Skip to main content
Top
Published in: Colloid and Polymer Science 11/2018

08-10-2018 | Original Contribution

Sulfonated fluorinated block copolymer containing naphthalene unit/sulfonated polyvinylidene-co-hexafluoropropylene/functionalized silicon dioxide ternary composite membrane for low-humidity fuel cell applications

Authors: Ae Rhan Kim, Jane Cathleen Gabunada, Dong Jin Yoo

Published in: Colloid and Polymer Science | Issue 11/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A ternary composite membrane, composed of a sulfonated fluorinated block copolymer containing naphthalene unit (SFBCN), sulfonated polyvinylidene fluoride-co-hexafluoropropylene (SPVdF-HFP), and functionalized silicon dioxide (FSiO2), was fabricated via a simple solution casting method for use as a suitable proton exchange membrane in low-humidity fuel cells. The morphological and structural characterizations verify the successful formation of the ternary composite membrane. TGA and DSC analyses revealed the suitability of the materials for fuel cell applications. The increased water uptake, IEC, and proton conductivity values with increasing hydrophilicity of membranes were obtained by thorough measurements. The fabricated ternary composite membrane containing 10 wt% FSiO2 exhibited a superior proton conductivity (12.3 mS/cm) under dehydrated conditions (90 °C at 40% RH) over the Nafion 117 (7.8 mS/cm) membrane, while at 90 °C at 100% RH, it exhibited a comparable H+ conductivity (93.1 mS/cm) to Nafion 117 (112 mS/cm) membrane.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sust Energ Rev 32:810–853CrossRef Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sust Energ Rev 32:810–853CrossRef
2.
go back to reference Wee JH (2007) Applications of proton exchange membrane fuel cell systems. Renew Sust Energ Rev 11(8):1720–1738CrossRef Wee JH (2007) Applications of proton exchange membrane fuel cell systems. Renew Sust Energ Rev 11(8):1720–1738CrossRef
3.
go back to reference Yang C, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB (2004) A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J Membr Sci 237(1):145–161CrossRef Yang C, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB (2004) A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J Membr Sci 237(1):145–161CrossRef
4.
go back to reference Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuel 28(12):7303–7330CrossRef Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuel 28(12):7303–7330CrossRef
5.
go back to reference Park CH, Lee CH, Guiver MD, Lee YM (2011) Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Prog Polym Sci 36(11):1443–1498CrossRef Park CH, Lee CH, Guiver MD, Lee YM (2011) Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Prog Polym Sci 36(11):1443–1498CrossRef
6.
go back to reference Parnian MJ, Rowshanzamir S, Prasad AK, Advani SG (2018) High durability sulfonated poly (ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications. J Membr Sci 556:12–22CrossRef Parnian MJ, Rowshanzamir S, Prasad AK, Advani SG (2018) High durability sulfonated poly (ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications. J Membr Sci 556:12–22CrossRef
7.
go back to reference Gao S, Xu H, Luo T, Guo Y, Li Z, Ouadah A, Zhang Y, Zhang Z, Zhu C (2017) Novel proton conducting membranes based on cross-linked sulfonated polyphosphazenes and poly(ether ether ketone). J Membr Sci 536:1–10CrossRef Gao S, Xu H, Luo T, Guo Y, Li Z, Ouadah A, Zhang Y, Zhang Z, Zhu C (2017) Novel proton conducting membranes based on cross-linked sulfonated polyphosphazenes and poly(ether ether ketone). J Membr Sci 536:1–10CrossRef
8.
go back to reference Vinothkannan M, Kim AR, Gnana kumar G, Yoon JM, Yoo DJ (2017) Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe3O4-FGO) membrane for application in high temperature and low humidity fuel cells. RSC Adv 7(62):39034–39048CrossRef Vinothkannan M, Kim AR, Gnana kumar G, Yoon JM, Yoo DJ (2017) Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe3O4-FGO) membrane for application in high temperature and low humidity fuel cells. RSC Adv 7(62):39034–39048CrossRef
9.
go back to reference Jang HR, Yoo ES, Kannan R, Kim JS, Lee K, Yoo DJ (2017) Facile tailor-made enhancement in proton conductivity of sulfonated poly(ether ether ketone) by graphene oxide nanosheet for polymer electrolyte membrane fuel cell applications. Colloid Polym Sci 295(6):1059–1069CrossRef Jang HR, Yoo ES, Kannan R, Kim JS, Lee K, Yoo DJ (2017) Facile tailor-made enhancement in proton conductivity of sulfonated poly(ether ether ketone) by graphene oxide nanosheet for polymer electrolyte membrane fuel cell applications. Colloid Polym Sci 295(6):1059–1069CrossRef
10.
go back to reference Ahn MK, Lee B, Jang J, Min CM, Lee SB, Pak C, Lee JS (2018) Facile preparation of blend proton exchange membranes with highly sulfonated poly(arylene ether) and poly(arylene ether sulfone) bearing dense triazoles. J Membr Sci 560:58–66CrossRef Ahn MK, Lee B, Jang J, Min CM, Lee SB, Pak C, Lee JS (2018) Facile preparation of blend proton exchange membranes with highly sulfonated poly(arylene ether) and poly(arylene ether sulfone) bearing dense triazoles. J Membr Sci 560:58–66CrossRef
11.
go back to reference Yang Q, Li L, Lin CX, Gao XL, Zhao CH, Zhang QG, Zhu AM, Liu QL (2018) Hyperbranched poly(arylene ether ketone) anion exchange membranes for fuel cells. J Membr Sci 560:77–86CrossRef Yang Q, Li L, Lin CX, Gao XL, Zhao CH, Zhang QG, Zhu AM, Liu QL (2018) Hyperbranched poly(arylene ether ketone) anion exchange membranes for fuel cells. J Membr Sci 560:77–86CrossRef
12.
go back to reference Chen JC, Wu JA, Lee CY, Tsai MC, Chen KH (2015) Novel polyimides containing benzimidazole for temperature proton exchange membrane fuel. J Membr Sci 483:144–154CrossRef Chen JC, Wu JA, Lee CY, Tsai MC, Chen KH (2015) Novel polyimides containing benzimidazole for temperature proton exchange membrane fuel. J Membr Sci 483:144–154CrossRef
13.
go back to reference He ML, Xu HL, Dong Y, Xiao JH, Liu P, Fu FY, Hussain S, Zhang SZ, Jing CJ, Yu Q, Zhu CJ (2014) Synthesis and characterization of sulfonated polyphosphazene-graft-polystyrene copolymers for proton exchange membranes. Chin J Polym Sci 32(2):151–162CrossRef He ML, Xu HL, Dong Y, Xiao JH, Liu P, Fu FY, Hussain S, Zhang SZ, Jing CJ, Yu Q, Zhu CJ (2014) Synthesis and characterization of sulfonated polyphosphazene-graft-polystyrene copolymers for proton exchange membranes. Chin J Polym Sci 32(2):151–162CrossRef
14.
go back to reference Kim AR, Vinothkannan M, Yoo DJ (2017) Artificially designed, low humidifying organic–inorganic (SFBC-50/FSiO2) composite membrane for electrolyte applications of fuel cells. Compos Part B Eng 130:103–118CrossRef Kim AR, Vinothkannan M, Yoo DJ (2017) Artificially designed, low humidifying organic–inorganic (SFBC-50/FSiO2) composite membrane for electrolyte applications of fuel cells. Compos Part B Eng 130:103–118CrossRef
15.
go back to reference Baker AM, Wang L, Johnson WB, Prasad AK, Advani SG (2014) Nafion membranes reinforced with ceria-coated multiwall carbon nanotubes for improved mechanical and chemical durability in polymer electrolyte membrane fuel cells. J Phys Chem C 118(46):26796–26802CrossRef Baker AM, Wang L, Johnson WB, Prasad AK, Advani SG (2014) Nafion membranes reinforced with ceria-coated multiwall carbon nanotubes for improved mechanical and chemical durability in polymer electrolyte membrane fuel cells. J Phys Chem C 118(46):26796–26802CrossRef
16.
go back to reference Miyahara T, Hayano T, Matsuno S, Watanabe M, Miyatake K (2012) Sulfonated polybenzophenone/poly(arylene ether) block copolymer membranes for fuel cell applications. ACS Appl Mater Inter 4(6):2881–2884CrossRef Miyahara T, Hayano T, Matsuno S, Watanabe M, Miyatake K (2012) Sulfonated polybenzophenone/poly(arylene ether) block copolymer membranes for fuel cell applications. ACS Appl Mater Inter 4(6):2881–2884CrossRef
17.
go back to reference Higashihara T, Matsumoto K, Ueda M (2009) Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 50(23):5341–5357CrossRef Higashihara T, Matsumoto K, Ueda M (2009) Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 50(23):5341–5357CrossRef
18.
go back to reference Oh KH, Bae I, Lee H, Kim H, Kim HT (2017) Silica-embedded hydrogel nanofiller for enhancing low humidity proton conduction of a hydrocarbon-based polymer electrolyte membrane. J Membr Sci 543:106–113CrossRef Oh KH, Bae I, Lee H, Kim H, Kim HT (2017) Silica-embedded hydrogel nanofiller for enhancing low humidity proton conduction of a hydrocarbon-based polymer electrolyte membrane. J Membr Sci 543:106–113CrossRef
19.
go back to reference Gnana kumar G, Kim AR, Nahm KS, Yoo DJ (2011) High proton conductivity and low fuel crossover of polyvinylidene fluoride–hexafluoro propylene–silica sulfuric acid composite membranes for direct methanol fuel cells. Curr Appl Phys 11(3):896–902CrossRef Gnana kumar G, Kim AR, Nahm KS, Yoo DJ (2011) High proton conductivity and low fuel crossover of polyvinylidene fluoride–hexafluoro propylene–silica sulfuric acid composite membranes for direct methanol fuel cells. Curr Appl Phys 11(3):896–902CrossRef
20.
go back to reference Gnana kumar G, Manthiram A (2017) Sulfonated polyether ether ketone/strontium zirconite@TiO2 nanocomposite membranes for direct methanol fuel cells. J Mater Chem A 5(38):20497–20504CrossRef Gnana kumar G, Manthiram A (2017) Sulfonated polyether ether ketone/strontium zirconite@TiO2 nanocomposite membranes for direct methanol fuel cells. J Mater Chem A 5(38):20497–20504CrossRef
21.
go back to reference Gnana kumar G, Shin J, Nho YC, Hwang IS, Fei G, Kim AR, Nahm KS (2010) Irradiated PVdF-HFP–tin oxide composite membranes for the applications of direct methanol fuel cells. J Membr Sci 350(1):92–100CrossRef Gnana kumar G, Shin J, Nho YC, Hwang IS, Fei G, Kim AR, Nahm KS (2010) Irradiated PVdF-HFP–tin oxide composite membranes for the applications of direct methanol fuel cells. J Membr Sci 350(1):92–100CrossRef
22.
go back to reference Vinothkannan M, Kim AR, Nahm KS, Yoo DJ (2016) Ternary hybrid (SPEEK/SPVdF-HFP/GO) based membrane electrolyte for the applications of fuel cells: profile of improved mechanical strength, thermal stability and proton conductivity. RSC Adv 6(110):108851–108863CrossRef Vinothkannan M, Kim AR, Nahm KS, Yoo DJ (2016) Ternary hybrid (SPEEK/SPVdF-HFP/GO) based membrane electrolyte for the applications of fuel cells: profile of improved mechanical strength, thermal stability and proton conductivity. RSC Adv 6(110):108851–108863CrossRef
23.
go back to reference Kim AR, Vinothkannan M, Yoo DJ (2017) Sulfonated-fluorinated copolymer blending membranes containing SPEEK for use as the electrolyte in polymer electrolyte fuel cells (PEFC). Int J Hydrog Energy 42(7):4349–4365CrossRef Kim AR, Vinothkannan M, Yoo DJ (2017) Sulfonated-fluorinated copolymer blending membranes containing SPEEK for use as the electrolyte in polymer electrolyte fuel cells (PEFC). Int J Hydrog Energy 42(7):4349–4365CrossRef
24.
go back to reference Kim AR (2016) Synthesis and characterization of di and triblock copolymers containing a naphthalene unit for polymer electrolyte membranes. Trans Korean Hydrog New Energy Soc 27(6):660–669CrossRef Kim AR (2016) Synthesis and characterization of di and triblock copolymers containing a naphthalene unit for polymer electrolyte membranes. Trans Korean Hydrog New Energy Soc 27(6):660–669CrossRef
25.
go back to reference Kim AR, Vinothkannan M, Kim JS, Yoo DJ (2018) Proton-conducting phosphotungstic acid/sulfonated fluorinated block copolymer composite membrane for polymer electrolyte fuel cells with reduced hydrogen permeability. Polym Bull 75(7):2779–2804CrossRef Kim AR, Vinothkannan M, Kim JS, Yoo DJ (2018) Proton-conducting phosphotungstic acid/sulfonated fluorinated block copolymer composite membrane for polymer electrolyte fuel cells with reduced hydrogen permeability. Polym Bull 75(7):2779–2804CrossRef
26.
go back to reference Cama G, Mogosanu DE, Houben A, Dubruel P (2017) 3-synthetic biodegradable medical polyesters: poly-ε-caprolactone. In: Zhang X (ed) Science and principles of biodegradable and bioresorbable medical polymers, 1st edn. Woodhead Publishing, Cambridge, pp 79–105CrossRef Cama G, Mogosanu DE, Houben A, Dubruel P (2017) 3-synthetic biodegradable medical polyesters: poly-ε-caprolactone. In: Zhang X (ed) Science and principles of biodegradable and bioresorbable medical polymers, 1st edn. Woodhead Publishing, Cambridge, pp 79–105CrossRef
27.
go back to reference Korshak VV, Vasnev VA (1989) 10—Experimental methods of solution polymerization. In: Allen G, Bevington JC (eds) Comprehensive polymer science and supplements. Pergamon, Amsterdam, pp 143–165CrossRef Korshak VV, Vasnev VA (1989) 10—Experimental methods of solution polymerization. In: Allen G, Bevington JC (eds) Comprehensive polymer science and supplements. Pergamon, Amsterdam, pp 143–165CrossRef
28.
go back to reference Velayutham P, Sahu A, Parthasarathy S (2017) A Nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies 10(2):259CrossRef Velayutham P, Sahu A, Parthasarathy S (2017) A Nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies 10(2):259CrossRef
29.
go back to reference Huang X, Zhang J, Wang W, Liu Y, Zhang Z, Li L, Fan W (2015) Effects of PVDF/SiO2 hybrid ultrafiltration membranes by sol–gel method for the concentration of fennel oil in herbal water extract. RSC Adv 5(24):18258–18266CrossRef Huang X, Zhang J, Wang W, Liu Y, Zhang Z, Li L, Fan W (2015) Effects of PVDF/SiO2 hybrid ultrafiltration membranes by sol–gel method for the concentration of fennel oil in herbal water extract. RSC Adv 5(24):18258–18266CrossRef
30.
go back to reference Gaylord NG (1968) Critical factors affecting chemical reactions on polymers. J Polym Sci Polym Symp 24(1):1–5 Gaylord NG (1968) Critical factors affecting chemical reactions on polymers. J Polym Sci Polym Symp 24(1):1–5
31.
go back to reference Kim AR, Vinothkannan M, Yoo DJ (2018) Fabrication of binary sulfonated poly ether sulfone and sulfonated polyvinylidene fluoride-co-hexafluoro propylene blend membrane as efficient electrolyte for proton exchange membrane fuel cells. Bull Kor Chem Soc 39(8):913–919CrossRef Kim AR, Vinothkannan M, Yoo DJ (2018) Fabrication of binary sulfonated poly ether sulfone and sulfonated polyvinylidene fluoride-co-hexafluoro propylene blend membrane as efficient electrolyte for proton exchange membrane fuel cells. Bull Kor Chem Soc 39(8):913–919CrossRef
32.
go back to reference Nechifor M (2016) Aromatic polyesters with photosensitive side chains: synthesis, characterization and properties. J Serb Chem Soc 81(6):13CrossRef Nechifor M (2016) Aromatic polyesters with photosensitive side chains: synthesis, characterization and properties. J Serb Chem Soc 81(6):13CrossRef
33.
go back to reference Zierkiewicz W, Michalska D, Czarnik-Matusewicz B, Rospenk M (2003) Molecular structure and infrared spectra of 4-Fluorophenol: a combined theoretical and spectroscopic study. J Phys Chem A 107(22):4547–4554CrossRef Zierkiewicz W, Michalska D, Czarnik-Matusewicz B, Rospenk M (2003) Molecular structure and infrared spectra of 4-Fluorophenol: a combined theoretical and spectroscopic study. J Phys Chem A 107(22):4547–4554CrossRef
34.
go back to reference Adjemian KT, Lee SJ, Srinivasan S, Benziger J, Bocarsly AB (2002) Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140°C. J Electrochem Soc 149(3):A256–A261CrossRef Adjemian KT, Lee SJ, Srinivasan S, Benziger J, Bocarsly AB (2002) Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140°C. J Electrochem Soc 149(3):A256–A261CrossRef
35.
go back to reference Sim LN, Majid SR, Arof AK (2012) FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vibr Spectrosc 58:57–66CrossRef Sim LN, Majid SR, Arof AK (2012) FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vibr Spectrosc 58:57–66CrossRef
36.
go back to reference Feifel SC, Lisdat F (2011) Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers. J Nanobiotechnol 9(1):59CrossRef Feifel SC, Lisdat F (2011) Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers. J Nanobiotechnol 9(1):59CrossRef
37.
go back to reference Kumar P, Kundu PP (2015) Coating and lamination of Nafion117 with partially sulfonated PVdF for low methanol crossover in DMFC applications. Electrochim Acta 173:124–130CrossRef Kumar P, Kundu PP (2015) Coating and lamination of Nafion117 with partially sulfonated PVdF for low methanol crossover in DMFC applications. Electrochim Acta 173:124–130CrossRef
38.
go back to reference Mobinikhaledi A, Moghanian H, Pakdel S (2015) Microwave-assisted efficient synthesis of azlactone derivatives using 2-aminopyridine-functionalized sphere SiO2 nanoparticles as a reusable heterogeneous catalyst. Chin Chem Lett 26(5):557–563CrossRef Mobinikhaledi A, Moghanian H, Pakdel S (2015) Microwave-assisted efficient synthesis of azlactone derivatives using 2-aminopyridine-functionalized sphere SiO2 nanoparticles as a reusable heterogeneous catalyst. Chin Chem Lett 26(5):557–563CrossRef
39.
go back to reference Liang Y, Ouyang J, Wang H, Wang W, Chui P, Sun K (2012) Synthesis and characterization of core–shell structured SiO2@YVO4:Yb3+,Er3+ microspheres. Appl Surf Sci 258(8):3689–3694CrossRef Liang Y, Ouyang J, Wang H, Wang W, Chui P, Sun K (2012) Synthesis and characterization of core–shell structured SiO2@YVO4:Yb3+,Er3+ microspheres. Appl Surf Sci 258(8):3689–3694CrossRef
40.
go back to reference Gnana kumar G, Kim AR, Nahm KS, Yoo DJ, Elizabeth R (2010) High ion and lower molecular transportation of the poly vinylidene fluoride–hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications. J Power Sources 195(18):5922–5928CrossRef Gnana kumar G, Kim AR, Nahm KS, Yoo DJ, Elizabeth R (2010) High ion and lower molecular transportation of the poly vinylidene fluoride–hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications. J Power Sources 195(18):5922–5928CrossRef
41.
go back to reference Solarajan AK, Murugadoss V, Angaiah S (2017) High performance electrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J Appl Polym Sci 134(32):45177CrossRef Solarajan AK, Murugadoss V, Angaiah S (2017) High performance electrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J Appl Polym Sci 134(32):45177CrossRef
42.
go back to reference Farrokhzad H, Kikhavani T, Monnaie F, Ashrafizadeh SN, Koeckelberghs G, Van Gerven T, Van der Bruggen B (2015) Novel composite cation exchange films based on sulfonated PVDF for electromembrane separations. J Membr Sci 474:167–174CrossRef Farrokhzad H, Kikhavani T, Monnaie F, Ashrafizadeh SN, Koeckelberghs G, Van Gerven T, Van der Bruggen B (2015) Novel composite cation exchange films based on sulfonated PVDF for electromembrane separations. J Membr Sci 474:167–174CrossRef
43.
go back to reference Pervin SA, Prabu AA, Kim KJ, Lee YT (2015) Preparation and evaluation of poly(vinylidene fluoride)-sulfonated poly(1,4-phenylene sulfide) based membranes with improved hydrophilicity. Macromol Res 23(1):86–93CrossRef Pervin SA, Prabu AA, Kim KJ, Lee YT (2015) Preparation and evaluation of poly(vinylidene fluoride)-sulfonated poly(1,4-phenylene sulfide) based membranes with improved hydrophilicity. Macromol Res 23(1):86–93CrossRef
44.
go back to reference Duan Q, Ge S, Wang CY (2013) Water uptake, ionic conductivity and swelling properties of anion-exchange membrane. J Power Sources 243:773–778CrossRef Duan Q, Ge S, Wang CY (2013) Water uptake, ionic conductivity and swelling properties of anion-exchange membrane. J Power Sources 243:773–778CrossRef
45.
go back to reference Matos BR, Goulart CA, Santiago EI, Fonseca FC (2014) Proton conductivity of perfluorosulfonate ionomers at high temperature and high relative humidity. Appl Phys Lett 104(9):091904CrossRef Matos BR, Goulart CA, Santiago EI, Fonseca FC (2014) Proton conductivity of perfluorosulfonate ionomers at high temperature and high relative humidity. Appl Phys Lett 104(9):091904CrossRef
46.
go back to reference Park KT, Jung UH, Choi DW, Chun K, Lee HM, Kim SH (2008) ZrO2–SiO2/Nafion® composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity. J Power Sources 177(2):247–253CrossRef Park KT, Jung UH, Choi DW, Chun K, Lee HM, Kim SH (2008) ZrO2–SiO2/Nafion® composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity. J Power Sources 177(2):247–253CrossRef
47.
go back to reference Aricò AS, Baglio V, Di Blasi A, Creti P, Antonucci PL, Antonucci V (2003) Influence of the acid–base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells. Solid State Ionics 161(3):251–265CrossRef Aricò AS, Baglio V, Di Blasi A, Creti P, Antonucci PL, Antonucci V (2003) Influence of the acid–base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells. Solid State Ionics 161(3):251–265CrossRef
Metadata
Title
Sulfonated fluorinated block copolymer containing naphthalene unit/sulfonated polyvinylidene-co-hexafluoropropylene/functionalized silicon dioxide ternary composite membrane for low-humidity fuel cell applications
Authors
Ae Rhan Kim
Jane Cathleen Gabunada
Dong Jin Yoo
Publication date
08-10-2018
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 11/2018
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-018-4403-y

Other articles of this Issue 11/2018

Colloid and Polymer Science 11/2018 Go to the issue

Premium Partners