Skip to main content
Top
Published in: Journal of Materials Science 1/2015

01-01-2015 | Original Paper

Subsolidus phase relations of Li2O–FeO–P2O5 system and the solid solubility of Li1+x Fe1−x PO4 compounds under Ar/H2 atmosphere

Authors: Xinghao Lin, Yanming Zhao, Youzhong Dong, Zhiyong Liang, Danlin Yan, Xudong Liu, Quan Kuang

Published in: Journal of Materials Science | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The phase relation of Li2O–FeO–P2O5 ternary system under the 95 %Ar + 5 %H2 atmosphere has been systematically investigated by X-ray diffraction (XRD), and there exist 8 binary compounds, 4 ternary compounds, 2 two-phase regions, and 17 three-phase regions. No other new lithium ferrous phosphates can be existed in the Li2O–FeO–P2O5 ternary system under the 95 %Ar + 5 %H2 atmosphere. In this system, the Li1+x Fe1−x PO4 solid solution phase with the homogeneous range of −0.15 ≤ x ≤ 0.06 is determined. Their corresponding lattice parameters are obtained by the refinement results, and the results show that the lattice parameters (a, b, c, V) vary linearly with the increasing amount of excess Li-ion (x > 0) or with the increasing amount of excess Fe-ion (x < 0). The phase diagram determined in this paper can provide more information about the phase relation of Li2O–FeO–P2O5 ternary system and serve as a guide for the future investigation of lithium iron phosphates in this system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anolini E (2004) LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 170:159–171CrossRef Anolini E (2004) LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 170:159–171CrossRef
2.
go back to reference Thomas MGSR, David WIF, Goodenough JB (1985) Synthesis and structural characterization of the normal spinel Li[Ni2]O4. Mater Res Bull 20:1137–1146CrossRef Thomas MGSR, David WIF, Goodenough JB (1985) Synthesis and structural characterization of the normal spinel Li[Ni2]O4. Mater Res Bull 20:1137–1146CrossRef
3.
go back to reference Kanamura K, Naito H, Yao T, Takehara Z (1996) Structure change of the LiMn2O4 spinel structure induced by extraction of lithium. J Mater Chem 6:33–36CrossRef Kanamura K, Naito H, Yao T, Takehara Z (1996) Structure change of the LiMn2O4 spinel structure induced by extraction of lithium. J Mater Chem 6:33–36CrossRef
4.
go back to reference Lu ZH, MacNeil DD, Dahn JR (2001) Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-Ion batteries. Electrochem Solid-State Lett 4:A200–A203CrossRef Lu ZH, MacNeil DD, Dahn JR (2001) Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-Ion batteries. Electrochem Solid-State Lett 4:A200–A203CrossRef
5.
go back to reference Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef
6.
go back to reference Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128CrossRef Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128CrossRef
7.
go back to reference MacNeil DD, Lu ZH, Chen ZH, Dahn JR (2002) A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J Power Sources 108:8–14CrossRef MacNeil DD, Lu ZH, Chen ZH, Dahn JR (2002) A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J Power Sources 108:8–14CrossRef
8.
go back to reference Takahashi M, Tobishima S, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 148:283–289CrossRef Takahashi M, Tobishima S, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 148:283–289CrossRef
9.
go back to reference Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97–98:503–507CrossRef Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97–98:503–507CrossRef
10.
11.
go back to reference Wang JJ, Sun XL (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185CrossRef Wang JJ, Sun XL (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185CrossRef
12.
go back to reference Yi TF, Li XY, Liu HP, Shu J, Zhu YR, Zhu RS (2012) Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery. Ionics 18:529–539CrossRef Yi TF, Li XY, Liu HP, Shu J, Zhu YR, Zhu RS (2012) Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery. Ionics 18:529–539CrossRef
13.
go back to reference Churikov AV, Ivanishchev AV, Ushakov AV, Gamayunova IM, Leenson IA (2013) Thermodynamics of LiFePO4 solid-phase synthesis using iron (II) oxalate and ammonium dihydrophosphate as precursors. J Chem Eng Data 58:1747–1759CrossRef Churikov AV, Ivanishchev AV, Ushakov AV, Gamayunova IM, Leenson IA (2013) Thermodynamics of LiFePO4 solid-phase synthesis using iron (II) oxalate and ammonium dihydrophosphate as precursors. J Chem Eng Data 58:1747–1759CrossRef
14.
go back to reference Churikov A, Gribov A, Bobyl A, Kamzin A, Terukov E (2014) Mechanism of LiFePO4 solid-phase synthesis using iron (II) oxalate and ammonium dihydrophosphate as precursors. Ionics 20:1–13CrossRef Churikov A, Gribov A, Bobyl A, Kamzin A, Terukov E (2014) Mechanism of LiFePO4 solid-phase synthesis using iron (II) oxalate and ammonium dihydrophosphate as precursors. Ionics 20:1–13CrossRef
15.
go back to reference Ong SP, Wang L, Kang B, Ceder G (2008) Li–Fe–P–O2 phase diagram from first principles calculations. Chem Mater 20:1798–1807CrossRef Ong SP, Wang L, Kang B, Ceder G (2008) Li–Fe–P–O2 phase diagram from first principles calculations. Chem Mater 20:1798–1807CrossRef
16.
go back to reference Ji LN, Li JB, Chen YQ, Luo J, Liang JK, Rao GH (2009) Subsolidus phase relations of the ZnO-Li2O-P2O5 system. J. Alloys Comp 486:352–356CrossRef Ji LN, Li JB, Chen YQ, Luo J, Liang JK, Rao GH (2009) Subsolidus phase relations of the ZnO-Li2O-P2O5 system. J. Alloys Comp 486:352–356CrossRef
17.
go back to reference Tien TY, Hummel FA (1961) Studies in Lithium Oxide Systems: XI, Li2O–B2O3–P2O5. J Am Ceram Soc 44:206–208CrossRef Tien TY, Hummel FA (1961) Studies in Lithium Oxide Systems: XI, Li2O–B2O3–P2O5. J Am Ceram Soc 44:206–208CrossRef
18.
go back to reference Guitel JC, Tordjman I (1976) Structural crystallography and crystal chemistry. Acta Crystallogr B 32:2960–2966CrossRef Guitel JC, Tordjman I (1976) Structural crystallography and crystal chemistry. Acta Crystallogr B 32:2960–2966CrossRef
19.
go back to reference Murashova EV, Chudinova NN (2001) Synthesis and crystal structures of lithium polyphosphates, LiPO3, Li4H(PO3)5, and LiMn(PO3)3. Crystallogr Rep 46:942–947CrossRef Murashova EV, Chudinova NN (2001) Synthesis and crystal structures of lithium polyphosphates, LiPO3, Li4H(PO3)5, and LiMn(PO3)3. Crystallogr Rep 46:942–947CrossRef
20.
go back to reference Ben-Chaabane T, Smiri-Dogguy L, Laligant Y, LeBail A (1998) Li6P6O18: X-ray powder structure determination of lithium cyclohexaphosphate. Eur J Solid State Inorg Chem 35:255–264CrossRef Ben-Chaabane T, Smiri-Dogguy L, Laligant Y, LeBail A (1998) Li6P6O18: X-ray powder structure determination of lithium cyclohexaphosphate. Eur J Solid State Inorg Chem 35:255–264CrossRef
21.
go back to reference Yakubovich OV, Mel’nikov OK (1994) The crystal structure of Li4[P2O7]. Crystallogr Rep 39:737–742 Yakubovich OV, Mel’nikov OK (1994) The crystal structure of Li4[P2O7]. Crystallogr Rep 39:737–742
22.
go back to reference Daidouh A, Veiga ML, Pico C (1997) Martinez-Ripoll, M. A New Polymorph of Li4P2O7. Acta Crystallogr C 53:167–169CrossRef Daidouh A, Veiga ML, Pico C (1997) Martinez-Ripoll, M. A New Polymorph of Li4P2O7. Acta Crystallogr C 53:167–169CrossRef
23.
go back to reference Keffer C, Mighell AD, Mauer F, Swanson H, Block S (1967) The Crystal Structure of Twinned Low-Temperature Lithium Phosphate. Inorg Chem 6:119–125CrossRef Keffer C, Mighell AD, Mauer F, Swanson H, Block S (1967) The Crystal Structure of Twinned Low-Temperature Lithium Phosphate. Inorg Chem 6:119–125CrossRef
24.
go back to reference Bondareva OS, Simonov MA, Belov NV (1978) The crystal structure of the synthetic analogue of the lithiophospate gamma-Li3PO4. Soviet Physics–Doklady 23:287–288 Bondareva OS, Simonov MA, Belov NV (1978) The crystal structure of the synthetic analogue of the lithiophospate gamma-Li3PO4. Soviet Physics–Doklady 23:287–288
25.
go back to reference Weil M, Glaum R (1998) Crystallization of ultraphosphates via the gas phase. The crystal structures of FeP4011, ZnP4O11 and CdP4O11. Eur J Solid State Inorg Chem 35:495–508CrossRef Weil M, Glaum R (1998) Crystallization of ultraphosphates via the gas phase. The crystal structures of FeP4011, ZnP4O11 and CdP4O11. Eur J Solid State Inorg Chem 35:495–508CrossRef
26.
go back to reference Nord AG, Ericsson T, Werner PE (1990) The crystal structure of iron(II) tetrametaphosphate Fe2P4O12. Zeitschrift fuer Kristallographie 192:83–90 Nord AG, Ericsson T, Werner PE (1990) The crystal structure of iron(II) tetrametaphosphate Fe2P4O12. Zeitschrift fuer Kristallographie 192:83–90
27.
go back to reference Hoggins JT, Swinnea JS, Steinfink H (1983) Crystal structure of Fe2P2O7. J Solid State Chem 47:278–283CrossRef Hoggins JT, Swinnea JS, Steinfink H (1983) Crystal structure of Fe2P2O7. J Solid State Chem 47:278–283CrossRef
28.
go back to reference Stefanidis T, Nord AG (1982) The crystal structure of iron(II) diphosphate, Fe2P2O7. Zeitschrift fuer Kristallographie 159:255–264 Stefanidis T, Nord AG (1982) The crystal structure of iron(II) diphosphate, Fe2P2O7. Zeitschrift fuer Kristallographie 159:255–264
29.
go back to reference Parada C, Perles J, Saez-Puche R, Ruiz-Valero C (2003) Snejko N. Crystal growth, structure and magnetic properties of a new polymorph of Fe2P2O7. Chem Mater 15:3347–3351CrossRef Parada C, Perles J, Saez-Puche R, Ruiz-Valero C (2003) Snejko N. Crystal growth, structure and magnetic properties of a new polymorph of Fe2P2O7. Chem Mater 15:3347–3351CrossRef
30.
go back to reference Kostiner E, Rea JR (1974) Crystal structure of ferrous phosphatefe2(P2O4)2. Inorg Chem 13:2876–2880CrossRef Kostiner E, Rea JR (1974) Crystal structure of ferrous phosphatefe2(P2O4)2. Inorg Chem 13:2876–2880CrossRef
31.
go back to reference Warner JK, Cheetham AK, Nord AG, von Dreele RB, Yethiraj M (1992) Magnetic structure of iron(II) phosphate, sarcopside, Fe3(PO4)2. J Mater Chem 2:191–196CrossRef Warner JK, Cheetham AK, Nord AG, von Dreele RB, Yethiraj M (1992) Magnetic structure of iron(II) phosphate, sarcopside, Fe3(PO4)2. J Mater Chem 2:191–196CrossRef
32.
go back to reference Bouchdoug M, Courtois A, Gerardin R, Steinmetz J, Gleitzer C (1982) Preparation et etude d’un oxyphosphate Fe4(PO4)2O. J Solid State Chem 42:149–157CrossRef Bouchdoug M, Courtois A, Gerardin R, Steinmetz J, Gleitzer C (1982) Preparation et etude d’un oxyphosphate Fe4(PO4)2O. J Solid State Chem 42:149–157CrossRef
33.
go back to reference Dong YZ, Zhao YM, Fu P, Zhou H, Hou XM (2008) Phase relations of Li2O-FeO-B2O3 ternary system and electrochemical properties of LiFeBO3 compound. J. Alloys Comp 461:585–590CrossRef Dong YZ, Zhao YM, Fu P, Zhou H, Hou XM (2008) Phase relations of Li2O-FeO-B2O3 ternary system and electrochemical properties of LiFeBO3 compound. J. Alloys Comp 461:585–590CrossRef
34.
go back to reference Liang ZY, Zhao YM, Ouyang LZ, Dong YZ, Kuang Q, Lin XH, Liu XD, Yan DL (2014) Synthesis of carbon-coated Li3VO4 and its high electrochemical performance as anode material for lithium-ion batteries. J Power Sources 252:244–247CrossRef Liang ZY, Zhao YM, Ouyang LZ, Dong YZ, Kuang Q, Lin XH, Liu XD, Yan DL (2014) Synthesis of carbon-coated Li3VO4 and its high electrochemical performance as anode material for lithium-ion batteries. J Power Sources 252:244–247CrossRef
35.
go back to reference Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F, Garcia-Jaca J, Amores JMG, Sanjuan ML, Amador U (2001) Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: A new high-pressure form of LiMPO4(M)Fe and Ni). Chem Mater 13:1570–1576CrossRef Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F, Garcia-Jaca J, Amores JMG, Sanjuan ML, Amador U (2001) Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: A new high-pressure form of LiMPO4(M)Fe and Ni). Chem Mater 13:1570–1576CrossRef
36.
go back to reference Bjoerling CO, Westgren A (1938) Minerals of the Varutrask pegmatite: IX. X-ray studies on triphylite, varulite, and their oxidation products. Geologiska Foereningens i Stockholm Foerhandlingar 60:67–72CrossRef Bjoerling CO, Westgren A (1938) Minerals of the Varutrask pegmatite: IX. X-ray studies on triphylite, varulite, and their oxidation products. Geologiska Foereningens i Stockholm Foerhandlingar 60:67–72CrossRef
37.
go back to reference Delacourt C, Rodriguez-Carvajal J, Schmitt B, Tarascon JM, Masquelier C (2005) Crystal chemistry of the olivine-type Li x FePO4 system (0 ≤ x ≤ 1) between 25 and 370◦C. Solid State Sci 7:1506–1516CrossRef Delacourt C, Rodriguez-Carvajal J, Schmitt B, Tarascon JM, Masquelier C (2005) Crystal chemistry of the olivine-type Li x FePO4 system (0 ≤ x ≤ 1) between 25 and 370◦C. Solid State Sci 7:1506–1516CrossRef
38.
go back to reference Yakubovich OV, Simonov MA, Belov NV (1977) The crystal structure of a synthetic triphylite LiFe(PO4). Soviet Physics–Doklady 22:347–348 Yakubovich OV, Simonov MA, Belov NV (1977) The crystal structure of a synthetic triphylite LiFe(PO4). Soviet Physics–Doklady 22:347–348
39.
go back to reference Nishimura H, Nakamura M, Natsui R, Yamada A (2010) New Lithium Iron Pyrophosphate as 3.5 V Class Cathode Material for Lithium Ion Battery. J Am Chem Soc 132:13596–13597CrossRef Nishimura H, Nakamura M, Natsui R, Yamada A (2010) New Lithium Iron Pyrophosphate as 3.5 V Class Cathode Material for Lithium Ion Battery. J Am Chem Soc 132:13596–13597CrossRef
40.
go back to reference Ramana CV, Ait-Salah A, Julien CM (2006) Structure of LiFe2P3O10 studied by transmission electron microscopy. Mater Sci Eng, B 135:78–81CrossRef Ramana CV, Ait-Salah A, Julien CM (2006) Structure of LiFe2P3O10 studied by transmission electron microscopy. Mater Sci Eng, B 135:78–81CrossRef
41.
go back to reference Genkina EA, Maksimov BA, Kabalov YK, Mel’nikov OE (1983) Crystal structure of Li, Fe metaphosphate LiFeP3O9. Soviet Physics–Doklady 28:426–428 Genkina EA, Maksimov BA, Kabalov YK, Mel’nikov OE (1983) Crystal structure of Li, Fe metaphosphate LiFeP3O9. Soviet Physics–Doklady 28:426–428
42.
go back to reference Zhuang VV, Allen JL, Ross PN, Guo J-H, Jow TR (2006) Electronic properties of LiFePO4 and Li doped LiFePO4. ECS Trans 1:69–72CrossRef Zhuang VV, Allen JL, Ross PN, Guo J-H, Jow TR (2006) Electronic properties of LiFePO4 and Li doped LiFePO4. ECS Trans 1:69–72CrossRef
Metadata
Title
Subsolidus phase relations of Li2O–FeO–P2O5 system and the solid solubility of Li1+x Fe1−x PO4 compounds under Ar/H2 atmosphere
Authors
Xinghao Lin
Yanming Zhao
Youzhong Dong
Zhiyong Liang
Danlin Yan
Xudong Liu
Quan Kuang
Publication date
01-01-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 1/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8579-3

Other articles of this Issue 1/2015

Journal of Materials Science 1/2015 Go to the issue

Premium Partners