Skip to main content
Top

25-09-2024

Study on Runoff Simulation with Multi-source Precipitation Information Fusion Based on Multi-model Ensemble

Authors: Runxi Li, Chengshuai Liu, Yehai Tang, Chaojie Niu, Yang Fan, Qingyuan Luo, Caihong Hu

Published in: Water Resources Management

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-quality precipitation data input and the selection of reasonable and applicable hydrological models are the main ways to improve the accuracy of runoff simulation, and are crucial for flood control, drought resistance and comprehensive water resource management in the basin. This study takes the Jingle Basin as the research area, establishing a transformer model that integrates rainfall data from multiple sources considering environmental factors. It combines six types of remote sensing data with rainfall data, which are then used as inputs for the XAJ model, LSTM model, and Prophet model, respectively. The output results are further separately using the ensemble mean method and the Bayesian mean method for ensemble forecasting. The results show that: Compared with a single precipitation product, the fusion model considering environmental factors significantly enhances the correlation between the predicted rainfall and the observed rainfall, with the CC value reaching 0.72; Compared with the other two models, the LSTM model has the NSE value of 0.89, showing a better runoff prediction effect; Compared with the LSTM model with the NSE value of 0.85 and the ensemble average method with the NSE value of 0.76, the Bayesian model averaging method demonstrates the best runoff prediction and simulation effect, with the NSE value of 0.88.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Beck HE, Pan M, Roy T, Weedon GP, Pappenberger F, vanDijk AIJM, Huffman GJ, Adler RF, Wood EF (2019) Daily evaluation of 26 precipitation datasets using stage-IV gauge-radar data for the CONUS. Hydrol Earth Syst Sci 23:207–224CrossRef Beck HE, Pan M, Roy T, Weedon GP, Pappenberger F, vanDijk AIJM, Huffman GJ, Adler RF, Wood EF (2019) Daily evaluation of 26 precipitation datasets using stage-IV gauge-radar data for the CONUS. Hydrol Earth Syst Sci 23:207–224CrossRef
go back to reference Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRef Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRef
go back to reference Deng C, Chen C, Yin X, Wang M, Zhang Y (2023) Catchment runoff simulation by coupling data assimilation and machine learning methods. Adv Water Sci 34(6):839–849 Deng C, Chen C, Yin X, Wang M, Zhang Y (2023) Catchment runoff simulation by coupling data assimilation and machine learning methods. Adv Water Sci 34(6):839–849
go back to reference Deng P, Zhang M, Bing J, Jia J, Zhang D (2019) Evaluation of the GSMaP_Gauge products using rain gauge observations and SWAT model in the upper Hanjiang river basin. Atmos Res 219:153–165CrossRef Deng P, Zhang M, Bing J, Jia J, Zhang D (2019) Evaluation of the GSMaP_Gauge products using rain gauge observations and SWAT model in the upper Hanjiang river basin. Atmos Res 219:153–165CrossRef
go back to reference Dumitrescu A, Brabec M, Matreata M (2020) Integrating ground-based observations and radar data into gridding sub-daily precipitation. Water Resour Manag 34:3479–3497CrossRef Dumitrescu A, Brabec M, Matreata M (2020) Integrating ground-based observations and radar data into gridding sub-daily precipitation. Water Resour Manag 34:3479–3497CrossRef
go back to reference Eltahir EAB, Bras RL (1996) Precipitation recycling. Rev Geophys 34:367–378CrossRef Eltahir EAB, Bras RL (1996) Precipitation recycling. Rev Geophys 34:367–378CrossRef
go back to reference Fabian PS, Kwon H-H, Vithanage M, Lee J-H (2023) Modeling, challenges, and strategies for understanding impacts of climate extremes (droughts and floods) on water quality in Asia: a review. Environ Res 225:115617CrossRef Fabian PS, Kwon H-H, Vithanage M, Lee J-H (2023) Modeling, challenges, and strategies for understanding impacts of climate extremes (droughts and floods) on water quality in Asia: a review. Environ Res 225:115617CrossRef
go back to reference Faramarzzadeh M, Ehsani MR, Akbari M, Rahimi R, Moghaddam M, Behrangi A, Klöve B, Haghighi AT, Oussalah M (2023) Application of machine learning and remote sensing for gap-filling daily precipitation data of a sparsely gauged basin in East Africa. Environmental Processes 10:8CrossRef Faramarzzadeh M, Ehsani MR, Akbari M, Rahimi R, Moghaddam M, Behrangi A, Klöve B, Haghighi AT, Oussalah M (2023) Application of machine learning and remote sensing for gap-filling daily precipitation data of a sparsely gauged basin in East Africa. Environmental Processes 10:8CrossRef
go back to reference Feng S, Qi Hu, Qian W (2004) Quality control of daily meteorological data in China, 1951–2000: a new dataset. Int J Climatol 24:853–870CrossRef Feng S, Qi Hu, Qian W (2004) Quality control of daily meteorological data in China, 1951–2000: a new dataset. Int J Climatol 24:853–870CrossRef
go back to reference Grimaldi, Salvatore, Elena Volpi, Andreas Langousis, Simon Michael Papalexiou, Davide Luciano De Luca, Rodolfo Piscopia, Sofia D. Nerantzaki, Georgia Papacharalampous, and Andrea Petroselli (2022) 'Continuous hydrologic modelling for small and ungauged basins: A comparison of eight rainfall models for sub-daily runoff simulations', Journal of Hydrology, 610 Grimaldi, Salvatore, Elena Volpi, Andreas Langousis, Simon Michael Papalexiou, Davide Luciano De Luca, Rodolfo Piscopia, Sofia D. Nerantzaki, Georgia Papacharalampous, and Andrea Petroselli (2022) 'Continuous hydrologic modelling for small and ungauged basins: A comparison of eight rainfall models for sub-daily runoff simulations', Journal of Hydrology, 610
go back to reference Gat JR, Airey PL (2006) Stable water isotopes in the atmosphere/biosphere/lithosphere interface: scaling-up from the local to continental scale, under humid and dry conditions. Global Planet Change 51:25–33CrossRef Gat JR, Airey PL (2006) Stable water isotopes in the atmosphere/biosphere/lithosphere interface: scaling-up from the local to continental scale, under humid and dry conditions. Global Planet Change 51:25–33CrossRef
go back to reference Gavahi, Keyhan, Ehsan Foroumandi, and Hamid Moradkhani (2023) A deep learning- based framework for multi-source precipitation fusion. Remote Sens Environ 295 Gavahi, Keyhan, Ehsan Foroumandi, and Hamid Moradkhani (2023) A deep learning- based framework for multi-source precipitation fusion. Remote Sens Environ 295
go back to reference Gichamo T, Nourani V, Gökçekuş H, Gelete G (2024) Ensemble rainfall–runoff modeling of physically based semi-distributed models using multi-source rainfall data fusion. J Water Clim Change 15:325–347CrossRef Gichamo T, Nourani V, Gökçekuş H, Gelete G (2024) Ensemble rainfall–runoff modeling of physically based semi-distributed models using multi-source rainfall data fusion. J Water Clim Change 15:325–347CrossRef
go back to reference Han S, Coulibaly P (2017) Bayesian flood forecasting methods: a review. J Hydrol 551:340–351CrossRef Han S, Coulibaly P (2017) Bayesian flood forecasting methods: a review. J Hydrol 551:340–351CrossRef
go back to reference Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD, Kojima M, Oki R, Nakamura K, Iguchi T (2014) The global precipitation measurement mission. Bull Am Meteor Soc 95:701–722CrossRef Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD, Kojima M, Oki R, Nakamura K, Iguchi T (2014) The global precipitation measurement mission. Bull Am Meteor Soc 95:701–722CrossRef
go back to reference Hu CH, Wu Q, Li H, Jian SQ, Li N, Lou ZZ (2018) Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water 10:16 CrossRef Hu CH, Wu Q, Li H, Jian SQ, Li N, Lou ZZ (2018) Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water 10:16 CrossRef
go back to reference Hu, Caihong, Xueli Zhang, Changqing Li, Chengshuai Liu, Jinxing Wang, and Shengqi Jian (2021) 'Real-time Flood Classification Forecasting Based on k-means plus plus Clustering and Neural Network. Water Resour Manag Hu, Caihong, Xueli Zhang, Changqing Li, Chengshuai Liu, Jinxing Wang, and Shengqi Jian (2021) 'Real-time Flood Classification Forecasting Based on k-means plus plus Clustering and Neural Network. Water Resour Manag
go back to reference Jia S, Zhu W, Lű A, Yan T (2011) A statistical spatial downscaling algorithm of TRMM precipitation based on NDVIand DEM in the Qaidam Basin of China. Remote Sens Environ 115:3069–3079CrossRef Jia S, Zhu W, Lű A, Yan T (2011) A statistical spatial downscaling algorithm of TRMM precipitation based on NDVIand DEM in the Qaidam Basin of China. Remote Sens Environ 115:3069–3079CrossRef
go back to reference Jiang S-h, Zhou M, Ren L-L, Cheng X-R, Zhang P-j (2016) Evaluation of latest TMPA and CMORPH satellite precipitation products over Yellow River Basin. Water Sci Eng 9:87–96CrossRef Jiang S-h, Zhou M, Ren L-L, Cheng X-R, Zhang P-j (2016) Evaluation of latest TMPA and CMORPH satellite precipitation products over Yellow River Basin. Water Sci Eng 9:87–96CrossRef
go back to reference Kasiviswanathan KS, Cibin R, Sudheer KP, Chaubey I (2013) Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations. J Hydrol 499:275–288 CrossRef Kasiviswanathan KS, Cibin R, Sudheer KP, Chaubey I (2013) Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations. J Hydrol 499:275–288 CrossRef
go back to reference Kuo C-C, Gan TY, Gizaw M (2015) Potential impact of climate change on intensity duration frequency curves of central Alberta. Clim Change 130:115–129CrossRef Kuo C-C, Gan TY, Gizaw M (2015) Potential impact of climate change on intensity duration frequency curves of central Alberta. Clim Change 130:115–129CrossRef
go back to reference Liu C, Xie T, Li W, Hu C, Xu Y, Niu C, Yu Q (2024) Machine learning-based flood forecasting models considering runoff process vectorization. Adv Water Sci 35(3):420–429 Liu C, Xie T, Li W, Hu C, Xu Y, Niu C, Yu Q (2024) Machine learning-based flood forecasting models considering runoff process vectorization. Adv Water Sci 35(3):420–429
go back to reference Luo Y, Zhou Y, Chen H, Xiong L, Guo S, Chang F-J (2024) Exploring a spatiotemporal hetero graph-based long short-term memory model for multi-step-ahead flood forecasting. J Hydrol 633:130937CrossRef Luo Y, Zhou Y, Chen H, Xiong L, Guo S, Chang F-J (2024) Exploring a spatiotemporal hetero graph-based long short-term memory model for multi-step-ahead flood forecasting. J Hydrol 633:130937CrossRef
go back to reference Marzano FS, Cimini D, Montopoli M (2010) Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data. Atmos Res 97:583–600CrossRef Marzano FS, Cimini D, Montopoli M (2010) Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data. Atmos Res 97:583–600CrossRef
go back to reference Michaelides S, Levizzani V, Anagnostou E, Bauer P, Kasparis T, Lane JE (2009) Precipitation: Measurement, remote sensing, climatology and modeling. Atmos Res 94:512–533CrossRef Michaelides S, Levizzani V, Anagnostou E, Bauer P, Kasparis T, Lane JE (2009) Precipitation: Measurement, remote sensing, climatology and modeling. Atmos Res 94:512–533CrossRef
go back to reference Mtibaa S, Asano S (2022) Hydrological evaluation of radar and satellite gauge-merged precipitation datasets using the SWAT model: case of the Terauchi catchment in Japan. J Hydrol Reg Stud. 42:101134CrossRef Mtibaa S, Asano S (2022) Hydrological evaluation of radar and satellite gauge-merged precipitation datasets using the SWAT model: case of the Terauchi catchment in Japan. J Hydrol Reg Stud. 42:101134CrossRef
go back to reference Nourani V, Behfar N (2021) Multi-station runoff-sediment modeling using seasonal LSTM models. J Hydrol 601:126672CrossRef Nourani V, Behfar N (2021) Multi-station runoff-sediment modeling using seasonal LSTM models. J Hydrol 601:126672CrossRef
go back to reference Rosenberg EricA, Keys PW, Booth DB, Hartley D, Burkey J, Steinemann AC, Lettenmaier DP (2010) Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington State. Clim Change 102:319–349 CrossRef Rosenberg EricA, Keys PW, Booth DB, Hartley D, Burkey J, Steinemann AC, Lettenmaier DP (2010) Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington State. Clim Change 102:319–349 CrossRef
go back to reference Salmani-Dehaghi N, Samani N (2021) Development of bias-correction PERSIANN-CDR models for the simulation and completion of precipitation time series. Atmos Environ 246:117981CrossRef Salmani-Dehaghi N, Samani N (2021) Development of bias-correction PERSIANN-CDR models for the simulation and completion of precipitation time series. Atmos Environ 246:117981CrossRef
go back to reference Siddiqui R, Javid K, Ahamad MI (2023) ’Identification of suitable sites for rainwater and storm water harvesting through spatial analysis and smart sustainable urban water infrastructure in Lahore. Pakistan’, Water Scie Technol 88:3119–3128CrossRef Siddiqui R, Javid K, Ahamad MI (2023) ’Identification of suitable sites for rainwater and storm water harvesting through spatial analysis and smart sustainable urban water infrastructure in Lahore. Pakistan’, Water Scie Technol 88:3119–3128CrossRef
go back to reference Sharifi E, Steinacker R, Saghafian B (2016) Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens 8(2):135CrossRef Sharifi E, Steinacker R, Saghafian B (2016) Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens 8(2):135CrossRef
go back to reference Sulasikin AY, Nugraha JI, Kanggrawan and AL Suherman (2021) 'Monthly Rainfall Prediction Using the Facebook Prophet Model for Flood Mitigation in Central Jakarta', 2021 International Conference on ICT for Smart Society (ICISS): 5 pp.-5 pp Sulasikin AY, Nugraha JI, Kanggrawan and AL Suherman (2021) 'Monthly Rainfall Prediction Using the Facebook Prophet Model for Flood Mitigation in Central Jakarta', 2021 International Conference on ICT for Smart Society (ICISS): 5 pp.-5 pp
go back to reference Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu K-L (2018) ’A Review of Global Precipitation Data Sets: Data Sources. Estimation, and Intercomparisons’, Reviews of Geophysics 56:79–107 CrossRef Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu K-L (2018) ’A Review of Global Precipitation Data Sets: Data Sources. Estimation, and Intercomparisons’, Reviews of Geophysics 56:79–107 CrossRef
go back to reference Tang Y, Wu Q, Soomro SEH, Li X, Sun Y, Hu C (2023) Comparison of different ensemble precipitation forecast system evaluation, integration and hydrological applications. Acta Geophys 71(1):405–421CrossRef Tang Y, Wu Q, Soomro SEH, Li X, Sun Y, Hu C (2023) Comparison of different ensemble precipitation forecast system evaluation, integration and hydrological applications. Acta Geophys 71(1):405–421CrossRef
go back to reference Tang Y, Sun Y, Han Z, Soomro S-e-H, Qiang Wu, Tan B, Caihong Hu (2023) flood forecasting based on machine learning pattern recognition and dynamic migration of parameters. J Hydrol Region Stud 47:101406CrossRef Tang Y, Sun Y, Han Z, Soomro S-e-H, Qiang Wu, Tan B, Caihong Hu (2023) flood forecasting based on machine learning pattern recognition and dynamic migration of parameters. J Hydrol Region Stud 47:101406CrossRef
go back to reference Wegayehu EB, Muluneh FB (2023) Super ensemble based streamflow simulation using multi-source remote sensing and ground gauged rainfall data fusion. Heliyon 9(7) Wegayehu EB, Muluneh FB (2023) Super ensemble based streamflow simulation using multi-source remote sensing and ground gauged rainfall data fusion. Heliyon 9(7)
go back to reference Wu H, Shi P, Qu S, Yang X, Zhang H, Wang L, Ding S, Li Z, Lu M, Qiu C (2024) A hydrologic similarity- based parameters dynamic matching framework: application to enhance the real-time flood forecasting. Sci Total Environ 907:167767CrossRef Wu H, Shi P, Qu S, Yang X, Zhang H, Wang L, Ding S, Li Z, Lu M, Qiu C (2024) A hydrologic similarity- based parameters dynamic matching framework: application to enhance the real-time flood forecasting. Sci Total Environ 907:167767CrossRef
go back to reference Wu ZI, Ma BY, Wang HL, Hu CH, Lv H, Zhang XY (2021) Identification of Sensitive Parameters of Urban Flood Model Based on Artificial Neural Network. Water Resour Manage 35:2115–2128CrossRef Wu ZI, Ma BY, Wang HL, Hu CH, Lv H, Zhang XY (2021) Identification of Sensitive Parameters of Urban Flood Model Based on Artificial Neural Network. Water Resour Manage 35:2115–2128CrossRef
go back to reference Xiong L, Liu C, Chen S, Zha X, Ma Q (2021) Review of post-processing research for remote-sensing precipitation products. Adv Water Sci 32(4):627–637 Xiong L, Liu C, Chen S, Zha X, Ma Q (2021) Review of post-processing research for remote-sensing precipitation products. Adv Water Sci 32(4):627–637
go back to reference Xu Yuanhao, Caihong Hu, Qiang Wu, Li Zhichao, Jian Shengqi, Chen Youqian (2021) ’Application of temporal convolutional network for flood forecasting. Hydrol Res 52(6):1455–1468 Xu Yuanhao, Caihong Hu, Qiang Wu, Li Zhichao, Jian Shengqi, Chen Youqian (2021) ’Application of temporal convolutional network for flood forecasting. Hydrol Res 52(6):1455–1468
go back to reference Xu R, Qiu D, Gao P, Changxue Wu, Xingmin Mu, Ismail M (2024) Prediction of streamflow based on the long-term response of streamflow to climatic factors in the source region of the Yellow River. J Hydrol Reg Stud 52:101681CrossRef Xu R, Qiu D, Gao P, Changxue Wu, Xingmin Mu, Ismail M (2024) Prediction of streamflow based on the long-term response of streamflow to climatic factors in the source region of the Yellow River. J Hydrol Reg Stud 52:101681CrossRef
go back to reference Yang Z, Hsu K, Sorooshian S, Xinyi Xu, Braithwaite D, Zhang Y, Verbist KMJ (2017) Merging high-resolution satellite- based precipitation fields and point- scale rain gauge measurements—A case study in Chile. J Geophys Res Atmosph 122:5267–5284CrossRef Yang Z, Hsu K, Sorooshian S, Xinyi Xu, Braithwaite D, Zhang Y, Verbist KMJ (2017) Merging high-resolution satellite- based precipitation fields and point- scale rain gauge measurements—A case study in Chile. J Geophys Res Atmosph 122:5267–5284CrossRef
go back to reference Zhang SZ, Yang NH, Wang XK (2002) Construction and application of Bayesian networks in flood decision supporting system. In Proceedings. International Conference on Machine Learning and Cybernetics, vol 2. IEEE, pp 718–722CrossRef Zhang SZ, Yang NH, Wang XK (2002) Construction and application of Bayesian networks in flood decision supporting system. In Proceedings. International Conference on Machine Learning and Cybernetics, vol 2. IEEE, pp 718–722CrossRef
go back to reference Zhan C, Chen Y, Yang K, Lazhu Zhou X, Jiang Y, Ling X, Tian J, Wang Y, Li X, Yang H (2023) First evaluation of GPM-Era satellite precipitation products with new observations on the western Tibetan Plateau. Atmos Res 283:106559CrossRef Zhan C, Chen Y, Yang K, Lazhu Zhou X, Jiang Y, Ling X, Tian J, Wang Y, Li X, Yang H (2023) First evaluation of GPM-Era satellite precipitation products with new observations on the western Tibetan Plateau. Atmos Res 283:106559CrossRef
go back to reference Zhang Wen, Liu Gengyuan, Chiaka Jeffrey Chiwuikem, Yang Zhifeng (2023) Flood risk cascade analysis and vulnerability assessment of watershed based on Bayesian network. J Hydrol 626:130144CrossRef Zhang Wen, Liu Gengyuan, Chiaka Jeffrey Chiwuikem, Yang Zhifeng (2023) Flood risk cascade analysis and vulnerability assessment of watershed based on Bayesian network. J Hydrol 626:130144CrossRef
go back to reference Zhang X, Song S, Guo T (2024) Nonlinear Segmental Runoff Ensemble Prediction Model Using BMA. Water Resour Manage 38:3429–3446CrossRef Zhang X, Song S, Guo T (2024) Nonlinear Segmental Runoff Ensemble Prediction Model Using BMA. Water Resour Manage 38:3429–3446CrossRef
go back to reference Zhao C, Liu C, Li W, Tang Y, Yang F, Xu Y, Luo Q, Hu C (2023) Simulation of urban flood process based on a hybrid LSTM-SWMM model. Water Resour Manag 37(13):5171–5187CrossRef Zhao C, Liu C, Li W, Tang Y, Yang F, Xu Y, Luo Q, Hu C (2023) Simulation of urban flood process based on a hybrid LSTM-SWMM model. Water Resour Manag 37(13):5171–5187CrossRef
go back to reference Zhao Y, Luo S, Cai J, Li Z, Zhang M (2024) Monthly Precipitation Prediction Based on the CEEMDAN-BMA Model. Water Resour Manag 1–21 Zhao Y, Luo S, Cai J, Li Z, Zhang M (2024) Monthly Precipitation Prediction Based on the CEEMDAN-BMA Model. Water Resour Manag 1–21
Metadata
Title
Study on Runoff Simulation with Multi-source Precipitation Information Fusion Based on Multi-model Ensemble
Authors
Runxi Li
Chengshuai Liu
Yehai Tang
Chaojie Niu
Yang Fan
Qingyuan Luo
Caihong Hu
Publication date
25-09-2024
Publisher
Springer Netherlands
Published in
Water Resources Management
Print ISSN: 0920-4741
Electronic ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-024-03949-y