Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 4/2022

01-04-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Study of Heat Transfer Processes in a System Containing Fe–Rh Microwires

Authors: O. O. Pavlukhina, V. V. Sokolovskiy, V. D. Buchelnikov, M. A. Zagrebin

Published in: Physics of Metals and Metallography | Issue 4/2022

Login to get access
share
SHARE

Abstract

To date, the choice of the geometry of a magnetic cooling cell is a relevant problem in the field of magnetic refrigeration. In this study, the heat transfer processes in three-dimensional magnetic cooling cells containing Fe–Rh microwires are studied within the theoretical simulation approaches. The velocities of heat carrier flow velocities of 2.5 and 0.7 m/s are considered. It is found that the relaxation times are 0.8 and 1.4 ms for a flow velocity of 2.5 m/s, and 1.8 and 3.3 ms for a flow velocity of 0.7 m/s in the case of using microwire diameters of 10 and 50 µm, respectively. It is shown that the use of Fe–Rh microwires in magnetic cooling cells can be promising for magnetic refrigeration technology.
Literature
1.
go back to reference A. Kitanovski and W. E. Peter, “Thermodynamics of magnetic refrigeration,” Int. J. Refrig. 29, 3–21 (2006). CrossRef A. Kitanovski and W. E. Peter, “Thermodynamics of magnetic refrigeration,” Int. J. Refrig. 29, 3–21 (2006). CrossRef
2.
go back to reference V. K. Pecharsky, K. A. Gschneidner, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68, 1479–1539 (2005). CrossRef V. K. Pecharsky, K. A. Gschneidner, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68, 1479–1539 (2005). CrossRef
3.
go back to reference A. Chirkova, K. P. Skokov, L. Schultz, and N. V. Baranov, “Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions,” Acta Mater. 106, 15–21 (2016). CrossRef A. Chirkova, K. P. Skokov, L. Schultz, and N. V. Baranov, “Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions,” Acta Mater. 106, 15–21 (2016). CrossRef
4.
go back to reference S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148 (6), 363–366 (1990). CrossRef S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148 (6), 363–366 (1990). CrossRef
5.
go back to reference V. V. Khovaylo, V. V. Rodionova, S. N. Shevyrtalov, and V. Novosad, “Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds,” Phys. Status Solidi B 251 (10), 2104–2113 (2014). CrossRef V. V. Khovaylo, V. V. Rodionova, S. N. Shevyrtalov, and V. Novosad, “Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds,” Phys. Status Solidi B 251 (10), 2104–2113 (2014). CrossRef
6.
go back to reference V. Zhukova, M. Ipatov, A. Granovsky, and A. Zhukov, “Magnetic properties of Ni–Mn–In–Co Heusler-type glass-coated microwires,” J. Appl. Phys. 115, 17A939 (2014). V. Zhukova, M. Ipatov, A. Granovsky, and A. Zhukov, “Magnetic properties of Ni–Mn–In–Co Heusler-type glass-coated microwires,” J. Appl. Phys. 115, 17A939 (2014).
7.
go back to reference A. Sarlah, J. Tusek, and A. Poredos, “Comparison of thermo-hydraulic properties of heat regenerators applicable to active magnetic refrigerators,” J. Mech. Eng. 58, 16–22 (2012). CrossRef A. Sarlah, J. Tusek, and A. Poredos, “Comparison of thermo-hydraulic properties of heat regenerators applicable to active magnetic refrigerators,” J. Mech. Eng. 58, 16–22 (2012). CrossRef
8.
go back to reference K. K. Nielsen, C. R. H. Bahl, A. Smith, R. Bjork, N. Pryds, and J. Hattel, “Detailed numerical modeling of a linear parallel-plate active magnetic regenerator,” Int. J. Refrig. 32 (6), 1478–1486 (2009). CrossRef K. K. Nielsen, C. R. H. Bahl, A. Smith, R. Bjork, N. Pryds, and J. Hattel, “Detailed numerical modeling of a linear parallel-plate active magnetic regenerator,” Int. J. Refrig. 32 (6), 1478–1486 (2009). CrossRef
9.
go back to reference K. Engelbrecht, J. Tusek, K. K. Nielsen, A. Kitanovski, C. R. H. Bahl, and A. Poredos, “Improved modeling of a parallel plate active magnetic regenerator,” J. Phys. D: Appl. Phys. 46 (25), 255002 (2013). CrossRef K. Engelbrecht, J. Tusek, K. K. Nielsen, A. Kitanovski, C. R. H. Bahl, and A. Poredos, “Improved modeling of a parallel plate active magnetic regenerator,” J. Phys. D: Appl. Phys. 46 (25), 255002 (2013). CrossRef
10.
go back to reference S. Taskaev, V. Khovaylo, D. Karpenkov, I. Radulov, M. Ulyanov, D. Bataev, A. Dyakonov, D. Gunderov, K. Skokov, and O. Gutfleisch, “Plastically deformed Gd–X (X = Y, In, Zr, Ga, B) solid solutions for magnetocaloric regenerator of parallel plate geometry,” J. Alloys Compd. 754, 207–214 (2018). CrossRef S. Taskaev, V. Khovaylo, D. Karpenkov, I. Radulov, M. Ulyanov, D. Bataev, A. Dyakonov, D. Gunderov, K. Skokov, and O. Gutfleisch, “Plastically deformed Gd–X (X = Y, In, Zr, Ga, B) solid solutions for magnetocaloric regenerator of parallel plate geometry,” J. Alloys Compd. 754, 207–214 (2018). CrossRef
11.
go back to reference K. K. Nielsen, J. Tusek, K. Engelbrecht, S. Schopfer, A. Kitanovski, C. R. H. Bahl, A. Smith, N. Pryds, and A. Poredos, “Review on numerical modeling of active magnetic regenerators for room temperature applications,” Int. J. Refrig. 34 (3), 603–616 (2011). CrossRef K. K. Nielsen, J. Tusek, K. Engelbrecht, S. Schopfer, A. Kitanovski, C. R. H. Bahl, A. Smith, N. Pryds, and A. Poredos, “Review on numerical modeling of active magnetic regenerators for room temperature applications,” Int. J. Refrig. 34 (3), 603–616 (2011). CrossRef
12.
go back to reference M. Vazquez, H. Chiriac, A. Zhukov, L. Panina, and T. Uchiyama, “On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies,” Phys. Status Solidi A 208 (3), 493–501 (2011). CrossRef M. Vazquez, H. Chiriac, A. Zhukov, L. Panina, and T. Uchiyama, “On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies,” Phys. Status Solidi A 208 (3), 493–501 (2011). CrossRef
13.
go back to reference M. I. Ilyn, V. Zhukova, J. D. Santos, M. L. Sanchez, V. M. Prida, B. Hernando, V. Larin, J. Gonzalez, A. M. Tishin, and A. Zhukov, “Magnetocaloric effect in nanogranular glass coated microwires,” Phys. Status Solidi A 205 (6), 1378–1381 (2008). CrossRef M. I. Ilyn, V. Zhukova, J. D. Santos, M. L. Sanchez, V. M. Prida, B. Hernando, V. Larin, J. Gonzalez, A. M. Tishin, and A. Zhukov, “Magnetocaloric effect in nanogranular glass coated microwires,” Phys. Status Solidi A 205 (6), 1378–1381 (2008). CrossRef
14.
go back to reference A. Zhukov, V. Rodionova, M. Ilyn, A. M. Aliev, R. Varga, S. Michalik, A. Aronin, G. Abrosimova, A. Kiselev, M. Ipatov, and V. Zhukova, “Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires,” J. Alloys Compd. 575, 73–79 (2013). CrossRef A. Zhukov, V. Rodionova, M. Ilyn, A. M. Aliev, R. Varga, S. Michalik, A. Aronin, G. Abrosimova, A. Kiselev, M. Ipatov, and V. Zhukova, “Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires,” J. Alloys Compd. 575, 73–79 (2013). CrossRef
15.
go back to reference V. Zhukova, A. M. Aliev, R. Varga, A. Aronin, G. Abrosimova, A. Kiselev, and A. Zhukov, “Magnetic properties and MCE in Heusler-type glass-coated microwires,” J. Supercond. Nov. Magn. 26, 1415–1419 (2013). CrossRef V. Zhukova, A. M. Aliev, R. Varga, A. Aronin, G. Abrosimova, A. Kiselev, and A. Zhukov, “Magnetic properties and MCE in Heusler-type glass-coated microwires,” J. Supercond. Nov. Magn. 26, 1415–1419 (2013). CrossRef
16.
go back to reference O. Pavlukhina, V. Sokolovskiy, and V. Buchelnikov, “Theoretical modeling of heat transfer processes in Ni–Co–Mn–In magnetic wires,” in Proceedings of the 7th International Conf. on Magnetic Refrigeration at Room Temperature (Thermag VII) (Turin, 2016), pp. 202–205. O. Pavlukhina, V. Sokolovskiy, and V. Buchelnikov, “Theoretical modeling of heat transfer processes in Ni–Co–Mn–In magnetic wires,” in Proceedings of the 7th International Conf. on Magnetic Refrigeration at Room Temperature (Thermag VII) (Turin, 2016), pp. 202–205.
17.
go back to reference O. Pavlukhina, V. Sokolovskiy, and V. Buchelnikov, “Modeling of heat transfer processes in Ni2MnIn magnetic wires,” Phys. Status Solidi A 213 (2), 390–398 (2016). CrossRef O. Pavlukhina, V. Sokolovskiy, and V. Buchelnikov, “Modeling of heat transfer processes in Ni2MnIn magnetic wires,” Phys. Status Solidi A 213 (2), 390–398 (2016). CrossRef
18.
go back to reference O. O. Pavlukhina, V. V. Sokolovskiy, V. D. Buchelnikov, and M. A. Zagrebin, “Theoretical study of heat transfer processes in Heusler-type magnetic microwires,” Lett. Mater. 9 (4), 395–399 (2019). CrossRef O. O. Pavlukhina, V. V. Sokolovskiy, V. D. Buchelnikov, and M. A. Zagrebin, “Theoretical study of heat transfer processes in Heusler-type magnetic microwires,” Lett. Mater. 9 (4), 395–399 (2019). CrossRef
19.
go back to reference O. C. Zienkiewicz and K. Morgan, Finite Elements and Approximations (Wiley, New York, 1983). O. C. Zienkiewicz and K. Morgan, Finite Elements and Approximations (Wiley, New York, 1983).
20.
go back to reference O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method: Fluid Dynamics (Butterworth-Heinemann, London, 2000). O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method: Fluid Dynamics (Butterworth-Heinemann, London, 2000).
21.
go back to reference E. W. Washburn, International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw-Hill, New York, 1929), Vol. 5. E. W. Washburn, International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw-Hill, New York, 1929), Vol. 5.
22.
go back to reference Y. Hao, L. Zhang, and J. Zhu, “The electronic structure, phase transition, elastic, thermodynamic, and thermoelectric properties of FeRh: high-temperature and high-pressure study,” Z. Naturforsch., A: Phys. Sci. 75 (9), 789–801 (2020). Y. Hao, L. Zhang, and J. Zhu, “The electronic structure, phase transition, elastic, thermodynamic, and thermoelectric properties of FeRh: high-temperature and high-pressure study,” Z. Naturforsch., A: Phys. Sci. 75 (9), 789–801 (2020).
Metadata
Title
Study of Heat Transfer Processes in a System Containing Fe–Rh Microwires
Authors
O. O. Pavlukhina
V. V. Sokolovskiy
V. D. Buchelnikov
M. A. Zagrebin
Publication date
01-04-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22040093