Skip to main content
Top
Published in: Metallurgist 11-12/2021

05-04-2021

Study of Conditions for Thermal Deformation of Additively Grown Billets from VT6 Titanium Alloy using Finite Element Simulation

Authors: A. N. Koshmin, A. S. Aleschenko, P. V. Patrin, P. Yu. Sokolov, A. V. Zinov’ev

Published in: Metallurgist | Issue 11-12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article investigates the hot rolling aspects of a large-sized ring of non-standard, cross-sectional shape, produced from VT6 titanium alloy, and grown using additive technologies (АТ). Finite element (FE) simulation was used to develop the cross-sectional shape and study the parameters of the rolling process. The results enabled the choice of the optimal cross-sectional shape of the ring billet produced by direct laser deposition (DLD), and confirmed the possibility of processing the billet on a ring rolling mill.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference ASTM 52900-15. Standard Terminology for Additive Manufacturing. General Principles. Terminology. West Conshohocken, PA, ASTM Intern. (2015). ASTM 52900-15. Standard Terminology for Additive Manufacturing. General Principles. Terminology. West Conshohocken, PA, ASTM Intern. (2015).
2.
go back to reference H. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive manufacturing methods and modeling approaches: a critical review,” Int. J. Adv. Manuf. Technol., 89, 389–405 (2016); doi.org/10.1007/s00170-015-7576-2. H. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive manufacturing methods and modeling approaches: a critical review,” Int. J. Adv. Manuf. Technol., 89, 389–405 (2016); doi.org/10.1007/s00170-015-7576-2.
3.
go back to reference S. Tofail, E. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, “Additive manufacturing: scientific and technological challenges, market uptake and opportunities,” Mater. Today, 21, No. 1, 22–37 (2018); doi.org/10.1016/j.mattod.2017.07.001. S. Tofail, E. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, “Additive manufacturing: scientific and technological challenges, market uptake and opportunities,” Mater. Today, 21, No. 1, 22–37 (2018); doi.org/10.1016/j.mattod.2017.07.001.
4.
go back to reference P. Petrovsky, V. Chevirikin, P. Sokolov, and A. Davidenko, “Dependence of the structure and properties of 03KH16N15M3 steel on the geometry of cellular structures obtained by the selective laser melting method,” Chern. Metally, No. 3, 49–53 (2019). P. Petrovsky, V. Chevirikin, P. Sokolov, and A. Davidenko, “Dependence of the structure and properties of 03KH16N15M3 steel on the geometry of cellular structures obtained by the selective laser melting method,” Chern. Metally, No. 3, 49–53 (2019).
5.
go back to reference S. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, “An overview of Direct Laser Deposition for additive manufacturing. Part I: Transport phenomena, modeling and diagnostics,” Addit. Manuf., 8, 36–62 (2015); doi.org/10.1016/j.addma.2015.07.001. S. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, “An overview of Direct Laser Deposition for additive manufacturing. Part I: Transport phenomena, modeling and diagnostics,” Addit. Manuf., 8, 36–62 (2015); doi.org/10.1016/j.addma.2015.07.001.
6.
go back to reference N. Shamsaei, A. Yadollahi, L. Bian, and S. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf., 8, 12–35 (2015); doi.org/10.1016/j.addma.2015.07.002. N. Shamsaei, A. Yadollahi, L. Bian, and S. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf., 8, 12–35 (2015); doi.org/10.1016/j.addma.2015.07.002.
7.
go back to reference T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components — Process, structure and properties,” Prog. Mater. Sci., 92, 112–224 (2018); doi.org/10.1016/j.pmatsci.2017.10.001. T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components — Process, structure and properties,” Prog. Mater. Sci., 92, 112–224 (2018); doi.org/10.1016/j.pmatsci.2017.10.001.
8.
go back to reference O. Klimova-Korsmik, G. Turichin, E. Zemlyakov, K. Babkin, P. Petrovsky, and A. Travyanov, “Technology of high-speed direct laser deposition from Ni-based superalloys,” Phys. Procedia, 83, 716–722 (2016); DOI.org/10.1016/j.phpro.2016.08.073. O. Klimova-Korsmik, G. Turichin, E. Zemlyakov, K. Babkin, P. Petrovsky, and A. Travyanov, “Technology of high-speed direct laser deposition from Ni-based superalloys,” Phys. Procedia, 83, 716–722 (2016); DOI.org/10.1016/j.phpro.2016.08.073.
9.
go back to reference E. Brandl, C. Leyens, and F. Palm, “Mechanical properties of additive manufactured Ti-6Al-4V using wire and powder based processes,” Trends in Aerospace Manufacturing 2009 Int. Conf. IOP Conf. Series: Materials Science and Engineering, 26, No. 1, 012004 (2011); doi.org/10.1088/1757-899X/26/1/012004. E. Brandl, C. Leyens, and F. Palm, “Mechanical properties of additive manufactured Ti-6Al-4V using wire and powder based processes,” Trends in Aerospace Manufacturing 2009 Int. Conf. IOP Conf. Series: Materials Science and Engineering, 26, No. 1, 012004 (2011); doi.org/10.1088/1757-899X/26/1/012004.
10.
go back to reference A. Mostafa, D. Shahriari, I. Picazo Rubio, V. Brailovski, M. Jahazi, and M. Medraj, “Hot compression behavior and microstructure of selectively laser-melted IN718 alloy,” Int. J. Adv. Manuf. Technol., 96, 371–385 (2018); doi.org/10.1007/s00170-017-1522-4. A. Mostafa, D. Shahriari, I. Picazo Rubio, V. Brailovski, M. Jahazi, and M. Medraj, “Hot compression behavior and microstructure of selectively laser-melted IN718 alloy,” Int. J. Adv. Manuf. Technol., 96, 371–385 (2018); doi.org/10.1007/s00170-017-1522-4.
11.
go back to reference W. Schneller, M. Leitner, S. Springer, F. Grun, and M. Taschauer, “Effect of HIP treatment on microstructure and fatigue strength of selectively laser melted AlSi10Mg,” J. Manuf. Mater. Proc., 3(1), 16 (2019); doi.org/10.3390/jmmp3010016. W. Schneller, M. Leitner, S. Springer, F. Grun, and M. Taschauer, “Effect of HIP treatment on microstructure and fatigue strength of selectively laser melted AlSi10Mg,” J. Manuf. Mater. Proc., 3(1), 16 (2019); doi.org/10.3390/jmmp3010016.
12.
go back to reference D. Ivanov, A. Travyanov, P. Petrovskiy, V. Cheverikin, E. Alekseeva, A. Khvan, and I. Logachev, “Evolution of structure and properties of the nickel-based alloy EP718 after the SLM growth and after different types of heat and mechanical treatment,” Addit. Manuf., 18, 269–275 (2017); doi.org/10.1016/j.addma.2017.10.015. D. Ivanov, A. Travyanov, P. Petrovskiy, V. Cheverikin, E. Alekseeva, A. Khvan, and I. Logachev, “Evolution of structure and properties of the nickel-based alloy EP718 after the SLM growth and after different types of heat and mechanical treatment,” Addit. Manuf., 18, 269–275 (2017); doi.org/10.1016/j.addma.2017.10.015.
13.
go back to reference C. Qiu, N. Adkins, and M. Attallah, “Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V,” Mater. Sci. Eng. A, 578, 230–239 (2013); doi.org/10.1016/j.msea.2013.04.099. C. Qiu, N. Adkins, and M. Attallah, “Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V,” Mater. Sci. Eng. A, 578, 230–239 (2013); doi.org/10.1016/j.msea.2013.04.099.
14.
go back to reference T. Mower and M. Long, “Mechanical behavior of additive manufactured, powder-bed laser-fused materials,” Mater. Sci. Eng. A, 651, 198–213 (2016); doi.org/10.1016/j.msea.2015.10.068. T. Mower and M. Long, “Mechanical behavior of additive manufactured, powder-bed laser-fused materials,” Mater. Sci. Eng. A, 651, 198–213 (2016); doi.org/10.1016/j.msea.2015.10.068.
15.
go back to reference US 2015/0013144 A1. Methods for Producing Forged Products and Other Worked Products, Bush et al., United States, Pat. Application Public (2015). US 2015/0013144 A1. Methods for Producing Forged Products and Other Worked Products, Bush et al., United States, Pat. Application Public (2015).
16.
go back to reference J. Donoghue, A. Antonysamy, F. Martina, P. Colegrove, S. Williams, and P. Prangnell, “The effectiveness of combining rolling deformation with Wire-Arc Additive Manufacture on β-grain refinement and texture modification in Ti–6Al–4V,” Mater. Characterization, 114, 103–114 (2016); doi.org/10.1016/j.matchar.2016.02.001. J. Donoghue, A. Antonysamy, F. Martina, P. Colegrove, S. Williams, and P. Prangnell, “The effectiveness of combining rolling deformation with Wire-Arc Additive Manufacture on β-grain refinement and texture modification in Ti–6Al–4V,” Mater. Characterization, 114, 103–114 (2016); doi.org/10.1016/j.matchar.2016.02.001.
17.
go back to reference I. Polkin, “About innovations in the light alloys technology,” Tech. Light Alloys, No. 4, 8–15 (2018). I. Polkin, “About innovations in the light alloys technology,” Tech. Light Alloys, No. 4, 8–15 (2018).
18.
go back to reference M. Donachie, Jr., “Titanium: a technical guide. 2nd Edition,” ASM International. Materials Park, 369 (2000). M. Donachie, Jr., “Titanium: a technical guide. 2nd Edition,” ASM International. Materials Park, 369 (2000).
19.
go back to reference M. Brandt, Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Woodhead Publishing, Sawston (2017). M. Brandt, Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Woodhead Publishing, Sawston (2017).
20.
go back to reference E. Brandl, B. Baufeld, C. Leyens, and R. Gault, “Additive manufactured Ti-6Al-4V using welding wire comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications,” Phys. Procedia, 5, 595–606 (2010); doi.org/10.1016/j.phpro.2010.08.087. E. Brandl, B. Baufeld, C. Leyens, and R. Gault, “Additive manufactured Ti-6Al-4V using welding wire comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications,” Phys. Procedia, 5, 595–606 (2010); doi.org/10.1016/j.phpro.2010.08.087.
21.
go back to reference P. Sokolov, A. Aleshchenko, A. Koshmin, V. Cheverikin, P. Petrovskiy, A. Travyanov, and A. Sova, “Effect of hot rolling on structure and mechanical properties of Ti-6Al-4V alloy parts produced by direct laser deposition,” Int. J. Adv. Manuf. Technol. (2020); doi.org/10.1007/s00170-020-05132-0. P. Sokolov, A. Aleshchenko, A. Koshmin, V. Cheverikin, P. Petrovskiy, A. Travyanov, and A. Sova, “Effect of hot rolling on structure and mechanical properties of Ti-6Al-4V alloy parts produced by direct laser deposition,” Int. J. Adv. Manuf. Technol. (2020); doi.org/10.1007/s00170-020-05132-0.
23.
go back to reference V. E. Antonyuk, P. A. Vityaz, P. A. Parkhomchik, V. V. Rudiy, and A. A. Shipko, Ring Rolling in the Production of Mechanical Engineering Parts [in Russian], Belarus, Navuka, Minsk (2013). V. E. Antonyuk, P. A. Vityaz, P. A. Parkhomchik, V. V. Rudiy, and A. A. Shipko, Ring Rolling in the Production of Mechanical Engineering Parts [in Russian], Belarus, Navuka, Minsk (2013).
24.
go back to reference QForm VX Manual. Program for Modeling Metal Forming Processes. Version 9.0.4 (2019). QForm VX Manual. Program for Modeling Metal Forming Processes. Version 9.0.4 (2019).
25.
go back to reference P. I. Polukhin, G. Ya. Gun, and A. M. Galkin, Resistance to Plastic Deformation of Metals and Alloys. Guidebook [in Russian], Metallurgiya, Moscow (1983). P. I. Polukhin, G. Ya. Gun, and A. M. Galkin, Resistance to Plastic Deformation of Metals and Alloys. Guidebook [in Russian], Metallurgiya, Moscow (1983).
Metadata
Title
Study of Conditions for Thermal Deformation of Additively Grown Billets from VT6 Titanium Alloy using Finite Element Simulation
Authors
A. N. Koshmin
A. S. Aleschenko
P. V. Patrin
P. Yu. Sokolov
A. V. Zinov’ev
Publication date
05-04-2021
Publisher
Springer US
Published in
Metallurgist / Issue 11-12/2021
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-021-01108-x

Other articles of this Issue 11-12/2021

Metallurgist 11-12/2021 Go to the issue

Premium Partners