Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 3/2022

01-03-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Studying the Effect of Strong Magnetic Fields on the Phase Transitions of the Frustrated Potts Model with a Number of Spin States q = 4

Authors: M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, M. K. Mazagaeva, A. A. Murtazaeva

Published in: Physics of Metals and Metallography | Issue 3/2022

Login to get access
share
SHARE

Abstract

The phase transitions and thermodynamic properties of the two-dimensional Potts model with a number of spin states q = 4 are studied on the basis of a replica algorithm by the Monte Carlo method on a hexagonal lattice with consideration for the interaction between the first and second nearest neighbors in an external magnetic field. The studies are performed for magnetic field values within a range 0.0 ≤ h ≤ 7.0 with a step of 1.0. The magnetic structures of the ground states are constructed. It is revealed that a first-order phase transition occurs within the considered range of magnetic field values. It is demonstrated that magnetic field within a range 4.0 ≤ h ≤ 7.0 lifts the ground state degeneracy, and the phase transition becomes smeared.
Literature
1.
go back to reference H. T. Diep, Frustrated Spin Systems (World Scientific, Singapore, 2004), p. 624. H. T. Diep, Frustrated Spin Systems (World Scientific, Singapore, 2004), p. 624.
2.
go back to reference R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, New York, 1982; Mir, Moscow, 1985). R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, New York, 1982; Mir, Moscow, 1985).
3.
go back to reference F. Y. Wu, Exactly Solved Models. A Journey in Statistical Mechanics (World Scientific, New Jersey, 2008). F. Y. Wu, Exactly Solved Models. A Journey in Statistical Mechanics (World Scientific, New Jersey, 2008).
5.
go back to reference W. Zhang and Y. Deng, “Monte Carlo study of the triangular lattice gas with first- and second-neighbor exclusions,” Phys. Rev. E 78, 031103 (2008). CrossRef W. Zhang and Y. Deng, “Monte Carlo study of the triangular lattice gas with first- and second-neighbor exclusions,” Phys. Rev. E 78, 031103 (2008). CrossRef
6.
go back to reference R. Masrour and A. Jabar, “Magnetic properties of mixed spin-5/2 and spin-2 Ising model on a decorated square lattice: a Monte Carlo simulation,” Phys. A 515, 270–278 (2019). CrossRef R. Masrour and A. Jabar, “Magnetic properties of mixed spin-5/2 and spin-2 Ising model on a decorated square lattice: a Monte Carlo simulation,” Phys. A 515, 270–278 (2019). CrossRef
7.
go back to reference R. Masrour and A. Jabar, “Magnetic properties in stacked triangular lattice: Monte Carlo approach,” Phys. A 491, 926–934 (2018). CrossRef R. Masrour and A. Jabar, “Magnetic properties in stacked triangular lattice: Monte Carlo approach,” Phys. A 491, 926–934 (2018). CrossRef
8.
go back to reference S. E. Korshunov, “Phase transitions in two-dimensional systems with continuous degeneracy,” Phys. Usp. 49, 225–262 (2006). CrossRef S. E. Korshunov, “Phase transitions in two-dimensional systems with continuous degeneracy,” Phys. Usp. 49, 225–262 (2006). CrossRef
9.
go back to reference A. Malakis, P. Kalozoumis, and N. Tyraskis, “Monte Carlo studies of the square Ising model with next-nearest-neighbor interactions,” Eur. Phys. J. B 50, 63–67 (2006). CrossRef A. Malakis, P. Kalozoumis, and N. Tyraskis, “Monte Carlo studies of the square Ising model with next-nearest-neighbor interactions,” Eur. Phys. J. B 50, 63–67 (2006). CrossRef
10.
go back to reference S. S. Sosin, L. A. Prozorova, and A. I. Smirnov, “New magnetic states in crystals,” Phys. Usp. 48, 83–90 (2005). CrossRef S. S. Sosin, L. A. Prozorova, and A. I. Smirnov, “New magnetic states in crystals,” Phys. Usp. 48, 83–90 (2005). CrossRef
11.
go back to reference M. Kazuaki and O. Yukiyasu, “Dynamical scaling analysis of symmetry breaking for the antiferromagnetic triangular Heisenberg model in a uniform magnetic field,” Phys. Rev. B 101, 184427(7) (2020). M. Kazuaki and O. Yukiyasu, “Dynamical scaling analysis of symmetry breaking for the antiferromagnetic triangular Heisenberg model in a uniform magnetic field,” Phys. Rev. B 101, 184427(7) (2020).
12.
go back to reference A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, and K. Sh. Murtazaev, “Phase diagrams and ground-state structures of the antiferromagnetic materials on a body-centered cubic lattice,” Mater. Lett. 236, 669–671 (2019). CrossRef A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, and K. Sh. Murtazaev, “Phase diagrams and ground-state structures of the antiferromagnetic materials on a body-centered cubic lattice,” Mater. Lett. 236, 669–671 (2019). CrossRef
13.
go back to reference M. K. Ramazanov and A. K. Murtazaev, “Phase diagram of the antiferromagnetic Heisenberg model on a cubic lattice,” JETP Lett. 109, 589–593 (2019). CrossRef M. K. Ramazanov and A. K. Murtazaev, “Phase diagram of the antiferromagnetic Heisenberg model on a cubic lattice,” JETP Lett. 109, 589–593 (2019). CrossRef
14.
go back to reference A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Phase transitions in the Ising model on a triangular lattice with different values of interlayer exchange interaction,” Low Temp. Phys. 45, 1263–1266 (2019). CrossRef A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Phase transitions in the Ising model on a triangular lattice with different values of interlayer exchange interaction,” Low Temp. Phys. 45, 1263–1266 (2019). CrossRef
15.
go back to reference M. K. Badiev, A. K. Murtazaev, M. K. Ramazanov, and M. A. Magomedov, “Critical properties of the Ising model in a magnetic field,” Low Temp. Phys. 46, 693 (2020). CrossRef M. K. Badiev, A. K. Murtazaev, M. K. Ramazanov, and M. A. Magomedov, “Critical properties of the Ising model in a magnetic field,” Low Temp. Phys. 46, 693 (2020). CrossRef
16.
go back to reference A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase transitions and critical properties of the Heisenberg antiferromagnetic model on a body-centered cubic lattice with second nearest neighbor interaction,” J. Exp. Theor. Phys. 129, 903–910 (2019). CrossRef A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase transitions and critical properties of the Heisenberg antiferromagnetic model on a body-centered cubic lattice with second nearest neighbor interaction,” J. Exp. Theor. Phys. 129, 903–910 (2019). CrossRef
17.
go back to reference M. Nauenberg and D. J. Scalapino, “Singularities and scaling functions at the Potts-model multicritical point,” Phys. Rev. Lett. 44, 837–840 (1980). CrossRef M. Nauenberg and D. J. Scalapino, “Singularities and scaling functions at the Potts-model multicritical point,” Phys. Rev. Lett. 44, 837–840 (1980). CrossRef
18.
go back to reference J. L. Cardy, M. Nauenberg, and D. J. Scalapino, “Scaling theory of the Potts-model multicritical point,” Phys. Rev. B 22, 2560–2568 (1980). CrossRef J. L. Cardy, M. Nauenberg, and D. J. Scalapino, “Scaling theory of the Potts-model multicritical point,” Phys. Rev. B 22, 2560–2568 (1980). CrossRef
19.
go back to reference M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, “Phase diagrams and ground-state structures of the Potts model on a triangular lattice,” Phys. A 521, 543–550 (2019). CrossRef M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, “Phase diagrams and ground-state structures of the Potts model on a triangular lattice,” Phys. A 521, 543–550 (2019). CrossRef
20.
go back to reference H. Feldmann, A. J. Guttmann, I. Jensen, R. Shrock, and S.-H. Tsai, “Study of the Potts model on the honeycomb and triangular lattices: Low-temperature series and partition function zeros,” J. Phys. A 31, 2287–2310 (1998). CrossRef H. Feldmann, A. J. Guttmann, I. Jensen, R. Shrock, and S.-H. Tsai, “Study of the Potts model on the honeycomb and triangular lattices: Low-temperature series and partition function zeros,” J. Phys. A 31, 2287–2310 (1998). CrossRef
21.
go back to reference F. A. Kassan-Ogly and A. I. Proshkin, “Frustrations and ordering in magnetic systems of various dimensions,” Phys. Solid State 60, 1090–1097 (2018). CrossRef F. A. Kassan-Ogly and A. I. Proshkin, “Frustrations and ordering in magnetic systems of various dimensions,” Phys. Solid State 60, 1090–1097 (2018). CrossRef
22.
go back to reference A. K. Murtazaev, M. K. Ramazanov, M. K. Mazagaeva, and M. A. Magomedov, “Phase transitions and thermodynamic properties of the Potts model with spin states number q = 4 on a hexagonal lattice,” J. Exp. Theor. Phys. 129, 421–425 (2019). CrossRef A. K. Murtazaev, M. K. Ramazanov, M. K. Mazagaeva, and M. A. Magomedov, “Phase transitions and thermodynamic properties of the Potts model with spin states number q = 4 on a hexagonal lattice,” J. Exp. Theor. Phys. 129, 421–425 (2019). CrossRef
23.
go back to reference A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase transitions and the thermodynamic properties of the Potts model with the number of spin states q = 4 on a triangular lattice,” Phys. Solid State 61, 2172–2176 (2019). CrossRef A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase transitions and the thermodynamic properties of the Potts model with the number of spin states q = 4 on a triangular lattice,” Phys. Solid State 61, 2172–2176 (2019). CrossRef
24.
go back to reference M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, and M. K. Mazagaeva, “Phase transformations and thermodynamic properties of the potts model with q = 4 on a hexagonal lattice with interactions of next-nearest neighbors,” Phys. Solid State 62, 499–503 (2020). CrossRef M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, and M. K. Mazagaeva, “Phase transformations and thermodynamic properties of the potts model with q = 4 on a hexagonal lattice with interactions of next-nearest neighbors,” Phys. Solid State 62, 499–503 (2020). CrossRef
25.
go back to reference M. G. Townsend, G. Longworth, and E. Roudaut, “Triangular-spin, kagome plane in jarosites,” Phys. Rev. B 33, 4919–4926 (1986). CrossRef M. G. Townsend, G. Longworth, and E. Roudaut, “Triangular-spin, kagome plane in jarosites,” Phys. Rev. B 33, 4919–4926 (1986). CrossRef
26.
go back to reference Y. Chiaki and O. Yutaka, “Three-dimensional antiferromagnetic q-state Potts models: application of the Wang–Landau algorithm,” J. Phys. A: Math. Gen. 34, 8781–8794 (2001). CrossRef Y. Chiaki and O. Yutaka, “Three-dimensional antiferromagnetic q-state Potts models: application of the Wang–Landau algorithm,” J. Phys. A: Math. Gen. 34, 8781–8794 (2001). CrossRef
27.
go back to reference A. K. Murtazaev, F. A. Kassan-Ogly, M. K. Ramazanov, and K. Sh. Murtazaev, “Study of phase transitions in the antiferromagnetic Heisenberg model on a body-centered cubic lattice by Monte Carlo simulation,” Phys. Met. Metallogr. 121, 346–351 (2020). CrossRef A. K. Murtazaev, F. A. Kassan-Ogly, M. K. Ramazanov, and K. Sh. Murtazaev, “Study of phase transitions in the antiferromagnetic Heisenberg model on a body-centered cubic lattice by Monte Carlo simulation,” Phys. Met. Metallogr. 121, 346–351 (2020). CrossRef
28.
go back to reference A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramaza-nov, “Phase diagram of the antiferromagnetic Heisenberg model on a bcc lattice with competing first and second neighbor interactions,” Phys. A 545, 123548(6) (2020). A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramaza-nov, “Phase diagram of the antiferromagnetic Heisenberg model on a bcc lattice with competing first and second neighbor interactions,” Phys. A 545, 123548(6) (2020).
29.
go back to reference A. K. Murtazaev, F. A. Kassan-Ogly, M. L. Ramazanov, and K. Sh. Murtazaev, “Phase diagram of the antiferromagnetic Potts model with number q = 4 of spin states in the hexagonal lattice,” Phys. Met. Metallogr. 122, 428–433 (2021). CrossRef A. K. Murtazaev, F. A. Kassan-Ogly, M. L. Ramazanov, and K. Sh. Murtazaev, “Phase diagram of the antiferromagnetic Potts model with number q = 4 of spin states in the hexagonal lattice,” Phys. Met. Metallogr. 122, 428–433 (2021). CrossRef
30.
go back to reference A. Mitsutake, Y. Sugita, and Y. Okamoto, “Generalized-ensemble algorithms for molecular simulations of biopolymers,” Biopolymers (Pept. Sci.) 60, 96–123 (2001). A. Mitsutake, Y. Sugita, and Y. Okamoto, “Generalized-ensemble algorithms for molecular simulations of biopolymers,” Biopolymers (Pept. Sci.) 60, 96–123 (2001).
31.
go back to reference F. Wang and D. P. Landau, “Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram,” Phys. Rev. E 64, 056101–1–056101–16 (2001). F. Wang and D. P. Landau, “Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram,” Phys. Rev. E 64, 056101–1–056101–16 (2001).
32.
go back to reference F. Wang and D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states,” Phys. Rev. Lett. 86, 2050–2053 (2001). CrossRef F. Wang and D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states,” Phys. Rev. Lett. 86, 2050–2053 (2001). CrossRef
33.
go back to reference F. A. Kassan-Ogly, B. N. Filippov, A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Influence of field on frustrations in low-dimensional magnets,” J. Magn. Magn. Mater. 24, 3418–3421 (2012). CrossRef F. A. Kassan-Ogly, B. N. Filippov, A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Influence of field on frustrations in low-dimensional magnets,” J. Magn. Magn. Mater. 24, 3418–3421 (2012). CrossRef
34.
go back to reference F. A. Kassan-Ogly, A. K. Murtazaev, A. K. Zhuravlev, M. K. Ramazanov, and A. I. Proshkin, “Ising model on a square lattice with second-neighbor and third- neighbor interactions,” J. Magn. Magn. Mater. 384, 247–254 (2015). CrossRef F. A. Kassan-Ogly, A. K. Murtazaev, A. K. Zhuravlev, M. K. Ramazanov, and A. I. Proshkin, “Ising model on a square lattice with second-neighbor and third- neighbor interactions,” J. Magn. Magn. Mater. 384, 247–254 (2015). CrossRef
35.
go back to reference A. I. Proshkin and F. A. Kassan-Ogly, “Frustration and phase transitions in Ising model on decorated square lattice,” Phys. Met. Metallogr. 120, 1366–1372 (2019). CrossRef A. I. Proshkin and F. A. Kassan-Ogly, “Frustration and phase transitions in Ising model on decorated square lattice,” Phys. Met. Metallogr. 120, 1366–1372 (2019). CrossRef
36.
go back to reference F. A. Kassan-Ogly and A. I. Proshkin, “Ising model on planar decorated lattices. Frustrations and their influence on phase transitions,” Phys. Met. Metallogr. 120, 1359–1365 (2019). CrossRef F. A. Kassan-Ogly and A. I. Proshkin, “Ising model on planar decorated lattices. Frustrations and their influence on phase transitions,” Phys. Met. Metallogr. 120, 1359–1365 (2019). CrossRef
Metadata
Title
Studying the Effect of Strong Magnetic Fields on the Phase Transitions of the Frustrated Potts Model with a Number of Spin States q = 4
Authors
M. K. Ramazanov
A. K. Murtazaev
M. A. Magomedov
M. K. Mazagaeva
A. A. Murtazaeva
Publication date
01-03-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 3/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22030085