Skip to main content
Top
Published in:

01-08-2024

Study of chalcogenide-based metal perovskites BaZrX3 (X = S and Se): DFT insight into fundamental properties for sustainable energy generation using AMPS-1D

Authors: Naincy Pandit, Rashmi Singh, Peeyush Kumar Kamlesh, Nitin Kumar, Pawan Sharma, Sarita Kumari, Tanuj Kumar, Samah Al-Qaisi, Ajay Singh Verma

Published in: Journal of Computational Electronics | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Context

Emerging materials inspire us to study one of the perovskite chalcogens made from alkaline-earth-metals (Baryum). Here, we have determined some fundamental properties and explained their applicability in energy conversion device fabrication by first principles calculation. These materials show direct bandgap for BaZrS3and BaZrSe3 1.83 eV and 1.3 eV (at symmetry pointΓ), respectively; Elastic parameters like as Pugh ratio B/G ~ 1.75 and 1.78 for BaZrS3and BaZrSe3, respectively and have broader visible absorption spectrum with mechanically stable. The absorption coefficient is greater than 105 cm−1 at photon energy 1.83 eV for BZS and 1.3 eV for BZSe. For photovoltaic application, electron transport layer (ETL) has been varied, while putting hole transport layer (HTL) for the findings of efficiency, and ZnO is proven with 21.97% efficiency. This emerging study shows that these materials may be used as an alert substance in energy conversion device fabrications and the proposed outcomes are in good acceptance with the experimental and other theoretical data. As per the optical and thermoelectric parameters of these materials, we infer that both are promising candidates in energy conversion devices.

Methods

Fundamental properties based on the full-potential linearized augmented plane wave (FP-LAPW) method, this computation was performed using the WIEN2k simulation code. In order to calculate the photovoltaic properties of semiconducting perovskites, it is one of the most reliable methods. For application point of view, the Microelectronic and Photonic Structures-one-dimensional (AMPS-1D) analysis tool has been used for simulation of photovoltaic devices. There are several critical absorbance parameters, including band gap, defect density, thickness, concentration of doping, and operating temperature, that have been taken into consideration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dubey, A., Pandit, N., Singh, R., Joshi, T.K., Choudhary, B.L., Kamlesh, P.K., Qaisi, S.A., Kumar, T., Kaur, K., Verma, A.V.: Lead-free alternative cation (Ethylammonium) in organometallic perovskites for thermoelectric applications. J. Molec. Mode. 30, 1–13 (2024) Dubey, A., Pandit, N., Singh, R., Joshi, T.K., Choudhary, B.L., Kamlesh, P.K., Qaisi, S.A., Kumar, T., Kaur, K., Verma, A.V.: Lead-free alternative cation (Ethylammonium) in organometallic perovskites for thermoelectric applications. J. Molec. Mode. 30, 1–13 (2024)
2.
go back to reference Joshi, T.K., Shukla, A., Sharma, G., Verma, A.S.: First-principles spectroscopic screening of hybrid perovskite (CH3CH2NH3PbI3) with fundamental physical properties: a potential photovoltaic absorber. Int. J. Energy Res. 1, 908–919 (2021)CrossRef Joshi, T.K., Shukla, A., Sharma, G., Verma, A.S.: First-principles spectroscopic screening of hybrid perovskite (CH3CH2NH3PbI3) with fundamental physical properties: a potential photovoltaic absorber. Int. J. Energy Res. 1, 908–919 (2021)CrossRef
3.
go back to reference Joshi, T.K., Shukla, A., Sharma, G., Verma, A.S.: Computational determination of the physical properties of ethyl-ammonium germanium iodide (CH3CH2NH3GeI3) an emerging material for photovoltaic cell. Mater. Chem. Phys. 251, 123103 (2020)CrossRef Joshi, T.K., Shukla, A., Sharma, G., Verma, A.S.: Computational determination of the physical properties of ethyl-ammonium germanium iodide (CH3CH2NH3GeI3) an emerging material for photovoltaic cell. Mater. Chem. Phys. 251, 123103 (2020)CrossRef
4.
go back to reference Lee, J.W., Bae, S.H., Marco, N.. De.., Hsieh, Y.T., Dai, Z., Yang, Y.: The role of grain boundaries in perovskite solar cells. Mater. Today Energy. 7, 149–160 (2018)CrossRef Lee, J.W., Bae, S.H., Marco, N.. De.., Hsieh, Y.T., Dai, Z., Yang, Y.: The role of grain boundaries in perovskite solar cells. Mater. Today Energy. 7, 149–160 (2018)CrossRef
5.
go back to reference Tang, H., He, S., Peng, C.: A short progress report on high efficiency perovskite solar cells. Nanoscale Res. Lett. 12, 410 (2017)CrossRef Tang, H., He, S., Peng, C.: A short progress report on high efficiency perovskite solar cells. Nanoscale Res. Lett. 12, 410 (2017)CrossRef
7.
go back to reference Oumertem, M., Maouche, D., Berri, S., Bouarissa, N., Rai, D.P., Khenata, R., Ibrir, M.: Theoretical investigation of the structural, electronic and thermodynamic properties of cubic and orthorhombic XZrS3 (X=Ba, Sr, Ca) compounds. J. Comput. Electr. 12, 1–8 (2017) Oumertem, M., Maouche, D., Berri, S., Bouarissa, N., Rai, D.P., Khenata, R., Ibrir, M.: Theoretical investigation of the structural, electronic and thermodynamic properties of cubic and orthorhombic XZrS3 (X=Ba, Sr, Ca) compounds. J. Comput. Electr. 12, 1–8 (2017)
8.
go back to reference Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef
9.
go back to reference Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskites solar cells by vapour deposition. Nature 501, 395–398 (2013)CrossRef Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskites solar cells by vapour deposition. Nature 501, 395–398 (2013)CrossRef
10.
go back to reference Burschka, J., Pellet, N., Moon, S.J., Baker, R.H., Gao, P., Nazeeruddin, M.K., Gratzel, M.: Sequential deposition as a route to high-performance perovskite type-sensitized solar cells. Nature. 499, 316–319 (2013)CrossRef Burschka, J., Pellet, N., Moon, S.J., Baker, R.H., Gao, P., Nazeeruddin, M.K., Gratzel, M.: Sequential deposition as a route to high-performance perovskite type-sensitized solar cells. Nature. 499, 316–319 (2013)CrossRef
11.
go back to reference Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Baker, R.H., Yum, J.H., Moser, J.E., Gratzel, M., Park, N.G.: Lead iodide Perovskites Sensitized All-Solie-state submicron Thin Film Mesoscopic Solar Cell with Efficiency 9%. Sci. Rep. 2, 591 (2012)CrossRef Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Baker, R.H., Yum, J.H., Moser, J.E., Gratzel, M., Park, N.G.: Lead iodide Perovskites Sensitized All-Solie-state submicron Thin Film Mesoscopic Solar Cell with Efficiency 9%. Sci. Rep. 2, 591 (2012)CrossRef
12.
go back to reference Bi, C., Wang, Q., Shao, Y., Yuan, Y., Xiao, Z., Huang, J.: Non-wetting surface-driven high-aspect-ratio crystalline grain growth for the efficient hybrid perovskites solar cells. Nat. Commun. 6, 7747 (2015)CrossRef Bi, C., Wang, Q., Shao, Y., Yuan, Y., Xiao, Z., Huang, J.: Non-wetting surface-driven high-aspect-ratio crystalline grain growth for the efficient hybrid perovskites solar cells. Nat. Commun. 6, 7747 (2015)CrossRef
13.
go back to reference Zhang, T., Yang, M., Zhao, Y., Zhu, K.: Controllable sequential deposition of planer CH3NH3PBI3 perovskite films via adjustable volume expansion. Nano Lett. 15, 3959–3963 (2015)CrossRef Zhang, T., Yang, M., Zhao, Y., Zhu, K.: Controllable sequential deposition of planer CH3NH3PBI3 perovskite films via adjustable volume expansion. Nano Lett. 15, 3959–3963 (2015)CrossRef
14.
go back to reference Vanderbilt, D.: First-principles theory of structural phase transition cubic perovskites. J. Korean Phys. Soc. 32, S103–S106 (1998) Vanderbilt, D.: First-principles theory of structural phase transition cubic perovskites. J. Korean Phys. Soc. 32, S103–S106 (1998)
15.
go back to reference King-Smith, R.D.K., Vanderbilt, D.: First-principles investigation of ferroelectricity in perovskite compounds. Phys. Rev. B 49, 5828 (1994)CrossRef King-Smith, R.D.K., Vanderbilt, D.: First-principles investigation of ferroelectricity in perovskite compounds. Phys. Rev. B 49, 5828 (1994)CrossRef
16.
go back to reference Howard, C.J., Stokes, H.T.: Group-Theoretical Analysis of Octahedral Tilting in Perovskites. Acta Crystallogr. B 54, 782–789 (1998)CrossRef Howard, C.J., Stokes, H.T.: Group-Theoretical Analysis of Octahedral Tilting in Perovskites. Acta Crystallogr. B 54, 782–789 (1998)CrossRef
17.
go back to reference Wang, Y., Zhang, H., Zhu, J., Lü, X., Li, S., Zou, R., Zhao, Y.: Antiperovskites with exceptional functionalities. Adv. Mater. 32, 1905007 (2020)CrossRef Wang, Y., Zhang, H., Zhu, J., Lü, X., Li, S., Zou, R., Zhao, Y.: Antiperovskites with exceptional functionalities. Adv. Mater. 32, 1905007 (2020)CrossRef
18.
go back to reference Wang, W., Xu, C.N., Yamada, H., Nishikubo, V., Zheng, X.G.: Electro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics. Adv. Mater. 17, 1254–1258 (2005)CrossRef Wang, W., Xu, C.N., Yamada, H., Nishikubo, V., Zheng, X.G.: Electro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics. Adv. Mater. 17, 1254–1258 (2005)CrossRef
19.
go back to reference Cockayne, E., Burton, B.P.: Phonons and static dielectric constant in CaTiO3 from first principles. Phys. Rev. B 62, 3735–3743 (2000)CrossRef Cockayne, E., Burton, B.P.: Phonons and static dielectric constant in CaTiO3 from first principles. Phys. Rev. B 62, 3735–3743 (2000)CrossRef
20.
go back to reference Hussain, M.I., Khalil, R.M.A., Hussain, F.: Computational exploration of structural, electronic, and optical properties of novel combinations of inorganic Ruddlesden–Popper layered perovskites Bi2XO4 (X = Be, Mg) using Tran and Blaha-modified Becke–Johnson approach for optoelectronic applications. Energy Technol. 9, 2001026 (2021)CrossRef Hussain, M.I., Khalil, R.M.A., Hussain, F.: Computational exploration of structural, electronic, and optical properties of novel combinations of inorganic Ruddlesden–Popper layered perovskites Bi2XO4 (X = Be, Mg) using Tran and Blaha-modified Becke–Johnson approach for optoelectronic applications. Energy Technol. 9, 2001026 (2021)CrossRef
21.
go back to reference Hussain, M.I., Khalil, R.A., Hussain, F., Rana, A.M.: DFT-based insight into the magnetic and thermoelectric characteristics of XTaO3 (X= Rb, Fr) ternary perovskite oxides for optoelectronic applications. Int. J. Energy Res. 45, 2753–2765 (2021)CrossRef Hussain, M.I., Khalil, R.A., Hussain, F., Rana, A.M.: DFT-based insight into the magnetic and thermoelectric characteristics of XTaO3 (X= Rb, Fr) ternary perovskite oxides for optoelectronic applications. Int. J. Energy Res. 45, 2753–2765 (2021)CrossRef
22.
go back to reference Hussain, M.I., Khalil, R.A.: Density functional theory studies of the structural, optoelectronics, bond stiffness and lattice dynamical properties of double perovskites oxides M2YVO6 (M=Mg, Sr): Pomising candidates for optoelectronics applications. Mater. Scien. In Semic. Proc. 152, 107050 (2022)CrossRef Hussain, M.I., Khalil, R.A.: Density functional theory studies of the structural, optoelectronics, bond stiffness and lattice dynamical properties of double perovskites oxides M2YVO6 (M=Mg, Sr): Pomising candidates for optoelectronics applications. Mater. Scien. In Semic. Proc. 152, 107050 (2022)CrossRef
23.
go back to reference Hussain, M.I., Khalil, R.M.A., Hussain, F., Rana, A.M., Murtaza, G., Imran, M.: Probing the structural, electronic, mechanical strength and optical properties of tantalum-based oxide perovskites ATaO3 (A = Rb, Fr) for optoelectronic applications: first-principles investigations. Optik 219, 165027 (2020)CrossRef Hussain, M.I., Khalil, R.M.A., Hussain, F., Rana, A.M., Murtaza, G., Imran, M.: Probing the structural, electronic, mechanical strength and optical properties of tantalum-based oxide perovskites ATaO3 (A = Rb, Fr) for optoelectronic applications: first-principles investigations. Optik 219, 165027 (2020)CrossRef
24.
go back to reference Balachandran, U., Ma, U.B., Maiya, P.S., Mievillea, R.L., Duseka, J.T., Piccioloa, J.J., Guana, J., Dorrisa, S.E., Liub, M.: Developmentof mixed-conducting oxides for gas separation. Solid State Ionics 108, 363–370 (1998)CrossRef Balachandran, U., Ma, U.B., Maiya, P.S., Mievillea, R.L., Duseka, J.T., Piccioloa, J.J., Guana, J., Dorrisa, S.E., Liub, M.: Developmentof mixed-conducting oxides for gas separation. Solid State Ionics 108, 363–370 (1998)CrossRef
25.
go back to reference Kawada, T., Sase, M., Kudo, M., Yashiro, K., Sato, K., Mizusaki, J., Sakai, N., Horita, T., Yamaji, K., Yokokawa, H.: Microscopic observation of oxygen reaction pathway on high temperature electrode materials. Solid State Ionics 177, 3081–3086 (2006)CrossRef Kawada, T., Sase, M., Kudo, M., Yashiro, K., Sato, K., Mizusaki, J., Sakai, N., Horita, T., Yamaji, K., Yokokawa, H.: Microscopic observation of oxygen reaction pathway on high temperature electrode materials. Solid State Ionics 177, 3081–3086 (2006)CrossRef
26.
go back to reference Joshi, U.A., Jang, J.S., Borse, P.H., Lee, J.S.: Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl. Phys. Lett. 92, 242106 (2008)CrossRef Joshi, U.A., Jang, J.S., Borse, P.H., Lee, J.S.: Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl. Phys. Lett. 92, 242106 (2008)CrossRef
27.
go back to reference Ramasamy, P., Lim, D.H., Kim, B., Lee, S.H., Lee, M.S., Lee, J.S.: All- inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 52, 2067–2070 (2016)CrossRef Ramasamy, P., Lim, D.H., Kim, B., Lee, S.H., Lee, M.S., Lee, J.S.: All- inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 52, 2067–2070 (2016)CrossRef
28.
go back to reference Slavney, A.H., Hu, T., Lindenberg, A.M., Karunadasa, H.I.: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016)CrossRef Slavney, A.H., Hu, T., Lindenberg, A.M., Karunadasa, H.I.: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016)CrossRef
29.
go back to reference Huang, K., Feng, M., Goodenough, J.B.: Sol–gel synthesis of a new oxide-ion conductor Sr- and Mg-doped LaGaO3 perovskite. J. Am. Ceram. Soc. 79, 1100–1104 (1996)CrossRef Huang, K., Feng, M., Goodenough, J.B.: Sol–gel synthesis of a new oxide-ion conductor Sr- and Mg-doped LaGaO3 perovskite. J. Am. Ceram. Soc. 79, 1100–1104 (1996)CrossRef
30.
go back to reference Iwahara, H., Uchida, H., Ono, K., Ogaki, K.: Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 135, 529–533 (1988)CrossRef Iwahara, H., Uchida, H., Ono, K., Ogaki, K.: Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 135, 529–533 (1988)CrossRef
31.
go back to reference Dimos, D., Mueller, C.H.: Perovskite thin films for high-frequency capacitor applications. Annu. Rev. Mater. Res. 28, 397–419 (1998) Dimos, D., Mueller, C.H.: Perovskite thin films for high-frequency capacitor applications. Annu. Rev. Mater. Res. 28, 397–419 (1998)
32.
go back to reference Hussain, M.I., Khalil, R.M.A., Hussain, F., Imran, M., Rana, A.M., Kim, S.: Investigations of structural, electronic and optical properties of TM-GaO3 (Tm=Sc, Ti, Ag) perovskites oxide for optoelectronic applications: a first principle study. Mater. Res. Expr. 7, 015906 (2020)CrossRef Hussain, M.I., Khalil, R.M.A., Hussain, F., Imran, M., Rana, A.M., Kim, S.: Investigations of structural, electronic and optical properties of TM-GaO3 (Tm=Sc, Ti, Ag) perovskites oxide for optoelectronic applications: a first principle study. Mater. Res. Expr. 7, 015906 (2020)CrossRef
33.
go back to reference Teresa, J.M.D., Ibarra, M.R., Algarabel, P.A., Ritter, C., Marquina, C., Blasco, J., Garcia, J., Moral, A.D., Arnold, Z.: Evidence for magnetic polarons in the magnetoresistive perovskites. Nature. 386, 256–259 (1997)CrossRef Teresa, J.M.D., Ibarra, M.R., Algarabel, P.A., Ritter, C., Marquina, C., Blasco, J., Garcia, J., Moral, A.D., Arnold, Z.: Evidence for magnetic polarons in the magnetoresistive perovskites. Nature. 386, 256–259 (1997)CrossRef
34.
go back to reference Ihringer, J., Maichle, J., Prandl, W., Hewat, A., Wroblewski, T.: Crystal structure of the ceramic superconductor BaPb0.75Bi0.25O. Z. fur Phys. B Condens. Matter. 82, 171–176 (1991)CrossRef Ihringer, J., Maichle, J., Prandl, W., Hewat, A., Wroblewski, T.: Crystal structure of the ceramic superconductor BaPb0.75Bi0.25O. Z. fur Phys. B Condens. Matter. 82, 171–176 (1991)CrossRef
35.
go back to reference Sampathkumar, T.S., Srinivasan, S., Nagarajan, T., Balachandran, U.: Properties of YBa2Cu3O7−δ-BaBiO3 composite superconductors. Appl. Supercond. 2, 29–34 (1994)CrossRef Sampathkumar, T.S., Srinivasan, S., Nagarajan, T., Balachandran, U.: Properties of YBa2Cu3O7δ-BaBiO3 composite superconductors. Appl. Supercond. 2, 29–34 (1994)CrossRef
36.
go back to reference Frederikse, H.P.R., Thurber, W.R., Hosler, W.R.: Electronic transport in strontium titanate. Phys. Rev. 134, 442 (1964)CrossRef Frederikse, H.P.R., Thurber, W.R., Hosler, W.R.: Electronic transport in strontium titanate. Phys. Rev. 134, 442 (1964)CrossRef
37.
go back to reference Samantaray, C.B., Sim, H., Hwang, H.: Electronic structure and optical properties of barium strontium titanate (BaxSr1−xTiO3) using first-principles method. Phys. B Condened. Matter. 351, 158–162 (2004)CrossRef Samantaray, C.B., Sim, H., Hwang, H.: Electronic structure and optical properties of barium strontium titanate (BaxSr1−xTiO3) using first-principles method. Phys. B Condened. Matter. 351, 158–162 (2004)CrossRef
38.
go back to reference Fatima, S., Ullah, H.M.N., Zafar, A.A., Usman, Z., Farooq, M.U., Rizwan, M.: A lead-free environment-friendly material for optoelectronic and photocatalytic applications: A computational approach. Mater. Sci. Semicon. Proce. 159, 107363 (2023)CrossRef Fatima, S., Ullah, H.M.N., Zafar, A.A., Usman, Z., Farooq, M.U., Rizwan, M.: A lead-free environment-friendly material for optoelectronic and photocatalytic applications: A computational approach. Mater. Sci. Semicon. Proce. 159, 107363 (2023)CrossRef
39.
go back to reference Wei, X., Hui, H., Perera, S., Sheng, A., Watson, D.F., Sun, Y.Y., Jia, Q., Zhang, S., Zeng, H.: Ti-Alloying of BaZrS3 Chalcogenide Perovskite for Photovoltaics. ACS Omega 30, 18579–18583 (2020)CrossRef Wei, X., Hui, H., Perera, S., Sheng, A., Watson, D.F., Sun, Y.Y., Jia, Q., Zhang, S., Zeng, H.: Ti-Alloying of BaZrS3 Chalcogenide Perovskite for Photovoltaics. ACS Omega 30, 18579–18583 (2020)CrossRef
40.
go back to reference Ullah, M.A., Riaz, K.N., Rizwan, M.: Computational evalution of KMgO3−xHx as an efficient hydrogen storage material. J. Energy Storage. 70, 108030 (2023)CrossRef Ullah, M.A., Riaz, K.N., Rizwan, M.: Computational evalution of KMgO3xHx as an efficient hydrogen storage material. J. Energy Storage. 70, 108030 (2023)CrossRef
41.
go back to reference Niu, S., Huyan, H., Liu, Y., Yeung, M., Ye, K., Blankemeier, L., Orvis, T., Sarkar, D., Singh, D.J., Kapadia, R.: Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29, 1604733 (2016)CrossRef Niu, S., Huyan, H., Liu, Y., Yeung, M., Ye, K., Blankemeier, L., Orvis, T., Sarkar, D., Singh, D.J., Kapadia, R.: Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29, 1604733 (2016)CrossRef
42.
go back to reference Ong, M., Guzman, D.M., Campbell, Q., Dabo, I., Joshi, R.A.: BaZrSe3: ab initio study of anion substitution for bandgap tuning in a chalcogenide material. J. Appl. Phys. 125, 235702 (2019)CrossRef Ong, M., Guzman, D.M., Campbell, Q., Dabo, I., Joshi, R.A.: BaZrSe3: ab initio study of anion substitution for bandgap tuning in a chalcogenide material. J. Appl. Phys. 125, 235702 (2019)CrossRef
43.
go back to reference Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.B.: Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990)CrossRef Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.B.: Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990)CrossRef
44.
go back to reference Blaha, P., Schwarz, K., Madsen, G. K. H., kvasnicka, D., Luitz, J., Laskowsk, R., Tran, F., Marks, L.: WIEN2k: an augmented plane wave plus local orbitals program for calculating crystal properties. (2018) Blaha, P., Schwarz, K., Madsen, G. K. H., kvasnicka, D., Luitz, J., Laskowsk, R., Tran, F., Marks, L.: WIEN2k: an augmented plane wave plus local orbitals program for calculating crystal properties. (2018)
45.
go back to reference Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone intergrations. Phys. Rev. B 13, 188–192 (1976)CrossRef Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone intergrations. Phys. Rev. B 13, 188–192 (1976)CrossRef
46.
go back to reference Perdew, J.P., Rukzsnszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solid and surfaces. Phys. Rev. Lett. 100, 136406 (2008)CrossRef Perdew, J.P., Rukzsnszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solid and surfaces. Phys. Rev. Lett. 100, 136406 (2008)CrossRef
47.
go back to reference Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semi local exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)CrossRef Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semi local exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)CrossRef
48.
go back to reference Becke, A.D., Roussel, M.R.: Exchange holes in inhomogeneous systems: a coordinate-space model. Phys. Rev. A 8, 3761 (1989)CrossRef Becke, A.D., Roussel, M.R.: Exchange holes in inhomogeneous systems: a coordinate-space model. Phys. Rev. A 8, 3761 (1989)CrossRef
49.
go back to reference Sharma, S., Verma, A.S., Jindal, V.K.: First principles studies of structural, electronic, optical, elastic and thermal properties of Ag-chalcopyrites (AgInX2: X= S, Se). Phys. B 438, 97–108 (2014)CrossRef Sharma, S., Verma, A.S., Jindal, V.K.: First principles studies of structural, electronic, optical, elastic and thermal properties of Ag-chalcopyrites (AgInX2: X= S, Se). Phys. B 438, 97–108 (2014)CrossRef
50.
go back to reference Murnaghan, F.D.: The compressibility of media under extreme pressure. Phys. Sci. 30, 244–247 (1944)MathSciNet Murnaghan, F.D.: The compressibility of media under extreme pressure. Phys. Sci. 30, 244–247 (1944)MathSciNet
51.
go back to reference Kumar, A., Verma, A.S.: Lattice constant of orthorhombic perovskites solids. J Alloys Compd. 480, 650–657 (2009)CrossRef Kumar, A., Verma, A.S.: Lattice constant of orthorhombic perovskites solids. J Alloys Compd. 480, 650–657 (2009)CrossRef
52.
go back to reference Sharma, S., Ward, Z., Bhimani, K., Li, K., Lakhnot, A., Jain, R., Shi, S.F., Terrones, H., Koratkar, N.: Bandgap tuning in BaZrS3 perovskite thin films. ACS Appl. Electro. 8, 3306–3312 (2021)CrossRef Sharma, S., Ward, Z., Bhimani, K., Li, K., Lakhnot, A., Jain, R., Shi, S.F., Terrones, H., Koratkar, N.: Bandgap tuning in BaZrS3 perovskite thin films. ACS Appl. Electro. 8, 3306–3312 (2021)CrossRef
53.
go back to reference Tauc, R., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous germeninum. Phys. Status Solid B 15, 627–637 (1966)CrossRef Tauc, R., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous germeninum. Phys. Status Solid B 15, 627–637 (1966)CrossRef
54.
go back to reference Kumar, M., Singh, A., Gill, D., Bhattacharya, S.: Optoelectronic properties of chalcogenide perovskites by many-body perturbation theory. J. Phys. Chem. Lett. 12, 5301–5307 (2021)CrossRef Kumar, M., Singh, A., Gill, D., Bhattacharya, S.: Optoelectronic properties of chalcogenide perovskites by many-body perturbation theory. J. Phys. Chem. Lett. 12, 5301–5307 (2021)CrossRef
55.
go back to reference Agyemang, O.E., Balasubramanian, G., Koratkar, N.: Examing the electront transport in chalcogenide perovskite BaZrS3. J. Mater. Chem. 9, 3892–3900 (2021) Agyemang, O.E., Balasubramanian, G., Koratkar, N.: Examing the electront transport in chalcogenide perovskite BaZrS3. J. Mater. Chem. 9, 3892–3900 (2021)
56.
go back to reference Nishigaki, Y., Nagai, T., Nishiwaki, M., Aizawa, T., Kozawa, M., Hanzawa, K., Kato, Y., Sai, H., Hiramatsu, H., Hosono, H., Fujiwara, H.: Extraordinary strong band-edge absorption in distorted chalcogenide perovskites. Solar RRL 4, 1900555 (2020)CrossRef Nishigaki, Y., Nagai, T., Nishiwaki, M., Aizawa, T., Kozawa, M., Hanzawa, K., Kato, Y., Sai, H., Hiramatsu, H., Hosono, H., Fujiwara, H.: Extraordinary strong band-edge absorption in distorted chalcogenide perovskites. Solar RRL 4, 1900555 (2020)CrossRef
57.
go back to reference Sharma, S., Verma, A.S., Jindal, V.K.: Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X= S, Se, Te). Mater. Res. Bull. 53, 218–233 (2014)CrossRef Sharma, S., Verma, A.S., Jindal, V.K.: Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X= S, Se, Te). Mater. Res. Bull. 53, 218–233 (2014)CrossRef
58.
go back to reference Rani, U., Kamlesh, P.K., Agarwal, R., Kumari, J., Verma, A.S.: Electronic and thermo-physical properties of double antiperovskites X6SOA2 (X= Na, K and A= Cl, Br, I): Anon-toxic and efficient energy storage materials. Int. J. Quantum Chem. 121, e26759 (2021)CrossRef Rani, U., Kamlesh, P.K., Agarwal, R., Kumari, J., Verma, A.S.: Electronic and thermo-physical properties of double antiperovskites X6SOA2 (X= Na, K and A= Cl, Br, I): Anon-toxic and efficient energy storage materials. Int. J. Quantum Chem. 121, e26759 (2021)CrossRef
59.
go back to reference Rani, U., Kamlesh, P.K., Shukla, A., Verma, A.S.: Emerging potential antiperovskite materials ANX3 (A= P, As, Sb, Bi; X= Sr, Ca, Mg) for thermoelectric renewable energy generators. J. Solid State Chem. 300, 122246 (2021)CrossRef Rani, U., Kamlesh, P.K., Shukla, A., Verma, A.S.: Emerging potential antiperovskite materials ANX3 (A= P, As, Sb, Bi; X= Sr, Ca, Mg) for thermoelectric renewable energy generators. J. Solid State Chem. 300, 122246 (2021)CrossRef
60.
go back to reference Kamlesh, P.K., Agarwal, R., Rani, U., Verma, A.S.: First-principles calculations of inherent properties of Rb-based state-of-the-art half-Heusler compounds: Promising materials for renewable energy applications. Phys. Scr. 96, 115802 (2021)CrossRef Kamlesh, P.K., Agarwal, R., Rani, U., Verma, A.S.: First-principles calculations of inherent properties of Rb-based state-of-the-art half-Heusler compounds: Promising materials for renewable energy applications. Phys. Scr. 96, 115802 (2021)CrossRef
61.
go back to reference Rani, U., Kamlesh, P.K., Agrawal, R., Shukla, A., Verma, A.S.: Emerging study on lead-free hybrid double perovskite (CH3NH3)2AgInBr6: Potential material for energyconversion between heat and electricity. Energy Technol. 10, 2200002 (2022)CrossRef Rani, U., Kamlesh, P.K., Agrawal, R., Shukla, A., Verma, A.S.: Emerging study on lead-free hybrid double perovskite (CH3NH3)2AgInBr6: Potential material for energyconversion between heat and electricity. Energy Technol. 10, 2200002 (2022)CrossRef
62.
go back to reference Page, Y.L., Saxe, P.: Symmetry- general least-squares extraction of elastic data for strained materials from ab initio calculation of stress. Phys. Rev. B 65, 104104 (2002)CrossRef Page, Y.L., Saxe, P.: Symmetry- general least-squares extraction of elastic data for strained materials from ab initio calculation of stress. Phys. Rev. B 65, 104104 (2002)CrossRef
63.
go back to reference Erba, A.: The internal-strain tensor of crystals for nuclear-relaxed elastic and piezoelectric constants: On the full exploitation of its symmetry features. Phys. Chem. Chem. Phys. 18, 13984–13992 (2016)CrossRef Erba, A.: The internal-strain tensor of crystals for nuclear-relaxed elastic and piezoelectric constants: On the full exploitation of its symmetry features. Phys. Chem. Chem. Phys. 18, 13984–13992 (2016)CrossRef
64.
go back to reference Hill, R.: The elastic behavior of a crystalline aggregate. Proc. Phys. Society. Sect A 65, 349 (1952)CrossRef Hill, R.: The elastic behavior of a crystalline aggregate. Proc. Phys. Society. Sect A 65, 349 (1952)CrossRef
65.
go back to reference Voigt, W.: Lehrbuch der akristallphysik: ateubner-aleipzig. 739 (1928). Voigt, W.: Lehrbuch der akristallphysik: ateubner-aleipzig. 739 (1928).
66.
go back to reference Wu, Z., Zhao, E., Xiang, H., Hao, H., Liu, X., Meng, J.: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 1–15 (2007) Wu, Z., Zhao, E., Xiang, H., Hao, H., Liu, X., Meng, J.: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 1–15 (2007)
67.
go back to reference Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London, Edinburgh, and Dublin Philos. Mag. J. Sci. 45, 823–843 (1954)CrossRef Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London, Edinburgh, and Dublin Philos. Mag. J. Sci. 45, 823–843 (1954)CrossRef
68.
go back to reference Sun, S., Isikgor, F.H., Deng, Z., Wei, F., Kieslich, G., Bristowe, P.D., Ouyang, J., Cheetham, A.K.: Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites. Chem. Sus. Chem. 10, 3740–3745 (2017)CrossRef Sun, S., Isikgor, F.H., Deng, Z., Wei, F., Kieslich, G., Bristowe, P.D., Ouyang, J., Cheetham, A.K.: Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites. Chem. Sus. Chem. 10, 3740–3745 (2017)CrossRef
69.
go back to reference Baktash, A., Amiri, O., Sasani, A.: Improve efficiency of perovskite solar cells by using Magnesium doped ZnO and TiO2 compact layers. Superlattices Microstruct. 93, 137 (2016)CrossRef Baktash, A., Amiri, O., Sasani, A.: Improve efficiency of perovskite solar cells by using Magnesium doped ZnO and TiO2 compact layers. Superlattices Microstruct. 93, 137 (2016)CrossRef
70.
go back to reference Dixit, H., Punetha, D., Pandey, S.K.: Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters. Optik 179, 969–976 (2019)CrossRef Dixit, H., Punetha, D., Pandey, S.K.: Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters. Optik 179, 969–976 (2019)CrossRef
71.
go back to reference Monika Pachori, S., Kumari, S., Verma, A.S.: An emerging high performance photovoltaic device with mechanical stability constants of hybrid (HC(NH2)2PbI3) perovskite. J. Mater. Sci. Mater. Electron. 31, 18004 (2020)CrossRef Monika Pachori, S., Kumari, S., Verma, A.S.: An emerging high performance photovoltaic device with mechanical stability constants of hybrid (HC(NH2)2PbI3) perovskite. J. Mater. Sci. Mater. Electron. 31, 18004 (2020)CrossRef
72.
go back to reference Singh, P., Gautam, R., Sharma, S., Kumari, S., Verma, A.S.: Simulated solar cell device of CuGaSe2 by using CdS, ZnS and ZnSe buffer layers. Mater. Sci. Semicond. Process. 42, 288 (2016)CrossRef Singh, P., Gautam, R., Sharma, S., Kumari, S., Verma, A.S.: Simulated solar cell device of CuGaSe2 by using CdS, ZnS and ZnSe buffer layers. Mater. Sci. Semicond. Process. 42, 288 (2016)CrossRef
73.
go back to reference Tiwari, D., Hutter, O.S., Longo, G.: Chalcogenide perovskites for photovoltaics: currnent status and prospects. J. Phys. Energy 3, 034010 (2021)CrossRef Tiwari, D., Hutter, O.S., Longo, G.: Chalcogenide perovskites for photovoltaics: currnent status and prospects. J. Phys. Energy 3, 034010 (2021)CrossRef
74.
go back to reference Karthick, S., Velumani, S., Bouclé, J.: Chalcogenide BaZrS3 perovskite solar cells: a numerical simulation and analysis using SCAPS-1D. Opt. Mater. 126, 112250 (2022)CrossRef Karthick, S., Velumani, S., Bouclé, J.: Chalcogenide BaZrS3 perovskite solar cells: a numerical simulation and analysis using SCAPS-1D. Opt. Mater. 126, 112250 (2022)CrossRef
75.
go back to reference Azri, F., Meftah, A., Sengouga, N., Meftah, A.: Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy 181, 372 (2019)CrossRef Azri, F., Meftah, A., Sengouga, N., Meftah, A.: Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy 181, 372 (2019)CrossRef
77.
go back to reference Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z., Wu, J., Zhang, X., You, J.: Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2-PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016)CrossRef Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z., Wu, J., Zhang, X., You, J.: Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2-PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016)CrossRef
78.
go back to reference Anwar, F., Mahbub, R., Satter, S.S., Ullah, S.M.: Effect of different HTM layers and electrical parameters on ZnO nanorod based lead-free perovskite solar cell for high-efficiency performance. Int. J. Photoenergy. 2017, 9846310 (2017)CrossRef Anwar, F., Mahbub, R., Satter, S.S., Ullah, S.M.: Effect of different HTM layers and electrical parameters on ZnO nanorod based lead-free perovskite solar cell for high-efficiency performance. Int. J. Photoenergy. 2017, 9846310 (2017)CrossRef
79.
go back to reference Wei, X., Hui, H., Zhao, C., Deng, C., Han, M., Yu, Z., Sheng, A., Roy, P., Chen, A., Lin, J., Watson, D.F.: Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics. Nano Energy 68, 104317 (2020)CrossRef Wei, X., Hui, H., Zhao, C., Deng, C., Han, M., Yu, Z., Sheng, A., Roy, P., Chen, A., Lin, J., Watson, D.F.: Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics. Nano Energy 68, 104317 (2020)CrossRef
80.
go back to reference Fatima, S., Rizwan, M., Ullah, H.M.N., Ali, S.S., Nareem, H., Usman, Z.: Efficient hydrogen storage in KCaF3 using GGA and HSE approach. Intern. J. Hydro. Ener. 48, 3566–3582 (2023)CrossRef Fatima, S., Rizwan, M., Ullah, H.M.N., Ali, S.S., Nareem, H., Usman, Z.: Efficient hydrogen storage in KCaF3 using GGA and HSE approach. Intern. J. Hydro. Ener. 48, 3566–3582 (2023)CrossRef
81.
go back to reference Rizwan, M., Ali, S.S., Sabahat, U., Sana, M., Zahid, U., Ullah, M.A.: Exploring energy harvesting through impurity-induced phenomena in barium titanate: first principle calculations. Chinese J. Phys. 86, 418–430 (2023)CrossRef Rizwan, M., Ali, S.S., Sabahat, U., Sana, M., Zahid, U., Ullah, M.A.: Exploring energy harvesting through impurity-induced phenomena in barium titanate: first principle calculations. Chinese J. Phys. 86, 418–430 (2023)CrossRef
82.
go back to reference Rizwan, M., Moin, M., Ullah, H.M.N., Anwar, A.W., Mushtaq, U., Mahmood, T.: Investigations of electronic, elastic, and optical properties of (Ag, Cd)-doped LaAlO3: a computational insight. Canad. J. Phys. 101, 694–701 (2023)CrossRef Rizwan, M., Moin, M., Ullah, H.M.N., Anwar, A.W., Mushtaq, U., Mahmood, T.: Investigations of electronic, elastic, and optical properties of (Ag, Cd)-doped LaAlO3: a computational insight. Canad. J. Phys. 101, 694–701 (2023)CrossRef
83.
go back to reference Kibbou, M., Haman, Z., Khossossi, N., Essaoudi, I., Ainane, A., Ahuja, R.: Computational insights into the superior efficiency of Cs2AgGa(Cl, Br)6 double halide perovskite solar cells. Mat. Chem. Phys. 294, 126978 (2023)CrossRef Kibbou, M., Haman, Z., Khossossi, N., Essaoudi, I., Ainane, A., Ahuja, R.: Computational insights into the superior efficiency of Cs2AgGa(Cl, Br)6 double halide perovskite solar cells. Mat. Chem. Phys. 294, 126978 (2023)CrossRef
84.
go back to reference Kim, J.Y., Lee, J.W., Jung, H.S., Shin, H., Park, N.G.: High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020)CrossRef Kim, J.Y., Lee, J.W., Jung, H.S., Shin, H., Park, N.G.: High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020)CrossRef
85.
go back to reference Roza O-de-la, A., Luana, V.: GIBBS2: a new version of the quasi-harmonic model code. I Robust treatment of the static data. Comput. Phys. Commun. 182, 1708–1720 (2011)CrossRef Roza O-de-la, A., Luana, V.: GIBBS2: a new version of the quasi-harmonic model code. I Robust treatment of the static data. Comput. Phys. Commun. 182, 1708–1720 (2011)CrossRef
86.
go back to reference Liu, D., Zeng, H., Peng, H., Sa, R.: Computational study of the fundamental properties of Zr-based chalcogenide perovskites for optoelectronics. Phys. Chem. Chemic. Phy. 25, 13755–13765 (2023)CrossRef Liu, D., Zeng, H., Peng, H., Sa, R.: Computational study of the fundamental properties of Zr-based chalcogenide perovskites for optoelectronics. Phys. Chem. Chemic. Phy. 25, 13755–13765 (2023)CrossRef
Metadata
Title
Study of chalcogenide-based metal perovskites BaZrX3 (X = S and Se): DFT insight into fundamental properties for sustainable energy generation using AMPS-1D
Authors
Naincy Pandit
Rashmi Singh
Peeyush Kumar Kamlesh
Nitin Kumar
Pawan Sharma
Sarita Kumari
Tanuj Kumar
Samah Al-Qaisi
Ajay Singh Verma
Publication date
01-08-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 5/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02201-5