Skip to main content
Top
Published in: Advances in Manufacturing 3/2020

18-08-2020

Study into grinding force in back grinding of wafer with outer rim

Authors: Xiang-Long Zhu, Yu Li, Zhi-Gang Dong, Ren-Ke Kang, Shang Gao

Published in: Advances in Manufacturing | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Back grinding of wafer with outer rim (BGWOR) is a new method for carrier-less thinning of silicon wafers. At present, the effects of process parameters on the grinding force remain debatable. Therefore, a BGWOR normal grinding force model based on grain depth-of-cut was established, and the relationship between grinding parameters (wheel infeed rate, wheel rotational speed, and chuck rotational speed) and normal grinding force was discussed. Further, a series of experiments were performed to verify the BGWOR normal grinding force model. This study proves that the BGWOR normal grinding force is related to the rotational direction of the wheel and chuck, and the effect of grinding mark density on the BGWOR normal grinding force cannot be ignored. Moreover, this study provides methods for reducing the grinding force and optimizing the back thinning process of the silicon wafer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang YX, Kang RK, Guo DM et al (2006) Raman microspectroscopy study on the ground surface of monocrystalline silicon wafers. Key Eng Mater 304/305:241–245CrossRef Zhang YX, Kang RK, Guo DM et al (2006) Raman microspectroscopy study on the ground surface of monocrystalline silicon wafers. Key Eng Mater 304/305:241–245CrossRef
2.
go back to reference Zhou P, Xu S, Wang Z et al (2016) A load identification method for the grinding damage induced stress (GDIS) distribution in silicon wafers. Int J Mach Tools Manuf 107:1–7CrossRef Zhou P, Xu S, Wang Z et al (2016) A load identification method for the grinding damage induced stress (GDIS) distribution in silicon wafers. Int J Mach Tools Manuf 107:1–7CrossRef
3.
go back to reference Gao S, Kang RK, Guo DM et al (2010) Study on the subsurface damage distribution of the silicon wafer ground by diamond wheel. Adv Mater Res 126/128:113–118CrossRef Gao S, Kang RK, Guo DM et al (2010) Study on the subsurface damage distribution of the silicon wafer ground by diamond wheel. Adv Mater Res 126/128:113–118CrossRef
5.
go back to reference Burghartz JN (2011) Ultra-thin chip technology and applications. Springer, New YorkCrossRef Burghartz JN (2011) Ultra-thin chip technology and applications. Springer, New YorkCrossRef
7.
go back to reference Inoue F, Jourdain A, Peng L et al (2017) Influence of Si wafer thinning processes on (sub)surface defects. Appl Surf Sci 404:82–87CrossRef Inoue F, Jourdain A, Peng L et al (2017) Influence of Si wafer thinning processes on (sub)surface defects. Appl Surf Sci 404:82–87CrossRef
8.
go back to reference Sun J, Qin F, Chen P et al (2016) A predictive model of grinding force in silicon wafer self-rotating grinding. Int J Mach Tools Manuf 109:74–86CrossRef Sun J, Qin F, Chen P et al (2016) A predictive model of grinding force in silicon wafer self-rotating grinding. Int J Mach Tools Manuf 109:74–86CrossRef
9.
go back to reference Pei ZJ, Strasbaugh A (2002) Fine grinding of silicon wafers: designed experiments. Int J Mach Tools Manuf 42:395–404CrossRef Pei ZJ, Strasbaugh A (2002) Fine grinding of silicon wafers: designed experiments. Int J Mach Tools Manuf 42:395–404CrossRef
10.
go back to reference Zhang YX, Li YM, Gao W et al (2008) Experimental investigation on subsurface damage depth of ground silicon wafers in wafer-rotating grinding. Diam Abras Eng 4:3–7 Zhang YX, Li YM, Gao W et al (2008) Experimental investigation on subsurface damage depth of ground silicon wafers in wafer-rotating grinding. Diam Abras Eng 4:3–7
11.
go back to reference Young HT, Liao HT, Huang HY (2007) Novel method to investigate the critical depth of cut of ground silicon wafer. J Mater Process Technol 182:157–162CrossRef Young HT, Liao HT, Huang HY (2007) Novel method to investigate the critical depth of cut of ground silicon wafer. J Mater Process Technol 182:157–162CrossRef
12.
go back to reference Lin B, Zhou P, Wang Z et al (2018) Analytical elastic-plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer. J Manuf Sci Eng Trans ASME 140:1–7CrossRef Lin B, Zhou P, Wang Z et al (2018) Analytical elastic-plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer. J Manuf Sci Eng Trans ASME 140:1–7CrossRef
13.
go back to reference Gao S, Wang Z, Kang R et al (2016) Model of grain depth of cut in wafer rotation grinding method for silicon wafers. J Mech Eng 52(17):86–93CrossRef Gao S, Wang Z, Kang R et al (2016) Model of grain depth of cut in wafer rotation grinding method for silicon wafers. J Mech Eng 52(17):86–93CrossRef
14.
go back to reference Sun J, Chen P, Qin F et al (2018) Modelling and experimental study of roughness in silicon wafer self-rotating grinding. Precis Eng 51:625–637CrossRef Sun J, Chen P, Qin F et al (2018) Modelling and experimental study of roughness in silicon wafer self-rotating grinding. Precis Eng 51:625–637CrossRef
15.
go back to reference Zhang L, Chen P, An T et al (2019) Analytical prediction for depth of subsurface damage in silicon wafer due to self-rotating grinding process. Curr Appl Phys 19:570–581CrossRef Zhang L, Chen P, An T et al (2019) Analytical prediction for depth of subsurface damage in silicon wafer due to self-rotating grinding process. Curr Appl Phys 19:570–581CrossRef
16.
go back to reference Sharp KW, Miller MH, Scattergood RO (2000) Analysis of the grain depth-of-cut in plunge grinding. Precis Eng 24:220–230CrossRef Sharp KW, Miller MH, Scattergood RO (2000) Analysis of the grain depth-of-cut in plunge grinding. Precis Eng 24:220–230CrossRef
17.
go back to reference Zhou L, Shimizu J, Shinohara K et al (2003) Three-dimensional kinematical analyses for surface grinding of large scale substrate. Precis Eng 27:175–184CrossRef Zhou L, Shimizu J, Shinohara K et al (2003) Three-dimensional kinematical analyses for surface grinding of large scale substrate. Precis Eng 27:175–184CrossRef
18.
go back to reference Zhu X, Kang R, Wang Y et al (2010) Development of three-dimensional dynamometer for wafer grinder. Adv Mater Res 126/128:361–366CrossRef Zhu X, Kang R, Wang Y et al (2010) Development of three-dimensional dynamometer for wafer grinder. Adv Mater Res 126/128:361–366CrossRef
19.
go back to reference Pähler D (2011) Measurement of local contact zone forces in rotational grinding of silicon wafers. Int J Mechatron Manuf Syst 4:511–539 Pähler D (2011) Measurement of local contact zone forces in rotational grinding of silicon wafers. Int J Mechatron Manuf Syst 4:511–539
20.
go back to reference Ebina Y, Yoshimatsu T, Zhou L et al (2015) Process study on large-size silicon wafer grinding by using a small-diameter wheel. J Adv Mech Des Syst Manuf 9:1–12CrossRef Ebina Y, Yoshimatsu T, Zhou L et al (2015) Process study on large-size silicon wafer grinding by using a small-diameter wheel. J Adv Mech Des Syst Manuf 9:1–12CrossRef
21.
go back to reference Pei ZJ, Strasbaugh A (2002) Fine grinding of silicon wafers: grinding marks. ASME Int Mech Eng Congr Expos Proc 42:311–320 Pei ZJ, Strasbaugh A (2002) Fine grinding of silicon wafers: grinding marks. ASME Int Mech Eng Congr Expos Proc 42:311–320
22.
go back to reference Chidambaram S, Pei ZJ, Kassir S (2003) Fine grinding of silicon wafers: a mathematical model for grinding marks. Int J Mach Tools Manuf 43:1595–1602CrossRef Chidambaram S, Pei ZJ, Kassir S (2003) Fine grinding of silicon wafers: a mathematical model for grinding marks. Int J Mach Tools Manuf 43:1595–1602CrossRef
23.
go back to reference Huo FW, Kang RK, Li Z et al (2013) Origin, modeling and suppression of grinding marks in ultra precision grinding of silicon wafers. Int J Mach Tools Manuf 66:54–65CrossRef Huo FW, Kang RK, Li Z et al (2013) Origin, modeling and suppression of grinding marks in ultra precision grinding of silicon wafers. Int J Mach Tools Manuf 66:54–65CrossRef
Metadata
Title
Study into grinding force in back grinding of wafer with outer rim
Authors
Xiang-Long Zhu
Yu Li
Zhi-Gang Dong
Ren-Ke Kang
Shang Gao
Publication date
18-08-2020
Publisher
Shanghai University
Published in
Advances in Manufacturing / Issue 3/2020
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-020-00316-z

Other articles of this Issue 3/2020

Advances in Manufacturing 3/2020 Go to the issue

Premium Partners