Skip to main content
Top
Published in: Metallurgist 7-8/2020

11-11-2020

Study of the Microstructure and Phase Composition of Crude Niobium Electron-Beam Remelting Sublimates

Authors: V. M. Chumarev, A. G. Upolovnikova, N. I. Sel’menskikh

Published in: Metallurgist | Issue 7-8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

crude niobium. The phase composition of sublimates formed during the first remelting of crude niobium is studied by scanning electron microscopy and X-ray microanalysis. Sublimates typically form structures of two types, i.e., dendritic and lamellar that is connected with niobium refining process conditions and the effect of various factors on sublimate crystallization. Niobium electron beam remelting sublimates are inconsistent with respect to both chemical and phase compositions. A layered structure is typical for the porous part of sublimates that are the basis of the material. The microstructure of another type is dendritic, typical for lamellar and rounded particles with a metallic sheen located within pores or dispersed in the layered part of sublimates. Alternation of phases within each layer is noted for a layered structure. The composition of the phases containing niobium is close to NbAl3 and a solid solution based on niobium (more than 90% Nb). Within the zone of phases consisting of aluminum, there are areas accumulating iron and silicon of variable composition that may be attributed to solid solutions based on Al5FeSi and Al3Fe. The structure of the metallized part of the sublimates consists of light rounded dendrites of niobium aluminide NbAl3, between which there is a phase close in composition to Al8Fe2Si. It is noted that single particles of pure niobium metal are found within the structure of the metallized part of sublimates. It is noted that as expected the main phase is NbAl3 intermetallic. Niobium is also present in the form of silicide Nb5Si3. Aluminum is found in sublimates in elemental form, in solid solution with iron and silicon, or in the form of oxide. Impurity elements are distributed between an oxide phase based on α –Al2O3 (Fe, Si, Ni) and Al–Fe–Si (Cr, Mn, Ni) solid solution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. N. Zelikman, B. G. Korshunov, A. V. Elyutin, and A. M. Zakharov, Niobium and Tantalum [in Russian], Metallurgiya, Moscow (1990). A. N. Zelikman, B. G. Korshunov, A. V. Elyutin, and A. M. Zakharov, Niobium and Tantalum [in Russian], Metallurgiya, Moscow (1990).
2.
go back to reference Ya. Goroshchenko, Chemistry of Niobium and Tantalum [in Russian], Naukova Dumka, Kiev (1965). Ya. Goroshchenko, Chemistry of Niobium and Tantalum [in Russian], Naukova Dumka, Kiev (1965).
3.
go back to reference N. P. Lyakishev, Yu. L. Pliner, and E. A. Rubenshtein, Niobium in Ferrous Metallurgy [in Russian], Metallurgiya, (1971). N. P. Lyakishev, Yu. L. Pliner, and E. A. Rubenshtein, Niobium in Ferrous Metallurgy [in Russian], Metallurgiya, (1971).
4.
go back to reference Yu. S. Afonin, M. M. Veselkov, A. V. Uslamin, V. V. Shvydenko, N. V. Rodchenkov, and E. V. Il’enko, RF Patent 2245384 C22B 5/04. Claim 05.20.2003. Publ. 0.272005, Bull. No. 3. Yu. S. Afonin, M. M. Veselkov, A. V. Uslamin, V. V. Shvydenko, N. V. Rodchenkov, and E. V. Il’enko, RF Patent 2245384 C22B 5/04. Claim 05.20.2003. Publ. 0.272005, Bull. No. 3.
5.
go back to reference V. I. Svechnikov, V. M. Pan, and V. I. Latyxheva, “Composition diagrams of the Nb-Al system,” Metallofizika, No. 22, 54–61 (29168) V. I. Svechnikov, V. M. Pan, and V. I. Latyxheva, “Composition diagrams of the Nb-Al system,” Metallofizika, No. 22, 54–61 (29168)
6.
go back to reference C. T. Rios, P. L., Ferrandini, S. Milenkovic, and R. Caram, “Growth and micro structure evolution of the Nb2Al–Al3Nb eutectic in situ composite,” Materials Characterization, 54, 187–193 (2005).CrossRef C. T. Rios, P. L., Ferrandini, S. Milenkovic, and R. Caram, “Growth and micro structure evolution of the Nb2Al–Al3Nb eutectic in situ composite,” Materials Characterization, 54, 187–193 (2005).CrossRef
7.
go back to reference C. T. Rios, S. Milenkovic, P. L., Ferrandini, and R. Caram, “Directional solidification, microstructure and properties of the Al3Nb – Nb2Al eutectic,” J. Crystal Growth, 275, 153–158 (2005).CrossRef C. T. Rios, S. Milenkovic, P. L., Ferrandini, and R. Caram, “Directional solidification, microstructure and properties of the Al3Nb – Nb2Al eutectic,” J. Crystal Growth, 275, 153–158 (2005).CrossRef
8.
go back to reference C. T. Rios, S. Milenkovic, and R. Caram, “Directional growth of Al–Nb–X eutectic alloys,” J. Crystal Growth, 211, 466–470 (2000).CrossRef C. T. Rios, S. Milenkovic, and R. Caram, “Directional growth of Al–Nb–X eutectic alloys,” J. Crystal Growth, 211, 466–470 (2000).CrossRef
9.
go back to reference C. T. Rios, S. Milenkovic, and R. Caram, “Fracture toughness of the eutectic alloy Al3Nb –Nb2Al,” Materials Letters, 57, 3949– 3953 (2003).CrossRef C. T. Rios, S. Milenkovic, and R. Caram, “Fracture toughness of the eutectic alloy Al3Nb –Nb2Al,” Materials Letters, 57, 3949– 3953 (2003).CrossRef
10.
go back to reference R. Mackay, Quantification of Iron in Al–Si Foundry Alloys via Thermal Analysis, Thesis Submitted to the Faculty of Graduate Studies and Research, Canada (1996). R. Mackay, Quantification of Iron in Al–Si Foundry Alloys via Thermal Analysis, Thesis Submitted to the Faculty of Graduate Studies and Research, Canada (1996).
11.
go back to reference A. M. Samuel, F. H. Samuel, and H. W. Doty, “Observations on the formation of beta–Al5FeSi phase in Al–Si alloys,” J. Mater. Science, 31, No. 20, 5529–5539 (1996).CrossRef A. M. Samuel, F. H. Samuel, and H. W. Doty, “Observations on the formation of beta–Al5FeSi phase in Al–Si alloys,” J. Mater. Science, 31, No. 20, 5529–5539 (1996).CrossRef
12.
go back to reference E. I. Gladyshevskii, Crystal Chemistry of Silicides and Germanides [in Russian], Metallurgiya, Moscow (1971). E. I. Gladyshevskii, Crystal Chemistry of Silicides and Germanides [in Russian], Metallurgiya, Moscow (1971).
13.
go back to reference V. Gauthier, J. P. Larpin, M. Vilasi, F. Bernard, and E. Gaffet, “Role of the microstructure on the high temperature oxidation properties of the intermetallic compound NbAl3,” Mater. Sci. For., 369–372, 793–800 (2001). V. Gauthier, J. P. Larpin, M. Vilasi, F. Bernard, and E. Gaffet, “Role of the microstructure on the high temperature oxidation properties of the intermetallic compound NbAl3,” Mater. Sci. For., 369–372, 793–800 (2001).
14.
go back to reference M. Steinhorst and H. J. Grabke, “Oxidation of niobium aluminide,” Mater. Sci. and Eng. A, 120, No. 12, 55–59 (1989).CrossRef M. Steinhorst and H. J. Grabke, “Oxidation of niobium aluminide,” Mater. Sci. and Eng. A, 120, No. 12, 55–59 (1989).CrossRef
15.
go back to reference J. Doychak and M. G. Hesur, “Protective Al2O3 scale formation on NbAl3-base alloys,” Oxid. Metals, 36, No. 1/2, 113–141 (1991).CrossRef J. Doychak and M. G. Hesur, “Protective Al2O3 scale formation on NbAl3-base alloys,” Oxid. Metals, 36, No. 1/2, 113–141 (1991).CrossRef
16.
go back to reference T. Murakami, S. Sasaki, K. Ichikawa, and A. Kitahara, “Microstructure, mechanical properties and oxidation behavior of Nb–Si–Al and Nb–Si–N powder compacts prepared by spark plasma sintering,” Intermetallics, 9, 621–627 (2001).CrossRef T. Murakami, S. Sasaki, K. Ichikawa, and A. Kitahara, “Microstructure, mechanical properties and oxidation behavior of Nb–Si–Al and Nb–Si–N powder compacts prepared by spark plasma sintering,” Intermetallics, 9, 621–627 (2001).CrossRef
17.
go back to reference T. Murakami, S. Sasaki, K. Ichikawa, and A. Kitahara, “Oxidation resistance of powder compacts of the Nb–Si–Cr system and Nb3Si5Al2 matrix compacts prepared by spark plasma sintering,” Intermetallics, 9, 629–635 (2001).CrossRef T. Murakami, S. Sasaki, K. Ichikawa, and A. Kitahara, “Oxidation resistance of powder compacts of the Nb–Si–Cr system and Nb3Si5Al2 matrix compacts prepared by spark plasma sintering,” Intermetallics, 9, 629–635 (2001).CrossRef
18.
go back to reference T. Murakami, S. Sasaki, and K. Ito, “Oxidation behavior and thermal stability of Cr-doped Nb(Si, Al)2 and Nb3Si5Al2 matrix compacts prepared by spark plasma sintering,” Intermetallics, 11, 269–278 (2003).CrossRef T. Murakami, S. Sasaki, and K. Ito, “Oxidation behavior and thermal stability of Cr-doped Nb(Si, Al)2 and Nb3Si5Al2 matrix compacts prepared by spark plasma sintering,” Intermetallics, 11, 269–278 (2003).CrossRef
19.
go back to reference V. M. Pan, V. I. Latysheva, O. G. Kulik, A. G. Popov, and E. N. Litvinenko, “Composition diagrams of Nb–NbAl3–Nb5Si3,” Metally, No. 4, 225–226 (1984). V. M. Pan, V. I. Latysheva, O. G. Kulik, A. G. Popov, and E. N. Litvinenko, “Composition diagrams of Nb–NbAl3–Nb5Si3,” Metally, No. 4, 225–226 (1984).
20.
go back to reference V. M. Pan, V. V. Pet’kov, and O. G. Kulik, “Composition diagram of the Nb–Nb5Si3 system and crystal structure of Nb5Si3 compound,” in: Proc. II and III Meetings for Metallurgy, Physical Chemistry, and Metal Physics of Superconductors, Nauka, Moscow (1967), pp. 161–165. V. M. Pan, V. V. Pet’kov, and O. G. Kulik, “Composition diagram of the Nb–Nb5Si3 system and crystal structure of Nb5Si3 compound,” in: Proc. II and III Meetings for Metallurgy, Physical Chemistry, and Metal Physics of Superconductors, Nauka, Moscow (1967), pp. 161–165.
Metadata
Title
Study of the Microstructure and Phase Composition of Crude Niobium Electron-Beam Remelting Sublimates
Authors
V. M. Chumarev
A. G. Upolovnikova
N. I. Sel’menskikh
Publication date
11-11-2020
Publisher
Springer US
Published in
Metallurgist / Issue 7-8/2020
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-020-01057-x

Other articles of this Issue 7-8/2020

Metallurgist 7-8/2020 Go to the issue

Premium Partners