Skip to main content
Top
Published in:

28-04-2023

Study of bromine substitution on band gap broadening with consequent blue shift in optical properties and efficiency optimization of lead-free CsGeIXBr3−X based perovskite solar cells

Authors: Joy Sarkar, Avijit Talukdar, Pratik Debnath, Suman Chatterjee

Published in: Journal of Computational Electronics | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lead-based perovskite solar cells have experienced tremendous growth and achieved an outstanding power conversion efficiency (PCE) of 27.4% during the last decade. However, lead poisoning has remained a matter of concern for commercialization. Therefore, researchers are looking for alternative perovskite materials free from lead. Cesium-based perovskite material CsGeIXBr3−X may be a promising alternative due to its favorable optical conductivity and light absorption coefficient. To understand the atomic level calculation of perovskite solar cells (PSCs), a detailed model of interaction between the electrons and the interface is strongly anticipated. The optoelectronic property of the perovskite absorber layer has the most significant impact on device performance. Using Density functional theory (DFT), we can precisely predict the behavior of charge transport layers, including the active perovskite layer. In this work, we have done first-principles calculations based on DFT to analyze the electronic and optical properties of lead-free full inorganic CsGeIXBr3−X perovskite compounds. In addition, we incorporate DFT-extracted values of the electronic band gap, the effective density of states, and the optical absorption spectrum in the Solar cell capacitance simulator (SCAPS-1D) program to understand the device performance with the variation of thickness and total defect density of the perovskite layer. We obtained the value of the energy bandgap as 1.363 eV for CsGeI3, 1.5795 eV for CsGeI2Br, 1.7493 eV for CsGeIBr2 and 1.885 eV for CsGeBr3. The CsGeI3-based device performs best and achieves maximum power conversion efficiency (PCE) of 27.63%. It was observed that while increasing the doping concentration of Br in CsGeIXBr3−X perovskites, the bond length decreases, and consequently, the bandgap increases. Also, as the doping concentration increases, a substantial blue shift was observed in the calculated optical conductivity and absorption spectra.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Reshak, A.H., Abu-Jafar, M.S., Al-Douri, Y.: Two symmetric n-type interfaces SrTiO{sub 3}/LaAlO{sub 3} in perovskite: electronic properties from density functional theory. J. Appl. Phys. 119, 245303 (2016)CrossRef Reshak, A.H., Abu-Jafar, M.S., Al-Douri, Y.: Two symmetric n-type interfaces SrTiO{sub 3}/LaAlO{sub 3} in perovskite: electronic properties from density functional theory. J. Appl. Phys. 119, 245303 (2016)CrossRef
2.
go back to reference Fadila, B., Ameri, M., Bensaid, D., Noureddine, M., Ameri, I., Mesbah, S., Al-Douri, Y.: Review Articles Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co 2 YAl (Y = Fe, Ti): first principles calculations with different exchange-correlation potentials. J. Magn. Magn. Mater. 448, 208–220 (2018)CrossRef Fadila, B., Ameri, M., Bensaid, D., Noureddine, M., Ameri, I., Mesbah, S., Al-Douri, Y.: Review Articles Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co 2 YAl (Y = Fe, Ti): first principles calculations with different exchange-correlation potentials. J. Magn. Magn. Mater. 448, 208–220 (2018)CrossRef
3.
go back to reference Hossain, K.M.: First-principles calculations to investigate switching from semiconducting to metallic with enhanced mechanical and optoelectronic properties of CsPbCl3under pressure. Int. J. Mater. Res. 113, 833–846 (2022)CrossRef Hossain, K.M.: First-principles calculations to investigate switching from semiconducting to metallic with enhanced mechanical and optoelectronic properties of CsPbCl3under pressure. Int. J. Mater. Res. 113, 833–846 (2022)CrossRef
4.
go back to reference Ameri, M., Amel, S., Abidri, B., Ameri, I., Al-Douri, Y., Bouhafs, B., Varshney, D., Aze-Eddine, A., Nadia, L.: Structural, elastic, electronic and thermodynamic properties of uranium filled skutterudites UFe4P12: First principle method. Mater. Sci. Semicond. Process. 27, 368–379 (2014)CrossRef Ameri, M., Amel, S., Abidri, B., Ameri, I., Al-Douri, Y., Bouhafs, B., Varshney, D., Aze-Eddine, A., Nadia, L.: Structural, elastic, electronic and thermodynamic properties of uranium filled skutterudites UFe4P12: First principle method. Mater. Sci. Semicond. Process. 27, 368–379 (2014)CrossRef
5.
go back to reference Min, H., Lee, D.Y., Kim, J., Kim, G., Lee, K.S., Kim, J., Paik, M.J., Kim, Y.K., Kim, K.S., Kim, M.G., Shin, T.J., IlSeok, S.: Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021)CrossRef Min, H., Lee, D.Y., Kim, J., Kim, G., Lee, K.S., Kim, J., Paik, M.J., Kim, Y.K., Kim, K.S., Kim, M.G., Shin, T.J., IlSeok, S.: Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021)CrossRef
6.
go back to reference Chen, H., Maxwell, A., Li, C., Teale, S., Chen, B., Zhu, T., Ugur, E., Harrison, G., Grater, L., Wang, J., Wang, Z., Zeng, L., Park, S.M., Chen, L., Serles, P., Awni, R.A., Subedi, B., Zheng, X., Xiao, C., Podraza, N.J., Filleter, T., Liu, C., Yang, Y., Luther, J.M., de Wolf, S., Kanatzidis, M.G., Yan, Y., Sargent, E.H.: Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2022)CrossRef Chen, H., Maxwell, A., Li, C., Teale, S., Chen, B., Zhu, T., Ugur, E., Harrison, G., Grater, L., Wang, J., Wang, Z., Zeng, L., Park, S.M., Chen, L., Serles, P., Awni, R.A., Subedi, B., Zheng, X., Xiao, C., Podraza, N.J., Filleter, T., Liu, C., Yang, Y., Luther, J.M., de Wolf, S., Kanatzidis, M.G., Yan, Y., Sargent, E.H.: Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2022)CrossRef
7.
go back to reference López, C.A., Abia, C., Rodrigues, J.E., Serrano-Sánchez, F., Nemes, N.M., Martínez, J.L., Fernandez-Díaz, M.T., Biškup, N., Alvarez-Galván, C., Carrascoso, F., Castellanos-Gomez, A., Alonso, J.A.: Enhanced stability in CH3NH3PbI3 hybrid perovskite from mechano-chemical synthesis: structural, microstructural and optoelectronic characterization. Sci. Rep. 10, 1–11 (2020)CrossRef López, C.A., Abia, C., Rodrigues, J.E., Serrano-Sánchez, F., Nemes, N.M., Martínez, J.L., Fernandez-Díaz, M.T., Biškup, N., Alvarez-Galván, C., Carrascoso, F., Castellanos-Gomez, A., Alonso, J.A.: Enhanced stability in CH3NH3PbI3 hybrid perovskite from mechano-chemical synthesis: structural, microstructural and optoelectronic characterization. Sci. Rep. 10, 1–11 (2020)CrossRef
8.
go back to reference Lee, J.H., Lee, J.H., Kong, E.H., Jang, H.M.: The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3 PbI3. Sci. Rep. 6(1), 21687 (2016)CrossRef Lee, J.H., Lee, J.H., Kong, E.H., Jang, H.M.: The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3 PbI3. Sci. Rep. 6(1), 21687 (2016)CrossRef
9.
go back to reference Kundu, S., Kelly, T.L.: In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat 2, e12025 (2020)CrossRef Kundu, S., Kelly, T.L.: In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat 2, e12025 (2020)CrossRef
10.
go back to reference Ahmad, Z., Shikoh, A.S., Paek, S., Nazeeruddin, M.K., Al-Muhtaseb, S.A., Touati, F., Bhadra, J., Al-Thani, N.J.: Degradation analysis in mixed (MAPbI3 and MAPbBr 3) perovskite solar cells under thermal stress. J. Mater. Sci.: Mater. Electron. 30, 1354–1359 (2019) Ahmad, Z., Shikoh, A.S., Paek, S., Nazeeruddin, M.K., Al-Muhtaseb, S.A., Touati, F., Bhadra, J., Al-Thani, N.J.: Degradation analysis in mixed (MAPbI3 and MAPbBr 3) perovskite solar cells under thermal stress. J. Mater. Sci.: Mater. Electron. 30, 1354–1359 (2019)
11.
go back to reference Young, J., Rondinelli, J.M.: Octahedral rotation preferences in perovskite iodides and bromides. J. Phys. Chem. Lett. 7, 918–922 (2016)CrossRef Young, J., Rondinelli, J.M.: Octahedral rotation preferences in perovskite iodides and bromides. J. Phys. Chem. Lett. 7, 918–922 (2016)CrossRef
12.
go back to reference le Corre, V.M., Stolterfoht, M., Perdigón Toro, L., Feuerstein, M., Wolff, C., Gil-Escrig, L., Bolink, H.J., Neher, D., Koster, L.J.A.: Charge transport layers limiting the efficiency of perovskite solar cells: how to optimize conductivity doping, and thickness. ACS Appl. Energy Mater. 2, 6280–6287 (2019)CrossRef le Corre, V.M., Stolterfoht, M., Perdigón Toro, L., Feuerstein, M., Wolff, C., Gil-Escrig, L., Bolink, H.J., Neher, D., Koster, L.J.A.: Charge transport layers limiting the efficiency of perovskite solar cells: how to optimize conductivity doping, and thickness. ACS Appl. Energy Mater. 2, 6280–6287 (2019)CrossRef
13.
go back to reference Cho, A.N., Park, N.G.: Impact of Interfacial layers in perovskite solar cells. Chemsuschem 10, 3687–3704 (2017)CrossRef Cho, A.N., Park, N.G.: Impact of Interfacial layers in perovskite solar cells. Chemsuschem 10, 3687–3704 (2017)CrossRef
14.
go back to reference Haidari, G.: Comparative 1D optoelectrical simulation of the perovskite solar cell. AIP Adv. 9, 085028 (2019)CrossRef Haidari, G.: Comparative 1D optoelectrical simulation of the perovskite solar cell. AIP Adv. 9, 085028 (2019)CrossRef
15.
go back to reference Chakraborty, K., Choudhury, M.G., Paul, S.: Numerical study of Cs2TiX6 (X = Br−, I−, F− and Cl−) based perovskite solar cell using SCAPS-1D device simulation. Sol. Energy 194, 886–892 (2019)CrossRef Chakraborty, K., Choudhury, M.G., Paul, S.: Numerical study of Cs2TiX6 (X = Br−, I−, F− and Cl−) based perovskite solar cell using SCAPS-1D device simulation. Sol. Energy 194, 886–892 (2019)CrossRef
16.
go back to reference Laali, J., Hamedani, A., Alahyarizadeh, G., Minuchehr, A.: Performance analysis of the perovskite solar cells by a realistic DFT-accurate optical absorption spectrum. Superlattices Microstruct 143, 106551 (2020)CrossRef Laali, J., Hamedani, A., Alahyarizadeh, G., Minuchehr, A.: Performance analysis of the perovskite solar cells by a realistic DFT-accurate optical absorption spectrum. Superlattices Microstruct 143, 106551 (2020)CrossRef
17.
go back to reference D’Innocenzo, V., Grancini, G., Alcocer, M.J.P., Kandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J., Petrozza, A.: Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 1–6 (2014)CrossRef D’Innocenzo, V., Grancini, G., Alcocer, M.J.P., Kandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J., Petrozza, A.: Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 1–6 (2014)CrossRef
18.
go back to reference Schwarz, K., Blaha, P., Madsen, G.K.H.: Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002)MATHCrossRef Schwarz, K., Blaha, P., Madsen, G.K.H.: Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002)MATHCrossRef
19.
go back to reference Sunny, A., Rahman, S., Khatun, M.M., AlAhmed, S.R.: Numerical study of high performance HTL-free CH3NH3SnI3-based perovskite solar cell by SCAPS-1D. AIP Adv. 11, 065102 (2021)CrossRef Sunny, A., Rahman, S., Khatun, M.M., AlAhmed, S.R.: Numerical study of high performance HTL-free CH3NH3SnI3-based perovskite solar cell by SCAPS-1D. AIP Adv. 11, 065102 (2021)CrossRef
20.
go back to reference Chouhan, A.S., Jasti, N.P., Avasthi, S.: Effect of interface defect density on performance of perovskite solar cell: correlation of simulation and experiment. Mater. Lett. 221, 150–153 (2018)CrossRef Chouhan, A.S., Jasti, N.P., Avasthi, S.: Effect of interface defect density on performance of perovskite solar cell: correlation of simulation and experiment. Mater. Lett. 221, 150–153 (2018)CrossRef
21.
go back to reference Petersen, M., Wagner, F., Hufnagel, L., Scheffler, M., Blaha, P., Schwarz, K.: Improving the efficiency of FP-LAPW calculations. Comput. Phys. Commun. 126, 294–309 (2000)MATHCrossRef Petersen, M., Wagner, F., Hufnagel, L., Scheffler, M., Blaha, P., Schwarz, K.: Improving the efficiency of FP-LAPW calculations. Comput. Phys. Commun. 126, 294–309 (2000)MATHCrossRef
22.
go back to reference Baktash, A., Amiri, O., Sasani, A.: Improve efficiency of perovskite solar cells by using magnesium doped ZnO and TiO2 compact layers. Superlattices Microstruct. 93, 128–137 (2016)CrossRef Baktash, A., Amiri, O., Sasani, A.: Improve efficiency of perovskite solar cells by using magnesium doped ZnO and TiO2 compact layers. Superlattices Microstruct. 93, 128–137 (2016)CrossRef
23.
go back to reference Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)MathSciNetCrossRef Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)MathSciNetCrossRef
24.
go back to reference Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRef Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRef
25.
go back to reference Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006)CrossRef Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006)CrossRef
26.
go back to reference Azri, F., Meftah, A., Sengouga, N., Meftah, A.: Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy 181, 372–378 (2019)CrossRef Azri, F., Meftah, A., Sengouga, N., Meftah, A.: Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy 181, 372–378 (2019)CrossRef
27.
go back to reference Sherkar, T.S., Momblona, C., Gil-Escrig, L., Bolink, H.J., Koster, L.J.A.: Improving perovskite solar cells: insights from a validated device model. Adv Energy Mater. 7, 1602432 (2017)CrossRef Sherkar, T.S., Momblona, C., Gil-Escrig, L., Bolink, H.J., Koster, L.J.A.: Improving perovskite solar cells: insights from a validated device model. Adv Energy Mater. 7, 1602432 (2017)CrossRef
28.
go back to reference Dadashbeik, M., Fathi, D., Eskandari, M.: Design and simulation of perovskite solar cells based on graphene and TiO2/graphene nanocomposite as electron transport layer. Sol. Energy 207, 917–924 (2020)CrossRef Dadashbeik, M., Fathi, D., Eskandari, M.: Design and simulation of perovskite solar cells based on graphene and TiO2/graphene nanocomposite as electron transport layer. Sol. Energy 207, 917–924 (2020)CrossRef
29.
go back to reference Huang, L.Y., Lambrecht, W.R.L.: Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr 3, and CsSnI3. Phys. Rev. B Condens. Matter. Mater. Phys. 88, 165203 (2013)CrossRef Huang, L.Y., Lambrecht, W.R.L.: Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr 3, and CsSnI3. Phys. Rev. B Condens. Matter. Mater. Phys. 88, 165203 (2013)CrossRef
31.
go back to reference Tang, L.C., Chang, C.S., Huang, J.Y.: Electronic structure and optical properties of rhombohedral CsGeI3 crystal. J. Phys.: Condens. Matter 12, 9129 (2000) Tang, L.C., Chang, C.S., Huang, J.Y.: Electronic structure and optical properties of rhombohedral CsGeI3 crystal. J. Phys.: Condens. Matter 12, 9129 (2000)
32.
go back to reference Almishal, S.S.I., Rashwan, O. (2021) A Comparative Study of the Structural and Electronic Properties of Orthorhombic and Cubic CsPbI3and Trigonal CsGeI3using First-Principles Calculations. In: Conference Record of the IEEE Photovoltaic Specialists Conference. 1837–41 Almishal, S.S.I., Rashwan, O. (2021) A Comparative Study of the Structural and Electronic Properties of Orthorhombic and Cubic CsPbI3and Trigonal CsGeI3using First-Principles Calculations. In: Conference Record of the IEEE Photovoltaic Specialists Conference. 1837–41
33.
go back to reference Stoumpos, C.C., Frazer, L., Clark, D.J., Kim, Y.S., Rhim, S.H., Freeman, A.J., Ketterson, J.B., Jang, J.I., Kanatzidis, M.G.: Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015)CrossRef Stoumpos, C.C., Frazer, L., Clark, D.J., Kim, Y.S., Rhim, S.H., Freeman, A.J., Ketterson, J.B., Jang, J.I., Kanatzidis, M.G.: Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015)CrossRef
34.
go back to reference Lin, Z.G., Tang, L.C., Chou, C.P.: Study on mid-IR NLO crystals CsGe(BrxCl1−x)3. Opt. Mater. (Amst) 31, 28–34 (2008)CrossRef Lin, Z.G., Tang, L.C., Chou, C.P.: Study on mid-IR NLO crystals CsGe(BrxCl1−x)3. Opt. Mater. (Amst) 31, 28–34 (2008)CrossRef
35.
go back to reference Coh, S.: Electronic structure theory: applications and geometrical aspects, p. 3494975. Rutgers The State University of New Jersey School of Graduate Studies (2011) Coh, S.: Electronic structure theory: applications and geometrical aspects, p. 3494975. Rutgers The State University of New Jersey School of Graduate Studies (2011)
36.
go back to reference Callister, W.D., Rethwisch, D.G. (2016) Chapter 3—Structures of Metals and Ceramics Fundamentals of materials science and engineering : an integrated approach 92–98 Callister, W.D., Rethwisch, D.G. (2016) Chapter 3—Structures of Metals and Ceramics Fundamentals of materials science and engineering : an integrated approach 92–98
37.
go back to reference Ur Rehman, S., Butt, F.K., Tariq, Z., UlHaq, B., Lin, G., Li, C.: Cubic Germanium monochalcogenides (π-GeS and π-GeSe): emerging materials for optoelectronic and energy harvesting devices. Sol. Energy 185, 211–221 (2019)CrossRef Ur Rehman, S., Butt, F.K., Tariq, Z., UlHaq, B., Lin, G., Li, C.: Cubic Germanium monochalcogenides (π-GeS and π-GeSe): emerging materials for optoelectronic and energy harvesting devices. Sol. Energy 185, 211–221 (2019)CrossRef
38.
go back to reference Hoat, D.M., Silva, J.F.R., Blas, A.M.: First principles study of structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 in cubic phase. Solid State Commun. 275, 29–34 (2018)CrossRef Hoat, D.M., Silva, J.F.R., Blas, A.M.: First principles study of structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 in cubic phase. Solid State Commun. 275, 29–34 (2018)CrossRef
39.
go back to reference Bobrov, V.B., Trigger, S.A., van Heijst, G.J.F., Schram, P.P.J.M.: Kramers-Kronig relations for the dielectric function and the static conductivity of Coulomb systems. Europhys. Lett. 90, 10003 (2010)CrossRef Bobrov, V.B., Trigger, S.A., van Heijst, G.J.F., Schram, P.P.J.M.: Kramers-Kronig relations for the dielectric function and the static conductivity of Coulomb systems. Europhys. Lett. 90, 10003 (2010)CrossRef
40.
go back to reference Liu, X., Xie, B., Duan, C., Wang, Z., Fan, B., Zhang, K., Lin, B., Colberts, F.J.M., Ma, W., Janssen, R.A.J., Huang, F., Cao, Y.: A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells. J Mater. Chem. A Mater. 6, 395–403 (2018)CrossRef Liu, X., Xie, B., Duan, C., Wang, Z., Fan, B., Zhang, K., Lin, B., Colberts, F.J.M., Ma, W., Janssen, R.A.J., Huang, F., Cao, Y.: A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells. J Mater. Chem. A Mater. 6, 395–403 (2018)CrossRef
41.
go back to reference Shakil, M., Akram, A., Zeba, I., Ahmad, R., Gillani, S.S.A., Gadhi, M.A.: Effect of mixed halide contents on structural, electronic, optical and elastic properties of CsSnI3−xBrx for solar cell applications: first-principles study. Mater. Res. Express. 7, 025513 (2020)CrossRef Shakil, M., Akram, A., Zeba, I., Ahmad, R., Gillani, S.S.A., Gadhi, M.A.: Effect of mixed halide contents on structural, electronic, optical and elastic properties of CsSnI3−xBrx for solar cell applications: first-principles study. Mater. Res. Express. 7, 025513 (2020)CrossRef
42.
go back to reference Tara, A., Bharti, V., Sharma, S., Gupta, R.: Computational approach to explore suitable charge transport layers for all inorganic CsGeI3 perovskite solar cells. Opt. Mater. (Amst) 128, 112403 (2022)CrossRef Tara, A., Bharti, V., Sharma, S., Gupta, R.: Computational approach to explore suitable charge transport layers for all inorganic CsGeI3 perovskite solar cells. Opt. Mater. (Amst) 128, 112403 (2022)CrossRef
43.
go back to reference Qian, J., Xu, B., Tian, W.: A comprehensive theoretical study of halide perovskites ABX3. Org. Electron. 37, 61–73 (2016)CrossRef Qian, J., Xu, B., Tian, W.: A comprehensive theoretical study of halide perovskites ABX3. Org. Electron. 37, 61–73 (2016)CrossRef
44.
go back to reference Raj, A., Kumar, M., Singh, P.K., Chandra Singh, R., Bherwani, H., Gupta, A., Anshul, A.: A computational approach to investigate the suitable ETL for lead-free CsGeI3 based perovskite solar cell. Mater. Today Proc. 47, 1564–1569 (2021)CrossRef Raj, A., Kumar, M., Singh, P.K., Chandra Singh, R., Bherwani, H., Gupta, A., Anshul, A.: A computational approach to investigate the suitable ETL for lead-free CsGeI3 based perovskite solar cell. Mater. Today Proc. 47, 1564–1569 (2021)CrossRef
45.
go back to reference Nishat, S.S., Hossain, M.J., Mullick, F.E., Kabir, A., Chowdhury, S., Islam, S., Hossain, M.: Performance analysis of perovskite solar cells using DFT-extracted parameters of metal-doped TiO2Electron transport layer. J. Phys. Chem. C 125, 13158–13166 (2021)CrossRef Nishat, S.S., Hossain, M.J., Mullick, F.E., Kabir, A., Chowdhury, S., Islam, S., Hossain, M.: Performance analysis of perovskite solar cells using DFT-extracted parameters of metal-doped TiO2Electron transport layer. J. Phys. Chem. C 125, 13158–13166 (2021)CrossRef
46.
go back to reference Jayan, K.D., Sebastian, V.: Comparative study on the performance of different lead-based and lead-free perovskite solar cells. Adv. Thory Simul. 4, 2100027 (2021)CrossRef Jayan, K.D., Sebastian, V.: Comparative study on the performance of different lead-based and lead-free perovskite solar cells. Adv. Thory Simul. 4, 2100027 (2021)CrossRef
47.
go back to reference DeepthiJayan, K., Sebastian, V.: Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM HTM and back metal contacts. Solar Energy 217, 40–48 (2021)CrossRef DeepthiJayan, K., Sebastian, V.: Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM HTM and back metal contacts. Solar Energy 217, 40–48 (2021)CrossRef
48.
go back to reference Jiang, M., Deng, N., Al Khan, R., Ur Rahman, K., Zhang, Q., DeepthiJayan, K., Sebastian, V.: Comparative performance analysis of mixed halide perovskite solar cells with different transport layers and back metal contacts. Semicond Sci. Technol. 36, 065010 (2021)CrossRef Jiang, M., Deng, N., Al Khan, R., Ur Rahman, K., Zhang, Q., DeepthiJayan, K., Sebastian, V.: Comparative performance analysis of mixed halide perovskite solar cells with different transport layers and back metal contacts. Semicond Sci. Technol. 36, 065010 (2021)CrossRef
49.
go back to reference Chen, J., Park, N.G.: Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 31, 1803019 (2019)CrossRef Chen, J., Park, N.G.: Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 31, 1803019 (2019)CrossRef
50.
go back to reference Wang, H., Wang, Y., Xuan, Z., Chen, T., Zhang, J., Hao, X., Wu, L., Constantinou, I., Zhao, D.: Progress in perovskite solar cells towards commercialization—a review. Materials 14(21), 6569 (2021)CrossRef Wang, H., Wang, Y., Xuan, Z., Chen, T., Zhang, J., Hao, X., Wu, L., Constantinou, I., Zhao, D.: Progress in perovskite solar cells towards commercialization—a review. Materials 14(21), 6569 (2021)CrossRef
51.
go back to reference Wang, K., Zheng, L., Hou, Y., Nozariasbmarz, A., Poudel, B., Yoon, J., Ye, T., Yang, D., Pogrebnyakov, A.V., Gopalan, V., Priya, S.: Overcoming Shockley-Queisser limit using halide perovskite platform? Joule 6, 756–771 (2022)CrossRef Wang, K., Zheng, L., Hou, Y., Nozariasbmarz, A., Poudel, B., Yoon, J., Ye, T., Yang, D., Pogrebnyakov, A.V., Gopalan, V., Priya, S.: Overcoming Shockley-Queisser limit using halide perovskite platform? Joule 6, 756–771 (2022)CrossRef
52.
go back to reference Sherkar, T.S., Momblona, C., Gil-Escrig, L., Ávila, J., Sessolo, M., Bolink, H.J., Koster, L.J.A.: Recombination in perovskite solar cells: significance of grain boundaries interface traps, and defect ions. ACS Energy Lett. 2, 1214–1222 (2017)CrossRef Sherkar, T.S., Momblona, C., Gil-Escrig, L., Ávila, J., Sessolo, M., Bolink, H.J., Koster, L.J.A.: Recombination in perovskite solar cells: significance of grain boundaries interface traps, and defect ions. ACS Energy Lett. 2, 1214–1222 (2017)CrossRef
53.
go back to reference Da, Y., Xuan, Y., Jang, S.J., Song, Y.M., Yeo, C.I., Park, C.Y., Yu, J.S.: Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells. Opt. Express 21(S6), A1065–A1077 (2013)CrossRef Da, Y., Xuan, Y., Jang, S.J., Song, Y.M., Yeo, C.I., Park, C.Y., Yu, J.S.: Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells. Opt. Express 21(S6), A1065–A1077 (2013)CrossRef
54.
go back to reference Kuik, M., Koster, L.J.A., Wetzelaer, G.A.H., Blom, P.W.M.: Trap-assisted recombination in disordered organic semiconductors. Phys. Rev Lett. 107(25), 256805 (2011)CrossRef Kuik, M., Koster, L.J.A., Wetzelaer, G.A.H., Blom, P.W.M.: Trap-assisted recombination in disordered organic semiconductors. Phys. Rev Lett. 107(25), 256805 (2011)CrossRef
55.
go back to reference Zeiske, S., Sandberg, O.J., Zarrabi, N., Li, W., Meredith, P., Armin, A.: Direct observation of trap-assisted recombination in organic photovoltaic devices. Nat. Commun. 12(1), 1–7 (2021)CrossRef Zeiske, S., Sandberg, O.J., Zarrabi, N., Li, W., Meredith, P., Armin, A.: Direct observation of trap-assisted recombination in organic photovoltaic devices. Nat. Commun. 12(1), 1–7 (2021)CrossRef
56.
go back to reference Frohna, K., Stranks, S.D.: Hybrid perovskites for device applications handbook of organic materials for electronic and photonic devices, pp. 211–256. Woodhead Publishing, Cambridge (2019)CrossRef Frohna, K., Stranks, S.D.: Hybrid perovskites for device applications handbook of organic materials for electronic and photonic devices, pp. 211–256. Woodhead Publishing, Cambridge (2019)CrossRef
57.
go back to reference Yang, Z., Yu, Z., Wei, H., Xiao, X., Ni, Z., Chen, B., Deng, Y., Habisreutinger, S.N., Chen, X., Wang, K., Zhao, J., Rudd, P.N., Berry, J.J., Beard, M.C., Huang, J.: Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10(1), 1–9 (2019)CrossRef Yang, Z., Yu, Z., Wei, H., Xiao, X., Ni, Z., Chen, B., Deng, Y., Habisreutinger, S.N., Chen, X., Wang, K., Zhao, J., Rudd, P.N., Berry, J.J., Beard, M.C., Huang, J.: Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10(1), 1–9 (2019)CrossRef
58.
go back to reference Dong, Y., Zhu, R., Jia, Y.: Linear relationship between the dielectric constant and band gap in low-dimensional mixed-halide perovskites. J. Phys. Chem. C 125, 14883–14890 (2021)CrossRef Dong, Y., Zhu, R., Jia, Y.: Linear relationship between the dielectric constant and band gap in low-dimensional mixed-halide perovskites. J. Phys. Chem. C 125, 14883–14890 (2021)CrossRef
59.
go back to reference Tang, G., Ghosez, P., Hong, J.: Band-edge orbital engineering of perovskite semiconductors for optoelectronic applications. J. Phys. Chem. Lett. 12, 4227–4239 (2021)CrossRef Tang, G., Ghosez, P., Hong, J.: Band-edge orbital engineering of perovskite semiconductors for optoelectronic applications. J. Phys. Chem. Lett. 12, 4227–4239 (2021)CrossRef
60.
go back to reference Liu, S.Y., Sun, M., Zhang, S., Liu, S., Li, D.J., Niu, Z., Li, Y., Wang, S.: First-principles study of thermodynamic miscibility, structures, and optical properties of Cs2Sn (X1−xYx6) (X, Y = I Br, Cl) lead-free perovskite solar cells. Appl. Phys. Lett. 118, 141903 (2021)CrossRef Liu, S.Y., Sun, M., Zhang, S., Liu, S., Li, D.J., Niu, Z., Li, Y., Wang, S.: First-principles study of thermodynamic miscibility, structures, and optical properties of Cs2Sn (X1−xYx6) (X, Y = I Br, Cl) lead-free perovskite solar cells. Appl. Phys. Lett. 118, 141903 (2021)CrossRef
61.
go back to reference Yang, J.Y., Hu, M.: Temperature-induced large broadening and blue shift in the electronic band structure and optical absorption of methylammonium lead iodide Perovskite. J. Phys. Chem. Lett. 8, 3720–3725 (2017)CrossRef Yang, J.Y., Hu, M.: Temperature-induced large broadening and blue shift in the electronic band structure and optical absorption of methylammonium lead iodide Perovskite. J. Phys. Chem. Lett. 8, 3720–3725 (2017)CrossRef
Metadata
Title
Study of bromine substitution on band gap broadening with consequent blue shift in optical properties and efficiency optimization of lead-free CsGeIXBr3−X based perovskite solar cells
Authors
Joy Sarkar
Avijit Talukdar
Pratik Debnath
Suman Chatterjee
Publication date
28-04-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02038-4