Skip to main content
Top
Published in: Metallurgist 1-2/2021

12-05-2021

Study of the Influence of the Granulation Modes of Cu2S Melt on the Granulometric and Structural Characteristics of Particles

Authors: O. V. Nechvoglod, S. V. Sergeeva, S. N. Agafonov

Published in: Metallurgist | Issue 1-2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study presents the results of experiments conducted on the granulation of copper sulfide (Cu2S) melt. The granulometric characteristics of the samples are calculated as a function of the melt temperature. An increase in the melt temperature to 1,350°C promotes the formation of particles with a particle size of –10.0 +5.0 mm, and a decrease in the melt temperature to 1,250°C promotes the formation of particles with smaller size grades (i.e., –1.6 +1.0, –1.0 +0.63, and –0.63 +0.063 mm). With an increase in temperature, the mean squared deviation of particle size from the average value and the degree of polydispersity decreases to some extent. This study also estimates the influence of the melt temperature on the shape of the granules. The cooling and spheroidization times of particles during granulation at the melt temperatures of 1,250°C, 1,300°C, and 1,350°C were calculated. In the temperature range under consideration for all of the investigated size grades of particles, the cooling time exceeded the spheroidization time, which contributed to the formation of spherical particles. The melt temperature did not significantly affect the chemical composition of Cu2S granules. The main phase component of the granules was chalcosine (Cu2S) with a monoclinic lattice of more than 80%. Chalcosine (Cu2S) with a hexagonal lattice of 8% to 9% and digenite (Cu1.78S) with 4% to 12% were also identified. Dispersed inclusions of metallic copper were also detected.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. B. Gordon, “Production residues in copper technological cycles,” Resources, Conservation and Recycling, 36, 2, 87–106 (2002).CrossRef R. B. Gordon, “Production residues in copper technological cycles,” Resources, Conservation and Recycling, 36, 2, 87–106 (2002).CrossRef
2.
go back to reference S. S. Naboychenko, N. G. Ageev, A. P. Doroshkevich, et al., Processes and Devices of Non-Ferrous Metallurgy: Textbook for Universities [in Russian], GOU VPO UGTU–UPI, Yekaterinburg (2005). S. S. Naboychenko, N. G. Ageev, A. P. Doroshkevich, et al., Processes and Devices of Non-Ferrous Metallurgy: Textbook for Universities [in Russian], GOU VPO UGTU–UPI, Yekaterinburg (2005).
3.
go back to reference M. Wang and W. Li X. Chen, “Substance flow analysis of copper in production stage in the U.S. from 1974 to 2012,” Resources, Conservation and Recycling, 105, 36–48 (2015).CrossRef M. Wang and W. Li X. Chen, “Substance flow analysis of copper in production stage in the U.S. from 1974 to 2012,” Resources, Conservation and Recycling, 105, 36–48 (2015).CrossRef
4.
go back to reference R. Moskalyk and A. Alfantazi, “Review of copper pyrometallurgical practice: today and tomorrow,” Minerals Engineering, 16(10), 893–919 (2003).CrossRef R. Moskalyk and A. Alfantazi, “Review of copper pyrometallurgical practice: today and tomorrow,” Minerals Engineering, 16(10), 893–919 (2003).CrossRef
5.
go back to reference D. Dreisinger, “Copper leaching from primary sulfides: Options for biological and chemical extraction of copper,” Hydrometallurgy, 83, 10–20 (2006).CrossRef D. Dreisinger, “Copper leaching from primary sulfides: Options for biological and chemical extraction of copper,” Hydrometallurgy, 83, 10–20 (2006).CrossRef
6.
go back to reference F. Letowski, B. Kolodziej, M. Czernecki, et al., “A new hydrometallurgical method for the processing of copper concentrates using ferric sulphate,” Hydrometallurgy, 4(2), 169–184 (1979).CrossRef F. Letowski, B. Kolodziej, M. Czernecki, et al., “A new hydrometallurgical method for the processing of copper concentrates using ferric sulphate,” Hydrometallurgy, 4(2), 169–184 (1979).CrossRef
7.
go back to reference B. Xu, H. Zhong, and T. Jiang, “Recovery of valuable metals from Gacun complex copper concentrate by two-stage countercurrent oxygen pressure acid leaching process,” Miner. Eng., 24(10), 1082–1083 (2011).CrossRef B. Xu, H. Zhong, and T. Jiang, “Recovery of valuable metals from Gacun complex copper concentrate by two-stage countercurrent oxygen pressure acid leaching process,” Miner. Eng., 24(10), 1082–1083 (2011).CrossRef
8.
go back to reference D. M. Chizhikov, L. V. Pliginskaya, Z. F. Gulyanitskaya, et al., Patent USSR No. 280858, Electrochemical Method for Processing Copper-Nickel Matte, submitted 05/08/1968, published 09/03/1970, Bul. No. 28. D. M. Chizhikov, L. V. Pliginskaya, Z. F. Gulyanitskaya, et al., Patent USSR No. 280858, Electrochemical Method for Processing Copper-Nickel Matte, submitted 05/08/1968, published 09/03/1970, Bul. No. 28.
9.
go back to reference D. M. Chizhikov, Z. F. Gulyanitskaya, N. A. Gurovich, and I. N. Kitler, Hydrometallurgy of Sulfide Alloys and Mattes [in Russian], Izdatelstvo AN SSSR, Moscow (1962). D. M. Chizhikov, Z. F. Gulyanitskaya, N. A. Gurovich, and I. N. Kitler, Hydrometallurgy of Sulfide Alloys and Mattes [in Russian], Izdatelstvo AN SSSR, Moscow (1962).
10.
go back to reference V. V. Mikhailov, V. P. Schastlivy, and G. R. Pevzner, “Aspects of the use of electrolysis of nickel sulfide anodes at foreign plants,” Bul. CIIN. Tsvetn. Metallurg., No. 20, p. 33 (1971). V. V. Mikhailov, V. P. Schastlivy, and G. R. Pevzner, “Aspects of the use of electrolysis of nickel sulfide anodes at foreign plants,” Bul. CIIN. Tsvetn. Metallurg., No. 20, p. 33 (1971).
11.
go back to reference E. N. Selivanov, O. V. Nechvoglod, L. Yu. Udoeva, et al., Patent RF No. 2434065, Method of Processing Sulfide Copper-Nickel Alloys, submitted 08/18/2010; published. 11/20/2011, Bul. No. 32. E. N. Selivanov, O. V. Nechvoglod, L. Yu. Udoeva, et al., Patent RF No. 2434065, Method of Processing Sulfide Copper-Nickel Alloys, submitted 08/18/2010; published. 11/20/2011, Bul. No. 32.
12.
go back to reference R. Maharjan and S. H. Jeong, “High shear seeded granulation: Its preparation mechanism, formulation, process, evaluation, and mathematical simulation,” Powder Technol., 366, 667–688 (2020).CrossRef R. Maharjan and S. H. Jeong, “High shear seeded granulation: Its preparation mechanism, formulation, process, evaluation, and mathematical simulation,” Powder Technol., 366, 667–688 (2020).CrossRef
13.
go back to reference S. S. Naboichenko, Non-Ferrous Metal Powders [in Russian], Metallurgiya, Moscow (1997). S. S. Naboichenko, Non-Ferrous Metal Powders [in Russian], Metallurgiya, Moscow (1997).
14.
go back to reference E. N. Selivanov, O. V. Nechvoglod, and V. G. Lobanov, “The effect of the nickel sulphide alloys structure on their electrochemical oxidation parameters,” IFAC Proceedings Volumes, 46(16), 259–262 (2013).CrossRef E. N. Selivanov, O. V. Nechvoglod, and V. G. Lobanov, “The effect of the nickel sulphide alloys structure on their electrochemical oxidation parameters,” IFAC Proceedings Volumes, 46(16), 259–262 (2013).CrossRef
15.
go back to reference L. Yu. Udoeva, E. N. Selivanov, S. E. Klein, and N. I. Selmenskikh, “Granulation of copper-nickel matte: dispersion, microstructure, and reactivity,” Tsvetn. Metall., No. 12, 20–35 (2013). L. Yu. Udoeva, E. N. Selivanov, S. E. Klein, and N. I. Selmenskikh, “Granulation of copper-nickel matte: dispersion, microstructure, and reactivity,” Tsvetn. Metall., No. 12, 20–35 (2013).
16.
go back to reference S. E. Vaysburd, Physicochemical Properties and Structural Aspects of Sulfide Melts [in Russian], Metallurgiya, Moscow (1996). S. E. Vaysburd, Physicochemical Properties and Structural Aspects of Sulfide Melts [in Russian], Metallurgiya, Moscow (1996).
17.
go back to reference A. V. Vanyukov and V. Ya. Zaitsev, The Theory of Metallurgical Processes [in Russian], Metallurgiya, Moscow (1993). A. V. Vanyukov and V. Ya. Zaitsev, The Theory of Metallurgical Processes [in Russian], Metallurgiya, Moscow (1993).
Metadata
Title
Study of the Influence of the Granulation Modes of Cu2S Melt on the Granulometric and Structural Characteristics of Particles
Authors
O. V. Nechvoglod
S. V. Sergeeva
S. N. Agafonov
Publication date
12-05-2021
Publisher
Springer US
Published in
Metallurgist / Issue 1-2/2021
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-021-01135-8

Other articles of this Issue 1-2/2021

Metallurgist 1-2/2021 Go to the issue

Premium Partners