Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

5. Substrate and Encapsulation Materials for Printed Flexible Electronics

Abstract

Substrate, dielectric, and encapsulation materials are critically important as their properties can dominate those of the integrated flexible electronic system. A flexible substrate should be highly deformable and mechanically robust and must exhibit high tolerance levels of bending repeatability. They are also required to possess properties such as dimensional stability, thermal stability, low coefficient of thermal expansion (CTE), excellent solvent resistance, and good barrier properties for moisture and gases. The substrate materials mainly include plastic films, metal foils, and fibrous materials (including paper and textiles). Moreover, a uniform layer of dielectric is needed to promote the activation of the medium caused by electric fields or other transduction phenomena. Inorganic materials such as silica, alumina, and other high permittivity oxides often used in electronics on flexible substrates are usually not printable. Low-cost organic dielectric materials that are available in large quantities and can be dissolved in various solvents and solutions can be printed easily as compared to inorganic counterparts. Some of the commonly used organic dielectric materials in printed electronics are poly (4-vinylphenol) (PVP), poly(methyl methacrylate), Polyethylene Terephthalate, Polyimide, Polyvinyl alcohol, and Polystyrene. Besides dielectric layers in electronic devices, solution processed organic dielectric materials are also used for final encapsulation of printed devices. There is a wide range of permeation requirements for different encapsulation materials. To ensure protection of flexible devices, conventional encapsulation methods are not suitable due to their inherent rigidity, and organic/inorganic hybrid thin-film encapsulation (TFE) has been considered as the most promising technology. This chapter will provide a brief review on substrate, dielectric, and encapsulation materials for flexible electronics applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adhikari JM, Gadinski MR, Li Q, Sun KG, Reyes-Martinez MA, Iagodkine E, Briseno AL, Jackson TN, Wang Q, Gomez ED (2016) Controlling chain conformations of high-k fluoropolymer dielectrics to enhance charge mobilities in rubrene single-crystal field-effect transistors. Adv Mater 28:10095–10102 CrossRef Adhikari JM, Gadinski MR, Li Q, Sun KG, Reyes-Martinez MA, Iagodkine E, Briseno AL, Jackson TN, Wang Q, Gomez ED (2016) Controlling chain conformations of high-k fluoropolymer dielectrics to enhance charge mobilities in rubrene single-crystal field-effect transistors. Adv Mater 28:10095–10102 CrossRef
go back to reference Beaulieu MR, Baral JK, Hendricks NR, Tang Y, Briseno AL, Watkins JJ (2013) Solution processable high dielectric constant nanocomposites based on ZrO 2 nanoparticles for flexible organic transistors. ACS Appl Mater Interfaces 5:13096–13103 CrossRef Beaulieu MR, Baral JK, Hendricks NR, Tang Y, Briseno AL, Watkins JJ (2013) Solution processable high dielectric constant nanocomposites based on ZrO 2 nanoparticles for flexible organic transistors. ACS Appl Mater Interfaces 5:13096–13103 CrossRef
go back to reference Benvenho ARV, Machado WS, Cruz-Cruz I, Hummelgen IA (2013) Study of poly(3-hexylthiophene)/cross-linked poly(vinyl alcohol) as semiconductor/insulator for application in low voltage organic field effect transistors. J Appl Phys 113:214509 CrossRef Benvenho ARV, Machado WS, Cruz-Cruz I, Hummelgen IA (2013) Study of poly(3-hexylthiophene)/cross-linked poly(vinyl alcohol) as semiconductor/insulator for application in low voltage organic field effect transistors. J Appl Phys 113:214509 CrossRef
go back to reference Bettinger CJ, Bao ZN (2010) Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater 22:651–655 CrossRef Bettinger CJ, Bao ZN (2010) Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater 22:651–655 CrossRef
go back to reference Burrows PE, Bulovic V, Forrest SR, Sapochak LS, McCarty DM, Thompson ME (1994) Reliability and degradation of organic light emitting devices. Appl Phys Lett 65:2922–2924 CrossRef Burrows PE, Bulovic V, Forrest SR, Sapochak LS, McCarty DM, Thompson ME (1994) Reliability and degradation of organic light emitting devices. Appl Phys Lett 65:2922–2924 CrossRef
go back to reference Cho JH, Lee J, Xia Y, Kim B, He Y, Renn MJ, Lodge TP, Frisbie CD (2008) Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater 7:900–906 CrossRef Cho JH, Lee J, Xia Y, Kim B, He Y, Renn MJ, Lodge TP, Frisbie CD (2008) Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater 7:900–906 CrossRef
go back to reference Choi JH, Gu YY, Hong KY, Xie W, Frisbie CD, Lodge TP (2014) High capacitance, photo-patternable ion gel gate insulators compatible with vapor deposition of metal gate electrodes. ACS Appl Mater Interfaces 6:19275–19281 CrossRef Choi JH, Gu YY, Hong KY, Xie W, Frisbie CD, Lodge TP (2014) High capacitance, photo-patternable ion gel gate insulators compatible with vapor deposition of metal gate electrodes. ACS Appl Mater Interfaces 6:19275–19281 CrossRef
go back to reference de Pauli M, Zschieschang U, Barcelos ID, Klauk H, Malachias A (2016) Tailoring the dielectric layer structure for enhanced carrier mobility in organic transistors: the use of hybrid inorganic/organic multilayer dielectrics. Adv Electron Mater 2:1500402 CrossRef de Pauli M, Zschieschang U, Barcelos ID, Klauk H, Malachias A (2016) Tailoring the dielectric layer structure for enhanced carrier mobility in organic transistors: the use of hybrid inorganic/organic multilayer dielectrics. Adv Electron Mater 2:1500402 CrossRef
go back to reference Du HW, Lin X, Xu ZM, Chu DW (2015) Electric double-layer transistors: a review of recent progress. J Mater Sci 50:5641–5673 CrossRef Du HW, Lin X, Xu ZM, Chu DW (2015) Electric double-layer transistors: a review of recent progress. J Mater Sci 50:5641–5673 CrossRef
go back to reference Duerinckx F, Szlufcik J (2002) Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride. Sol Energy Mater Sol Cells 72:231–246 CrossRef Duerinckx F, Szlufcik J (2002) Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride. Sol Energy Mater Sol Cells 72:231–246 CrossRef
go back to reference Faraji S, Danesh E, Tate DJ, Turner ML, Majewski LA (2016) Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs). J Phys D Appl Phys 49:185102 CrossRef Faraji S, Danesh E, Tate DJ, Turner ML, Majewski LA (2016) Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs). J Phys D Appl Phys 49:185102 CrossRef
go back to reference Haas K, Amberg-Schwab S, Rose K, Schottner G (1999) Functionalized coatings based on inorganic-organic polymers (ORMOCER (R) s) and their combination with vapor deposited inorganic thin films. Surf Coat Technol 111:72–79 CrossRef Haas K, Amberg-Schwab S, Rose K, Schottner G (1999) Functionalized coatings based on inorganic-organic polymers (ORMOCER (R) s) and their combination with vapor deposited inorganic thin films. Surf Coat Technol 111:72–79 CrossRef
go back to reference Harris KD, Elias AL, Chung H-J (2016) Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci 51:2771–2805 CrossRef Harris KD, Elias AL, Chung H-J (2016) Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci 51:2771–2805 CrossRef
go back to reference Johnson RW, Hultqvist A, Bent SF (2014) A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17(5):236–246 CrossRef Johnson RW, Hultqvist A, Bent SF (2014) A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17(5):236–246 CrossRef
go back to reference Jung H, Jeon H, Choi H, Ham G, Shin S, Jeon H (2014) Al 2O 3 multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition. J Appl Phys 115(7):073502 CrossRef Jung H, Jeon H, Choi H, Ham G, Shin S, Jeon H (2014) Al 2O 3 multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition. J Appl Phys 115(7):073502 CrossRef
go back to reference Khan S, Lorenzelli L, Dahiya RS (2015) Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J 15(6):3164–3185 CrossRef Khan S, Lorenzelli L, Dahiya RS (2015) Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J 15(6):3164–3185 CrossRef
go back to reference Kim SH, Yun WM, Kwon O-K, Hong K, Yang C, Choi W-S, Park CE (2010) Hysteresis behaviour of low-voltage organic field-effect transistors employing high dielectric constant polymer gate dielectrics. J Phys D Appl Phys 43:465102 CrossRef Kim SH, Yun WM, Kwon O-K, Hong K, Yang C, Choi W-S, Park CE (2010) Hysteresis behaviour of low-voltage organic field-effect transistors employing high dielectric constant polymer gate dielectrics. J Phys D Appl Phys 43:465102 CrossRef
go back to reference Kim SH, Hong K, Xie W, Lee KH, Zhang S, Lodge TP, Frisbie CD (2013) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25:1822–1846 CrossRef Kim SH, Hong K, Xie W, Lee KH, Zhang S, Lodge TP, Frisbie CD (2013) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25:1822–1846 CrossRef
go back to reference Ko JM, Kang YH, Lee C, Cho SY (2013) Electrically and thermally stable gate dielectrics from thiol-ene cross-linked systems for use in organic thin-film transistors. J Mater Chem C 1:3091–3097 CrossRef Ko JM, Kang YH, Lee C, Cho SY (2013) Electrically and thermally stable gate dielectrics from thiol-ene cross-linked systems for use in organic thin-film transistors. J Mater Chem C 1:3091–3097 CrossRef
go back to reference Kong D, Pfattner R, Chortos A, Lu CE, Hinckley AC, Wang C, Lee WY, Chung JW, Bao ZA (2016) Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors. Adv Funct Mater 26:4680–4686 CrossRef Kong D, Pfattner R, Chortos A, Lu CE, Hinckley AC, Wang C, Lee WY, Chung JW, Bao ZA (2016) Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors. Adv Funct Mater 26:4680–4686 CrossRef
go back to reference Lee BH, Anderson VR, George SM (2011) Metalcone and metalcone/metal oxide alloys grown using atomic & molecular layer deposition. ECS Trans 41(2):131–138 CrossRef Lee BH, Anderson VR, George SM (2011) Metalcone and metalcone/metal oxide alloys grown using atomic & molecular layer deposition. ECS Trans 41(2):131–138 CrossRef
go back to reference Lee S, Choi H, Shin S, Park J, Ham G, Jung H, Jeon H (2014) Permeation barrier properties of an Al 2O 3/ZrO 2 multilayer deposited by remote plasma atomic layer deposition. Curr Appl Phys 14(4):552–557 CrossRef Lee S, Choi H, Shin S, Park J, Ham G, Jung H, Jeon H (2014) Permeation barrier properties of an Al 2O 3/ZrO 2 multilayer deposited by remote plasma atomic layer deposition. Curr Appl Phys 14(4):552–557 CrossRef
go back to reference Lewis J (2006) Materials challenge for flexible organic devices. Mater Today 9(4):38–45 Lewis J (2006) Materials challenge for flexible organic devices. Mater Today 9(4):38–45
go back to reference Li HY, Liu YF, Duan Y, Yang YQ, Lu Y-N (2015) Method for aluminum oxide thin films prepared through low temperature atomic layer deposition for encapsulating organic electroluminescent devices. Materials 8(2):600–610 CrossRef Li HY, Liu YF, Duan Y, Yang YQ, Lu Y-N (2015) Method for aluminum oxide thin films prepared through low temperature atomic layer deposition for encapsulating organic electroluminescent devices. Materials 8(2):600–610 CrossRef
go back to reference Logothetidis S, Laskarakis A (2009) Towards the optimization of materials and processes for flexible organic electronics devices. Eur Phys J Appl Phys 46:12502 CrossRef Logothetidis S, Laskarakis A (2009) Towards the optimization of materials and processes for flexible organic electronics devices. Eur Phys J Appl Phys 46:12502 CrossRef
go back to reference Logothetidis S, Laskarakis A, Georgiou D, Amberg-Schwab S, Weber U, Noller K, Schmidt M, Kucukpinar-Niarchos E, Lohwasser W (2010) Ultra high barrier materials for encapsulation of flexible organic electronics. Eur Phys J Appl Phys 51:33203 CrossRef Logothetidis S, Laskarakis A, Georgiou D, Amberg-Schwab S, Weber U, Noller K, Schmidt M, Kucukpinar-Niarchos E, Lohwasser W (2010) Ultra high barrier materials for encapsulation of flexible organic electronics. Eur Phys J Appl Phys 51:33203 CrossRef
go back to reference Mandal T, Garg A, Deepak (2013) Thin film transistors fabricated by evaporating pentacene under electric field. J Appl Phys 114:154517 CrossRef Mandal T, Garg A, Deepak (2013) Thin film transistors fabricated by evaporating pentacene under electric field. J Appl Phys 114:154517 CrossRef
go back to reference McMorrow JJ, Walker AR, Sangwan VK, Jariwala D, Hoffman E, Everaerts K, Facchetti A, Hersam MC, Marks TJ (2015) Solution-processed self-assembled nanodielectrics on template-stripped metal substrates. ACS Appl Mater Interfaces 7:26360–26366 CrossRef McMorrow JJ, Walker AR, Sangwan VK, Jariwala D, Hoffman E, Everaerts K, Facchetti A, Hersam MC, Marks TJ (2015) Solution-processed self-assembled nanodielectrics on template-stripped metal substrates. ACS Appl Mater Interfaces 7:26360–26366 CrossRef
go back to reference Monne MA, Lan X, Chen MY (2018) Material selection and fabrication processes for flexible conformal antennas. Int J Antenn Propag 2018:9815631 Monne MA, Lan X, Chen MY (2018) Material selection and fabrication processes for flexible conformal antennas. Int J Antenn Propag 2018:9815631
go back to reference Moon H, Seong H, Shin WC, Park WT, Kim M, Lee S, Bong JH, Noh YY, Cho BJ, Yoo S (2015) Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat Mater 14:628–635 CrossRef Moon H, Seong H, Shin WC, Park WT, Kim M, Lee S, Bong JH, Noh YY, Cho BJ, Yoo S (2015) Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat Mater 14:628–635 CrossRef
go back to reference Panzer MJ, Frisbie CD (2006) High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv Funct Mater 16:1051–1056 CrossRef Panzer MJ, Frisbie CD (2006) High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv Funct Mater 16:1051–1056 CrossRef
go back to reference Park S, Chang H-Y, Rahimi S, Lee AL, Tao L, Akinwande D (2018) Transparent nanoscale polyimide gate dielectric for highly flexible electronics. Adv Electron Mater 4:1700043 CrossRef Park S, Chang H-Y, Rahimi S, Lee AL, Tao L, Akinwande D (2018) Transparent nanoscale polyimide gate dielectric for highly flexible electronics. Adv Electron Mater 4:1700043 CrossRef
go back to reference Robertson J (2000) Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vacuum Sci Technol B Microelectron Nanometer Struct Process Meas Phenomena 18:1785 CrossRef Robertson J (2000) Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vacuum Sci Technol B Microelectron Nanometer Struct Process Meas Phenomena 18:1785 CrossRef
go back to reference Salvado R, Loss C, Goncalves R, Pinho P (2012) Textile materials for the design of wearable antennas: a survey. Sensors 12:15841–15857 CrossRef Salvado R, Loss C, Goncalves R, Pinho P (2012) Textile materials for the design of wearable antennas: a survey. Sensors 12:15841–15857 CrossRef
go back to reference Sannigrahi J, Bhadra D, Chaudhuri BK (2013) Crystalline graphite oxide/Pvdf nanocomposite gate dielectric: low-voltage and high field effect mobility thin-film transistor. Phys Status Solidi A 210:546–552 CrossRef Sannigrahi J, Bhadra D, Chaudhuri BK (2013) Crystalline graphite oxide/Pvdf nanocomposite gate dielectric: low-voltage and high field effect mobility thin-film transistor. Phys Status Solidi A 210:546–552 CrossRef
go back to reference Schlom D, Haeni J (2002) A thermodynamic approach to selecting alternative gate dielectrics. MRS Bull 27(3):198–204 CrossRef Schlom D, Haeni J (2002) A thermodynamic approach to selecting alternative gate dielectrics. MRS Bull 27(3):198–204 CrossRef
go back to reference Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A (2011) Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett 11:5408–5413 CrossRef Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A (2011) Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett 11:5408–5413 CrossRef
go back to reference Thiemann S, Sachnov S, Porscha S, Wasserscheid P, Zaumseil J (2012) Ionic liquids for electrolyte-gating of ZnO field-effect transistors. J Phys Chem C 116:13536–13544 CrossRef Thiemann S, Sachnov S, Porscha S, Wasserscheid P, Zaumseil J (2012) Ionic liquids for electrolyte-gating of ZnO field-effect transistors. J Phys Chem C 116:13536–13544 CrossRef
go back to reference Urasinska-Wojcik B, Cocherel N, Wilson R, Burroughes J, Opoku J, Turner ML, Majewski LA (2015) 1 V Organic transistors with mixed self-assembled monolayer/Al 2O 3 gate dielectrics. Org Electron 26:20–24 CrossRef Urasinska-Wojcik B, Cocherel N, Wilson R, Burroughes J, Opoku J, Turner ML, Majewski LA (2015) 1 V Organic transistors with mixed self-assembled monolayer/Al 2O 3 gate dielectrics. Org Electron 26:20–24 CrossRef
go back to reference Wang B, Huang W, Chi L, Al-Hashimi M, Marks TJ, Facchetti A (2018) High-k gate dielectrics for emerging flexible and stretchable electronics. Chem Rev 118:5690–5754 CrossRef Wang B, Huang W, Chi L, Al-Hashimi M, Marks TJ, Facchetti A (2018) High-k gate dielectrics for emerging flexible and stretchable electronics. Chem Rev 118:5690–5754 CrossRef
go back to reference Xu W, Guo C, Rhee S-W (2013) High performance organic field-effect transistors using cyanoethyl pullulan (CEP) high-k polymer cross-linked with trimethylolpropane triglycidyl ether (TTE) at low temperatures. J Mater Chem C 1:3955–3960 CrossRef Xu W, Guo C, Rhee S-W (2013) High performance organic field-effect transistors using cyanoethyl pullulan (CEP) high-k polymer cross-linked with trimethylolpropane triglycidyl ether (TTE) at low temperatures. J Mater Chem C 1:3955–3960 CrossRef
go back to reference Yang Z (2016) Flexible substrate technology for millimeter wave applications. Ph.D. dissertation, Electronics, INSA deToulouse, France Yang Z (2016) Flexible substrate technology for millimeter wave applications. Ph.D. dissertation, Electronics, INSA deToulouse, France
go back to reference Yang D, Yang YQ, Duan Y, Chen P, Zang CL, Xie Y, Liu DM, Wang X, Duan YH, Sun FB, Gao Q, Xue KW (2013) Passivation properties of UV-curable polymer for organic light emitting diodes. ECS Solid State Lett 2(9):R31–R33 CrossRef Yang D, Yang YQ, Duan Y, Chen P, Zang CL, Xie Y, Liu DM, Wang X, Duan YH, Sun FB, Gao Q, Xue KW (2013) Passivation properties of UV-curable polymer for organic light emitting diodes. ECS Solid State Lett 2(9):R31–R33 CrossRef
go back to reference Yogeswaran N et al (2015) New materials and advances in making electronic skin for interactive robots. Adv Robot 29(21):1359–1373 CrossRef Yogeswaran N et al (2015) New materials and advances in making electronic skin for interactive robots. Adv Robot 29(21):1359–1373 CrossRef
go back to reference Yu D, Yang Y-Q, Chen Z, Tao Y, Liu Y-F (2016) Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt Commun 362:43–49 CrossRef Yu D, Yang Y-Q, Chen Z, Tao Y, Liu Y-F (2016) Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt Commun 362:43–49 CrossRef
Metadata
Title
Substrate and Encapsulation Materials for Printed Flexible Electronics
Author
Colin Tong
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-79804-8_5

Premium Partners