson, J. T. (1999). Dopant induced ablation of poly(methyl methacrylate) at 308 nm. Journal of Applied Physics, 85(3), 1838–1847.CrossRef
go back to reference Nayak, N. C., Lam, Y. C., Yue, C. Y., & Sinha, A. T. (2008). CO2-laser micromachining of PMMA: The effect of polymer molecular weight. Journal of Micromechanics and Micro Engineering, 18(09), 5020. Nayak, N. C., Lam, Y. C., Yue, C. Y., & Sinha, A. T. (2008). CO2-laser micromachining of PMMA: The effect of polymer molecular weight. Journal of Micromechanics and Micro Engineering, 18(09), 5020.
go back to reference Patel, C. K. N. (1964). Continuous-wave laser action on vibrational-rotational transitions of CO2. Physical Review, 136, A1187.CrossRef Patel, C. K. N. (1964). Continuous-wave laser action on vibrational-rotational transitions of CO2. Physical Review, 136, A1187.CrossRef
go back to reference Snakenborg, D., Klank, H., & Kutter, J. P. (2004). Microstructure fabrication with a CO2 laser system. Journal of Micromechanics and Micro Engineering, 14, 182–189.CrossRef Snakenborg, D., Klank, H., & Kutter, J. P. (2004). Microstructure fabrication with a CO2 laser system. Journal of Micromechanics and Micro Engineering, 14, 182–189.CrossRef
go back to reference Yuan, D., & Das, S. (2007). Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation. Journal of Applied Physics, 101, 024901.CrossRef Yuan, D., & Das, S. (2007). Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation. Journal of Applied Physics, 101, 024901.CrossRef
Metadata
Title
Studies on CO2 Laser Micromachining on PMMA to Fabricate Micro Channel for Microfluidic Applications
Authors
Rishi Kant
Ankur Gupta
S. Bhattacharya
Copyright Year
2015
Publisher
Springer India
DOI
https://doi.org/10.1007/978-81-322-2352-8_13

Premium Partners