Skip to main content
Top
Published in:

19-01-2023

Subexponential-Time Algorithms for Sparse PCA

Authors: Yunzi Ding, Dmitriy Kunisky, Alexander S. Wein, Afonso S. Bandeira

Published in: Foundations of Computational Mathematics | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study the computational cost of recovering a unit-norm sparse principal component \(x \in \mathbb {R}^n\) planted in a random matrix, in either the Wigner or Wishart spiked model (observing either \(W + \lambda xx^\top \) with W drawn from the Gaussian orthogonal ensemble, or N independent samples from \(\mathcal {N}(0, I_n + \beta xx^\top )\), respectively). Prior work has shown that when the signal-to-noise ratio (\(\lambda \) or \(\beta \sqrt{N/n}\), respectively) is a small constant and the fraction of nonzero entries in the planted vector is \(\Vert x\Vert _0 / n = \rho \), it is possible to recover x in polynomial time if \(\rho \lesssim 1/\sqrt{n}\). While it is possible to recover x in exponential time under the weaker condition \(\rho \ll 1\), it is believed that polynomial-time recovery is impossible unless \(\rho \lesssim 1/\sqrt{n}\). We investigate the precise amount of time required for recovery in the “possible but hard” regime \(1/\sqrt{n} \ll \rho \ll 1\) by exploring the power of subexponential-time algorithms, i.e., algorithms running in time \(\exp (n^\delta )\) for some constant \(\delta \in (0,1)\). For any \(1/\sqrt{n} \ll \rho \ll 1\), we give a recovery algorithm with runtime roughly \(\exp (\rho ^2 n)\), demonstrating a smooth tradeoff between sparsity and runtime. Our family of algorithms interpolates smoothly between two existing algorithms: the polynomial-time diagonal thresholding algorithm and the \(\exp (\rho n)\)-time exhaustive search algorithm. Furthermore, by analyzing the low-degree likelihood ratio, we give rigorous evidence suggesting that the tradeoff achieved by our algorithms is optimal.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
We will also consider stronger notions of recovery: strong recovery is \(\langle {{\hat{x}}}, x \rangle ^2 \rightarrow 1\) as \(n \rightarrow \infty \) and exact recovery is \({{\hat{x}}} = x\) with probability \(1-o(1)\).
 
2
We analyze our algorithms for a more general set of assumptions on x; see Definition 2.1.
 
3
We use \(A \lesssim B\) to denote \(A \le CB\) for some constant C, and use \(A \ll B\) to denote \(A \le B/\textrm{polylog}(n)\).
 
Literature
1.
go back to reference E. Abbe. Community detection and stochastic block models: recent developments. The Journal of Machine Learning Research, 18(1):6446–6531, 2017.MathSciNet E. Abbe. Community detection and stochastic block models: recent developments. The Journal of Machine Learning Research, 18(1):6446–6531, 2017.MathSciNet
2.
go back to reference A. A. Amini and M. J. Wainwright. High-dimensional analysis of semidefinite relaxations for sparse principal components. In International Symposium on Information Theory, pages 2454–2458. IEEE, 2008. A. A. Amini and M. J. Wainwright. High-dimensional analysis of semidefinite relaxations for sparse principal components. In International Symposium on Information Theory, pages 2454–2458. IEEE, 2008.
3.
go back to reference J. Baik, G. Ben Arous, and S. Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. The Annals of Probability, 33(5):1643–1697, 2005. J. Baik, G. Ben Arous, and S. Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. The Annals of Probability, 33(5):1643–1697, 2005.
4.
go back to reference J. Baik and J. W. Silverstein. Eigenvalues of large sample covariance matrices of spiked population models. Journal of multivariate analysis, 97(6):1382–1408, 2006.MathSciNetCrossRef J. Baik and J. W. Silverstein. Eigenvalues of large sample covariance matrices of spiked population models. Journal of multivariate analysis, 97(6):1382–1408, 2006.MathSciNetCrossRef
5.
go back to reference A. S. Bandeira, D. Kunisky, and A. S. Wein. Computational hardness of certifying bounds on constrained PCA problems. In 11th Innovations in Theoretical Computer Science Conference (ITCS), volume 151, page 78. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. A. S. Bandeira, D. Kunisky, and A. S. Wein. Computational hardness of certifying bounds on constrained PCA problems. In 11th Innovations in Theoretical Computer Science Conference (ITCS), volume 151, page 78. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.
6.
go back to reference J. Banks, C. Moore, J. Neeman, and P. Netrapalli. Information-theoretic thresholds for community detection in sparse networks. In Conference on Learning Theory, pages 383–416, 2016. J. Banks, C. Moore, J. Neeman, and P. Netrapalli. Information-theoretic thresholds for community detection in sparse networks. In Conference on Learning Theory, pages 383–416, 2016.
7.
go back to reference J. Banks, C. Moore, R. Vershynin, N. Verzelen, and J. Xu. Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization. IEEE Transactions on Information Theory, 64(7):4872–4894, 2018.MathSciNetCrossRef J. Banks, C. Moore, R. Vershynin, N. Verzelen, and J. Xu. Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization. IEEE Transactions on Information Theory, 64(7):4872–4894, 2018.MathSciNetCrossRef
8.
go back to reference B. Barak, S. Hopkins, J. Kelner, P. K. Kothari, A. Moitra, and A. Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. SIAM Journal on Computing, 48(2):687–735, 2019.MathSciNetCrossRef B. Barak, S. Hopkins, J. Kelner, P. K. Kothari, A. Moitra, and A. Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. SIAM Journal on Computing, 48(2):687–735, 2019.MathSciNetCrossRef
9.
go back to reference F. Benaych-Georges and R. R. Nadakuditi. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Advances in Mathematics, 227(1):494–521, 2011.MathSciNetCrossRef F. Benaych-Georges and R. R. Nadakuditi. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Advances in Mathematics, 227(1):494–521, 2011.MathSciNetCrossRef
10.
go back to reference Q. Berthet and P. Rigollet. Complexity theoretic lower bounds for sparse principal component detection. In Conference on learning theory, pages 1046–1066. PMLR, 2013. Q. Berthet and P. Rigollet. Complexity theoretic lower bounds for sparse principal component detection. In Conference on learning theory, pages 1046–1066. PMLR, 2013.
11.
go back to reference Q. Berthet and P. Rigollet. Optimal detection of sparse principal components in high dimension. The Annals of Statistics, 41(4):1780–1815, 2013.MathSciNetCrossRef Q. Berthet and P. Rigollet. Optimal detection of sparse principal components in high dimension. The Annals of Statistics, 41(4):1780–1815, 2013.MathSciNetCrossRef
12.
go back to reference V. Bhattiprolu, V. Guruswami, and E. Lee. Sum-of-squares certificates for maxima of random tensors on the sphere. arXiv:1605.00903, 2016. V. Bhattiprolu, V. Guruswami, and E. Lee. Sum-of-squares certificates for maxima of random tensors on the sphere. arXiv:​1605.​00903, 2016.
13.
go back to reference V. V. Bhattiprolu, M. Ghosh, V. Guruswami, E. Lee, and M. Tulsiani. Multiplicative approximations for polynomial optimization over the unit sphere. In Electronic Colloquium on Computational Complexity (ECCC), volume 23, page 1, 2016. V. V. Bhattiprolu, M. Ghosh, V. Guruswami, E. Lee, and M. Tulsiani. Multiplicative approximations for polynomial optimization over the unit sphere. In Electronic Colloquium on Computational Complexity (ECCC), volume 23, page 1, 2016.
14.
go back to reference M. Brennan and G. Bresler. Optimal average-case reductions to sparse PCA: From weak assumptions to strong hardness. In Conference on Learning Theory, pages 469–470. PMLR, 2019. M. Brennan and G. Bresler. Optimal average-case reductions to sparse PCA: From weak assumptions to strong hardness. In Conference on Learning Theory, pages 469–470. PMLR, 2019.
15.
go back to reference M. Brennan and G. Bresler. Reducibility and statistical-computational gaps from secret leakage. In Conference on Learning Theory, pages 648–847. PMLR, 2020. M. Brennan and G. Bresler. Reducibility and statistical-computational gaps from secret leakage. In Conference on Learning Theory, pages 648–847. PMLR, 2020.
16.
go back to reference M. Brennan, G. Bresler, and W. Huleihel. Reducibility and computational lower bounds for problems with planted sparse structure. In Conference On Learning Theory, pages 48–166. PMLR, 2018. M. Brennan, G. Bresler, and W. Huleihel. Reducibility and computational lower bounds for problems with planted sparse structure. In Conference On Learning Theory, pages 48–166. PMLR, 2018.
17.
go back to reference G. Bresler, S. M. Park, and M. Persu. Sparse PCA from sparse linear regression. In Advances in Neural Information Processing Systems, pages 10942–10952, 2018. G. Bresler, S. M. Park, and M. Persu. Sparse PCA from sparse linear regression. In Advances in Neural Information Processing Systems, pages 10942–10952, 2018.
18.
go back to reference T. T. Cai, Z. Ma, and Y. Wu. Sparse PCA: Optimal rates and adaptive estimation. The Annals of Statistics, 41(6):3074–3110, 2013.MathSciNetCrossRef T. T. Cai, Z. Ma, and Y. Wu. Sparse PCA: Optimal rates and adaptive estimation. The Annals of Statistics, 41(6):3074–3110, 2013.MathSciNetCrossRef
19.
go back to reference M. Capitaine, C. Donati-Martin, and D. Féral. The largest eigenvalues of finite rank deformation of large wigner matrices: convergence and nonuniversality of the fluctuations. The Annals of Probability, 37(1):1–47, 2009.MathSciNetCrossRef M. Capitaine, C. Donati-Martin, and D. Féral. The largest eigenvalues of finite rank deformation of large wigner matrices: convergence and nonuniversality of the fluctuations. The Annals of Probability, 37(1):1–47, 2009.MathSciNetCrossRef
20.
go back to reference A. d’Aspremont, L. E. Ghaoui, M. I. Jordan, and G. R. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. In Advances in neural information processing systems, pages 41–48, 2005. A. d’Aspremont, L. E. Ghaoui, M. I. Jordan, and G. R. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. In Advances in neural information processing systems, pages 41–48, 2005.
21.
go back to reference A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Physical Review E, 84(6):066106, 2011.CrossRef A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Physical Review E, 84(6):066106, 2011.CrossRef
22.
go back to reference A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Inference and phase transitions in the detection of modules in sparse networks. Physical Review Letters, 107(6):065701, 2011.CrossRef A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Inference and phase transitions in the detection of modules in sparse networks. Physical Review Letters, 107(6):065701, 2011.CrossRef
23.
go back to reference Y. Deshpande, E. Abbe, and A. Montanari. Asymptotic mutual information for the binary stochastic block model. In 2016 IEEE International Symposium on Information Theory (ISIT), pages 185–189. IEEE, 2016. Y. Deshpande, E. Abbe, and A. Montanari. Asymptotic mutual information for the binary stochastic block model. In 2016 IEEE International Symposium on Information Theory (ISIT), pages 185–189. IEEE, 2016.
24.
go back to reference Y. Deshpande and A. Montanari. Information-theoretically optimal sparse PCA. In 2014 IEEE International Symposium on Information Theory, pages 2197–2201. IEEE, 2014. Y. Deshpande and A. Montanari. Information-theoretically optimal sparse PCA. In 2014 IEEE International Symposium on Information Theory, pages 2197–2201. IEEE, 2014.
25.
go back to reference Y. Deshpande and A. Montanari. Sparse PCA via covariance thresholding. In Advances in Neural Information Processing Systems, pages 334–342, 2014. Y. Deshpande and A. Montanari. Sparse PCA via covariance thresholding. In Advances in Neural Information Processing Systems, pages 334–342, 2014.
26.
go back to reference Y. Deshpande and A. Montanari. Improved sum-of-squares lower bounds for hidden clique and hidden submatrix problems. In Conference on Learning Theory, pages 523–562, 2015. Y. Deshpande and A. Montanari. Improved sum-of-squares lower bounds for hidden clique and hidden submatrix problems. In Conference on Learning Theory, pages 523–562, 2015.
27.
go back to reference M. Dia, N. Macris, F. Krzakala, T. Lesieur, and L. Zdeborová. Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula. In Advances in Neural Information Processing Systems, pages 424–432, 2016. M. Dia, N. Macris, F. Krzakala, T. Lesieur, and L. Zdeborová. Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula. In Advances in Neural Information Processing Systems, pages 424–432, 2016.
28.
go back to reference A. d’Aspremont, F. Bach, and L. E. Ghaoui. Optimal solutions for sparse principal component analysis. Journal of Machine Learning Research, 9(Jul):1269–1294, 2008. A. d’Aspremont, F. Bach, and L. E. Ghaoui. Optimal solutions for sparse principal component analysis. Journal of Machine Learning Research, 9(Jul):1269–1294, 2008.
29.
go back to reference A. El Alaoui and F. Krzakala. Estimation in the spiked wigner model: A short proof of the replica formula. In 2018 IEEE International Symposium on Information Theory (ISIT), pages 1874–1878. IEEE, 2018. A. El Alaoui and F. Krzakala. Estimation in the spiked wigner model: A short proof of the replica formula. In 2018 IEEE International Symposium on Information Theory (ISIT), pages 1874–1878. IEEE, 2018.
30.
go back to reference A. El Alaoui, F. Krzakala, and M. Jordan. Fundamental limits of detection in the spiked wigner model. The Annals of Statistics, 48(2):863–885, 2020.MathSciNetCrossRef A. El Alaoui, F. Krzakala, and M. Jordan. Fundamental limits of detection in the spiked wigner model. The Annals of Statistics, 48(2):863–885, 2020.MathSciNetCrossRef
31.
go back to reference D. Féral and S. Péché. The largest eigenvalue of rank one deformation of large wigner matrices. Communications in mathematical physics, 272(1):185–228, 2007.MathSciNetCrossRef D. Féral and S. Péché. The largest eigenvalue of rank one deformation of large wigner matrices. Communications in mathematical physics, 272(1):185–228, 2007.MathSciNetCrossRef
32.
go back to reference G. Holtzman, A. Soffer, and D. Vilenchik. A greedy anytime algorithm for sparse PCA. In Conference on Learning Theory, pages 1939–1956. PMLR, 2020. G. Holtzman, A. Soffer, and D. Vilenchik. A greedy anytime algorithm for sparse PCA. In Conference on Learning Theory, pages 1939–1956. PMLR, 2020.
33.
go back to reference S. Hopkins. Statistical Inference and the Sum of Squares Method. PhD thesis, Cornell University, 2018. S. Hopkins. Statistical Inference and the Sum of Squares Method. PhD thesis, Cornell University, 2018.
34.
go back to reference S. B. Hopkins, P. K. Kothari, A. Potechin, P. Raghavendra, T. Schramm, and D. Steurer. The power of sum-of-squares for detecting hidden structures. In 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 720–731. IEEE, 2017. S. B. Hopkins, P. K. Kothari, A. Potechin, P. Raghavendra, T. Schramm, and D. Steurer. The power of sum-of-squares for detecting hidden structures. In 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 720–731. IEEE, 2017.
35.
go back to reference S. B. Hopkins, J. Shi, and D. Steurer. Tensor principal component analysis via sum-of-square proofs. In Conference on Learning Theory, pages 956–1006, 2015. S. B. Hopkins, J. Shi, and D. Steurer. Tensor principal component analysis via sum-of-square proofs. In Conference on Learning Theory, pages 956–1006, 2015.
36.
go back to reference S. B. Hopkins and D. Steurer. Efficient bayesian estimation from few samples: community detection and related problems. In 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 379–390. IEEE, 2017. S. B. Hopkins and D. Steurer. Efficient bayesian estimation from few samples: community detection and related problems. In 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 379–390. IEEE, 2017.
37.
go back to reference A. Javanmard, A. Montanari, and F. Ricci-Tersenghi. Phase transitions in semidefinite relaxations. Proceedings of the National Academy of Sciences, 113(16):E2218–E2223, 2016.MathSciNetCrossRef A. Javanmard, A. Montanari, and F. Ricci-Tersenghi. Phase transitions in semidefinite relaxations. Proceedings of the National Academy of Sciences, 113(16):E2218–E2223, 2016.MathSciNetCrossRef
38.
39.
go back to reference I. M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis. The Annals of statistics, 29(2):295–327, 2001.MathSciNetCrossRef I. M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis. The Annals of statistics, 29(2):295–327, 2001.MathSciNetCrossRef
40.
go back to reference I. M. Johnstone and A. Y. Lu. Sparse principal components analysis. Unpublished manuscript, 2004. I. M. Johnstone and A. Y. Lu. Sparse principal components analysis. Unpublished manuscript, 2004.
41.
go back to reference I. M. Johnstone and A. Y. Lu. On consistency and sparsity for principal components analysis in high dimensions. Journal of the American Statistical Association, 104(486):682–693, 2009.MathSciNetCrossRef I. M. Johnstone and A. Y. Lu. On consistency and sparsity for principal components analysis in high dimensions. Journal of the American Statistical Association, 104(486):682–693, 2009.MathSciNetCrossRef
42.
go back to reference A. Knowles and J. Yin. The isotropic semicircle law and deformation of wigner matrices. Communications on Pure and Applied Mathematics, 66(11):1663–1749, 2013.MathSciNetCrossRef A. Knowles and J. Yin. The isotropic semicircle law and deformation of wigner matrices. Communications on Pure and Applied Mathematics, 66(11):1663–1749, 2013.MathSciNetCrossRef
43.
go back to reference P. Koiran and A. Zouzias. Hidden cliques and the certification of the restricted isometry property. IEEE transactions on information theory, 60(8):4999–5006, 2014.MathSciNetCrossRef P. Koiran and A. Zouzias. Hidden cliques and the certification of the restricted isometry property. IEEE transactions on information theory, 60(8):4999–5006, 2014.MathSciNetCrossRef
44.
go back to reference R. Krauthgamer, B. Nadler, and D. Vilenchik. Do semidefinite relaxations solve sparse PCA up to the information limit? The Annals of Statistics, 43(3):1300–1322, 2015.MathSciNetCrossRef R. Krauthgamer, B. Nadler, and D. Vilenchik. Do semidefinite relaxations solve sparse PCA up to the information limit? The Annals of Statistics, 43(3):1300–1322, 2015.MathSciNetCrossRef
45.
go back to reference F. Krzakala, J. Xu, and L. Zdeborová. Mutual information in rank-one matrix estimation. In 2016 IEEE Information Theory Workshop (ITW), pages 71–75. IEEE, 2016. F. Krzakala, J. Xu, and L. Zdeborová. Mutual information in rank-one matrix estimation. In 2016 IEEE Information Theory Workshop (ITW), pages 71–75. IEEE, 2016.
46.
go back to reference D. Kunisky, A. S. Wein, and A. S. Bandeira. Notes on computational hardness of hypothesis testing: Predictions using the low-degree likelihood ratio. arXiv:1907.11636, 2019. D. Kunisky, A. S. Wein, and A. S. Bandeira. Notes on computational hardness of hypothesis testing: Predictions using the low-degree likelihood ratio. arXiv:​1907.​11636, 2019.
47.
go back to reference B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. Annals of Statistics, pages 1302–1338, 2000. B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. Annals of Statistics, pages 1302–1338, 2000.
48.
go back to reference M. Lelarge and L. Miolane. Fundamental limits of symmetric low-rank matrix estimation. Probability Theory and Related Fields, 173(3-4):859–929, 2019.MathSciNetCrossRef M. Lelarge and L. Miolane. Fundamental limits of symmetric low-rank matrix estimation. Probability Theory and Related Fields, 173(3-4):859–929, 2019.MathSciNetCrossRef
49.
go back to reference T. Lesieur, F. Krzakala, and L. Zdeborová. MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel. In 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 680–687. IEEE, 2015. T. Lesieur, F. Krzakala, and L. Zdeborová. MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel. In 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 680–687. IEEE, 2015.
50.
go back to reference T. Lesieur, F. Krzakala, and L. Zdeborová. Phase transitions in sparse PCA. In 2015 IEEE International Symposium on Information Theory (ISIT), pages 1635–1639. IEEE, 2015. T. Lesieur, F. Krzakala, and L. Zdeborová. Phase transitions in sparse PCA. In 2015 IEEE International Symposium on Information Theory (ISIT), pages 1635–1639. IEEE, 2015.
51.
go back to reference T. Ma and A. Wigderson. Sum-of-squares lower bounds for sparse PCA. In Advances in Neural Information Processing Systems, pages 1612–1620, 2015. T. Ma and A. Wigderson. Sum-of-squares lower bounds for sparse PCA. In Advances in Neural Information Processing Systems, pages 1612–1620, 2015.
52.
go back to reference F. McSherry. Spectral partitioning of random graphs. In Proceedings 2001 IEEE International Conference on Cluster Computing, pages 529–537. IEEE, 2001. F. McSherry. Spectral partitioning of random graphs. In Proceedings 2001 IEEE International Conference on Cluster Computing, pages 529–537. IEEE, 2001.
53.
go back to reference R. Meka, A. Potechin, and A. Wigderson. Sum-of-squares lower bounds for planted clique. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pages 87–96. ACM, 2015. R. Meka, A. Potechin, and A. Wigderson. Sum-of-squares lower bounds for planted clique. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pages 87–96. ACM, 2015.
56.
go back to reference B. Moghaddam, Y. Weiss, and S. Avidan. Spectral bounds for sparse PCA: Exact and greedy algorithms. In Advances in neural information processing systems, pages 915–922, 2006. B. Moghaddam, Y. Weiss, and S. Avidan. Spectral bounds for sparse PCA: Exact and greedy algorithms. In Advances in neural information processing systems, pages 915–922, 2006.
57.
go back to reference A. Montanari, D. Reichman, and O. Zeitouni. On the limitation of spectral methods: From the gaussian hidden clique problem to rank-one perturbations of gaussian tensors. In Advances in Neural Information Processing Systems, pages 217–225, 2015. A. Montanari, D. Reichman, and O. Zeitouni. On the limitation of spectral methods: From the gaussian hidden clique problem to rank-one perturbations of gaussian tensors. In Advances in Neural Information Processing Systems, pages 217–225, 2015.
58.
go back to reference C. Moore. The computer science and physics of community detection: Landscapes, phase transitions, and hardness. arXiv:1702.00467, 2017. C. Moore. The computer science and physics of community detection: Landscapes, phase transitions, and hardness. arXiv:​1702.​00467, 2017.
59.
go back to reference B. Nadler. Finite sample approximation results for principal component analysis: A matrix perturbation approach. The Annals of Statistics, 36(6):2791–2817, 2008.MathSciNetCrossRef B. Nadler. Finite sample approximation results for principal component analysis: A matrix perturbation approach. The Annals of Statistics, 36(6):2791–2817, 2008.MathSciNetCrossRef
60.
go back to reference A. Onatski, M. J. Moreira, and M. Hallin. Asymptotic power of sphericity tests for high-dimensional data. The Annals of Statistics, 41(3):1204–1231, 2013.MathSciNetCrossRef A. Onatski, M. J. Moreira, and M. Hallin. Asymptotic power of sphericity tests for high-dimensional data. The Annals of Statistics, 41(3):1204–1231, 2013.MathSciNetCrossRef
61.
go back to reference D. Paul. Asymptotics of the leading sample eigenvalues for a spiked covariance model. Preprint, 2004. D. Paul. Asymptotics of the leading sample eigenvalues for a spiked covariance model. Preprint, 2004.
62.
go back to reference D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica Sinica, pages 1617–1642, 2007. D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica Sinica, pages 1617–1642, 2007.
63.
go back to reference D. Paul and I. M. Johnstone. Augmented sparse principal component analysis for high dimensional data. arXiv:1202.1242, 2012. D. Paul and I. M. Johnstone. Augmented sparse principal component analysis for high dimensional data. arXiv:​1202.​1242, 2012.
64.
go back to reference S. Péché. The largest eigenvalue of small rank perturbations of hermitian random matrices. Probability Theory and Related Fields, 134(1):127–173, 2006.MathSciNetCrossRef S. Péché. The largest eigenvalue of small rank perturbations of hermitian random matrices. Probability Theory and Related Fields, 134(1):127–173, 2006.MathSciNetCrossRef
65.
go back to reference A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra. Optimality and sub-optimality of PCA for spiked random matrices and synchronization. arXiv:1609.05573, 2016. A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra. Optimality and sub-optimality of PCA for spiked random matrices and synchronization. arXiv:​1609.​05573, 2016.
66.
go back to reference A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra. Message-passing algorithms for synchronization problems over compact groups. Communications on Pure and Applied Mathematics, 71(11):2275–2322, 2018.MathSciNetCrossRef A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra. Message-passing algorithms for synchronization problems over compact groups. Communications on Pure and Applied Mathematics, 71(11):2275–2322, 2018.MathSciNetCrossRef
67.
go back to reference A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra. Optimality and sub-optimality of PCA I: Spiked random matrix models. The Annals of Statistics, 46(5):2416–2451, 2018.MathSciNetCrossRef A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra. Optimality and sub-optimality of PCA I: Spiked random matrix models. The Annals of Statistics, 46(5):2416–2451, 2018.MathSciNetCrossRef
68.
go back to reference A. Pizzo, D. Renfrew, and A. Soshnikov. On finite rank deformations of wigner matrices. In Annales de l’IHP Probabilités et statistiques, volume 49, pages 64–94, 2013.MathSciNet A. Pizzo, D. Renfrew, and A. Soshnikov. On finite rank deformations of wigner matrices. In Annales de l’IHP Probabilités et statistiques, volume 49, pages 64–94, 2013.MathSciNet
69.
go back to reference P. Raghavendra, S. Rao, and T. Schramm. Strongly refuting random CSPs below the spectral threshold. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 121–131. ACM, 2017. P. Raghavendra, S. Rao, and T. Schramm. Strongly refuting random CSPs below the spectral threshold. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 121–131. ACM, 2017.
70.
go back to reference P. Raghavendra, T. Schramm, and D. Steurer. High dimensional estimation via sum-of-squares proofs. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro, pages 3389–3423. World Scientific, 2018. P. Raghavendra, T. Schramm, and D. Steurer. High dimensional estimation via sum-of-squares proofs. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro, pages 3389–3423. World Scientific, 2018.
71.
go back to reference E. Richard and A. Montanari. A statistical model for tensor PCA. In Advances in Neural Information Processing Systems, pages 2897–2905, 2014. E. Richard and A. Montanari. A statistical model for tensor PCA. In Advances in Neural Information Processing Systems, pages 2897–2905, 2014.
72.
go back to reference A. Singer. Angular synchronization by eigenvectors and semidefinite programming. Applied and computational harmonic analysis, 30(1):20–36, 2011.MathSciNetCrossRef A. Singer. Angular synchronization by eigenvectors and semidefinite programming. Applied and computational harmonic analysis, 30(1):20–36, 2011.MathSciNetCrossRef
73.
go back to reference A. Singer and Y. Shkolnisky. Three-dimensional structure determination from common lines in cryo-EM by eigenvectors and semidefinite programming. SIAM journal on imaging sciences, 4(2):543–572, 2011.MathSciNetCrossRef A. Singer and Y. Shkolnisky. Three-dimensional structure determination from common lines in cryo-EM by eigenvectors and semidefinite programming. SIAM journal on imaging sciences, 4(2):543–572, 2011.MathSciNetCrossRef
75.
go back to reference V. Vu. A simple SVD algorithm for finding hidden partitions. Combinatorics, Probability and Computing, 27(1):124–140, 2018.MathSciNetCrossRef V. Vu. A simple SVD algorithm for finding hidden partitions. Combinatorics, Probability and Computing, 27(1):124–140, 2018.MathSciNetCrossRef
76.
go back to reference V. Vu and J. Lei. Minimax rates of estimation for sparse PCA in high dimensions. In Artificial intelligence and statistics, pages 1278–1286, 2012. V. Vu and J. Lei. Minimax rates of estimation for sparse PCA in high dimensions. In Artificial intelligence and statistics, pages 1278–1286, 2012.
77.
go back to reference T. Wang, Q. Berthet, and R. J. Samworth. Statistical and computational trade-offs in estimation of sparse principal components. The Annals of Statistics, 44(5):1896–1930, 2016.MathSciNetCrossRef T. Wang, Q. Berthet, and R. J. Samworth. Statistical and computational trade-offs in estimation of sparse principal components. The Annals of Statistics, 44(5):1896–1930, 2016.MathSciNetCrossRef
78.
go back to reference A. S. Wein, A. El Alaoui, and C. Moore. The Kikuchi hierarchy and tensor PCA. In 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 1446–1468. IEEE, 2019. A. S. Wein, A. El Alaoui, and C. Moore. The Kikuchi hierarchy and tensor PCA. In 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 1446–1468. IEEE, 2019.
79.
go back to reference D. M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 10(3):515–534, 2009.CrossRef D. M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 10(3):515–534, 2009.CrossRef
80.
go back to reference A. Zhang and D. Xia. Tensor SVD: Statistical and computational limits. IEEE Transactions on Information Theory, 64(11):7311–7338, 2018.MathSciNetCrossRef A. Zhang and D. Xia. Tensor SVD: Statistical and computational limits. IEEE Transactions on Information Theory, 64(11):7311–7338, 2018.MathSciNetCrossRef
81.
go back to reference H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of computational and graphical statistics, 15(2):265–286, 2006.MathSciNetCrossRef H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of computational and graphical statistics, 15(2):265–286, 2006.MathSciNetCrossRef
Metadata
Title
Subexponential-Time Algorithms for Sparse PCA
Authors
Yunzi Ding
Dmitriy Kunisky
Alexander S. Wein
Afonso S. Bandeira
Publication date
19-01-2023
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 3/2024
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-023-09603-0

Premium Partner