Skip to main content
Top
Published in:

26-07-2019

Summarizing agent strategies

Authors: Ofra Amir, Finale Doshi-Velez, David Sarne

Published in: Autonomous Agents and Multi-Agent Systems | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Intelligent agents and AI-based systems are becoming increasingly prevalent. They support people in different ways, such as providing users with advice, working with them to achieve goals or acting on users’ behalf. One key capability missing in such systems is the ability to present their users with an effective summary of their strategy and expected behaviors under different conditions and scenarios. This capability, which we see as complementary to those currently under development in the context of “interpretable machine learning” and “explainable AI”, is critical in various settings. In particular, it is likely to play a key role when a user needs to collaborate with an agent, when having to choose between different available agents to act on her behalf, or when requested to determine the level of autonomy to be granted to an agent or approve its strategy. In this paper, we pose the challenge of developing capabilities for strategy summarization, which is not addressed by current theories and methods in the field. We propose a conceptual framework for strategy summarization, which we envision as a collaborative process that involves both agents and people. Last, we suggest possible testbeds that could be used to evaluate progress in research on strategy summarization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The use of the term “agent” in this paper refers to any system for which strategy can be formally captured or simulated. Autonomous agents are a specific case in that sense.
 
2
For example, when considering the autonomous operation of UAVs in SAR missions, various recent solutions can be considered [1, 6, 54, 61, 62].
 
3
The method is inspired by the “strategy method” paradigm from behavioral economics [56] in the sense of eliciting people’s strategy. Nevertheless, while in the strategy method people state their action for every possible situation that may arise in their interaction (i.e., a state-machine-like description) with PDAs people are actually required to program their (not-necessarily-state-based) strategy into an agent.
 
Literature
2.
go back to reference Amgoud, L., & Prade, H. (2009). Using arguments for making and explaining decisions. Artificial Intelligence, 173(3–4), 413–436.MathSciNetCrossRefMATH Amgoud, L., & Prade, H. (2009). Using arguments for making and explaining decisions. Artificial Intelligence, 173(3–4), 413–436.MathSciNetCrossRefMATH
3.
go back to reference Amir, D., & Amir, O. (2018). Highlights: Summarizing agent behavior to people. In Proceedings of the 17th international conference on autonomous agents and multi-agent systems (AAMAS). Amir, D., & Amir, O. (2018). Highlights: Summarizing agent behavior to people. In Proceedings of the 17th international conference on autonomous agents and multi-agent systems (AAMAS).
4.
go back to reference Amir, O., Kamar, E., Kolobov, A., & Grosz, B. J. (2016). Interactive teaching strategies for agent training. In International joint conferences on artificial intelligence. Amir, O., Kamar, E., Kolobov, A., & Grosz, B. J. (2016). Interactive teaching strategies for agent training. In International joint conferences on artificial intelligence.
5.
go back to reference Baarslag, T., Hindriks, K., Jonker, C. M., Kraus, S., & Lin, R. (2012). The first automated negotiating agents competition (anac 2010). In T. Ito, M. Zhang, V. Robu, S. Fatima, & T. Matsuo (Eds.), New trends in agent-based complex automated negotiations (Vol. 383, pp. 113–135). Berlin, Heidelberg: Springer.CrossRef Baarslag, T., Hindriks, K., Jonker, C. M., Kraus, S., & Lin, R. (2012). The first automated negotiating agents competition (anac 2010). In T. Ito, M. Zhang, V. Robu, S. Fatima, & T. Matsuo (Eds.), New trends in agent-based complex automated negotiations (Vol. 383, pp. 113–135). Berlin, Heidelberg: Springer.CrossRef
7.
go back to reference Brooks, D. J., Shultz, A., Desai, M., Kovac, P., & Yanco, H. A. (2010). Towards state summarization for autonomous robots. In AAAI fall symposium: Dialog with robots (Vol. 61, p. 62). Brooks, D. J., Shultz, A., Desai, M., Kovac, P., & Yanco, H. A. (2010). Towards state summarization for autonomous robots. In AAAI fall symposium: Dialog with robots (Vol. 61, p. 62).
8.
go back to reference Caminada, M. W., Kutlak, R., Oren. N., & Vasconcelos, W. W. (2014). Scrutable plan enactment via argumentation and natural language generation. In Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems, international foundation for autonomous agents and multiagent systems (pp. 1625–1626). Caminada, M. W., Kutlak, R., Oren. N., & Vasconcelos, W. W. (2014). Scrutable plan enactment via argumentation and natural language generation. In Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems, international foundation for autonomous agents and multiagent systems (pp. 1625–1626).
9.
go back to reference Chalamish, M., Sarne, D., & Lin, R. (2012). The effectiveness of peer-designed agents in agent-based simulations. Multiagent and Grid Systems, 8(4), 349–372.CrossRef Chalamish, M., Sarne, D., & Lin, R. (2012). The effectiveness of peer-designed agents in agent-based simulations. Multiagent and Grid Systems, 8(4), 349–372.CrossRef
10.
go back to reference Chalamish, M., Sarne, D., & Lin, R. (2013). Enhancing parking simulations using peer-designed agents. IEEE Transactions on Intelligent Transportation Systems, 14(1), 492–498.CrossRef Chalamish, M., Sarne, D., & Lin, R. (2013). Enhancing parking simulations using peer-designed agents. IEEE Transactions on Intelligent Transportation Systems, 14(1), 492–498.CrossRef
11.
go back to reference Clouse, J. A. (1996). On integrating apprentice learning and reinforcement learning. PhD thesis, University of Massachusetts Clouse, J. A. (1996). On integrating apprentice learning and reinforcement learning. PhD thesis, University of Massachusetts
12.
go back to reference Devin, S., & Alami, R. (2016). An implemented theory of mind to improve human–robot shared plans execution. In 2016 11th ACM/IEEE international conference on human–robot interaction (HRI) (pp. 319–326). IEEE. Devin, S., & Alami, R. (2016). An implemented theory of mind to improve human–robot shared plans execution. In 2016 11th ACM/IEEE international conference on human–robot interaction (HRI) (pp. 319–326). IEEE.
13.
go back to reference Dodson, T., Mattei, N., & Goldsmith, J. (2011). A natural language argumentation interface for explanation generation in Markov decision processes. In Algorithmic decision theory (pp. 42–55). Dodson, T., Mattei, N., & Goldsmith, J. (2011). A natural language argumentation interface for explanation generation in Markov decision processes. In Algorithmic decision theory (pp. 42–55).
14.
15.
go back to reference Elizalde, F. (2008). Policy explanation in factored Markov decision processes. In Proceedings of the 4th European workshop on probabilistic graphical models (PGM 2008) (pp. 97–104). Elizalde, F. (2008). Policy explanation in factored Markov decision processes. In Proceedings of the 4th European workshop on probabilistic graphical models (PGM 2008) (pp. 97–104).
16.
go back to reference Elizalde, F., Sucar, L. E., Reyes, A., & de Buen, P. (2007). An MDP approach for explanation generation. In ExaCt (pp. 28–33). Elizalde, F., Sucar, L. E., Reyes, A., & de Buen, P. (2007). An MDP approach for explanation generation. In ExaCt (pp. 28–33).
17.
go back to reference Elmalech, A., & Sarne, D. (2014). Evaluating the applicability of peer-designed agents for mechanism evaluation. Web Intelligence and Agent Systems, 12(2), 171–191. Elmalech, A., & Sarne, D. (2014). Evaluating the applicability of peer-designed agents for mechanism evaluation. Web Intelligence and Agent Systems, 12(2), 171–191.
18.
go back to reference Elmalech, A., Sarne, D., & Agmon, N. (2016). Agent development as a strategy shaper. Autonomous Agents and Multi-Agent Systems, 30(3), 506–525.CrossRef Elmalech, A., Sarne, D., & Agmon, N. (2016). Agent development as a strategy shaper. Autonomous Agents and Multi-Agent Systems, 30(3), 506–525.CrossRef
19.
go back to reference Ernst, D., Stan, G. B., Goncalves, J., & Wehenkel, L. (2006). Clinical data based optimal STI strategies for HIV: A reinforcement learning approach. In 2006 45th IEEE conference on decision and control (pp. 667–672). IEEE. Ernst, D., Stan, G. B., Goncalves, J., & Wehenkel, L. (2006). Clinical data based optimal STI strategies for HIV: A reinforcement learning approach. In 2006 45th IEEE conference on decision and control (pp. 667–672). IEEE.
20.
go back to reference Garg, A. X., Adhikari, N. K., McDonald, H., Rosas-Arellano, M. P., Devereaux, P., Beyene, J., et al. (2005). Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review. Jama, 293(10), 1223–1238.CrossRef Garg, A. X., Adhikari, N. K., McDonald, H., Rosas-Arellano, M. P., Devereaux, P., Beyene, J., et al. (2005). Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review. Jama, 293(10), 1223–1238.CrossRef
21.
go back to reference Glass, A., McGuinness, D. L., & Wolverton, M. (2008). Toward establishing trust in adaptive agents. In Proceedings of the 13th international conference on intelligent user interfaces (pp. 227–236). ACM. Glass, A., McGuinness, D. L., & Wolverton, M. (2008). Toward establishing trust in adaptive agents. In Proceedings of the 13th international conference on intelligent user interfaces (pp. 227–236). ACM.
23.
24.
go back to reference Hadfi, R., Ito, T. (2016a). Holonic multiagent simulation of complex adaptive systems. In Workshop on MAS for complex networks and social computation (CNSC). Hadfi, R., Ito, T. (2016a). Holonic multiagent simulation of complex adaptive systems. In Workshop on MAS for complex networks and social computation (CNSC).
25.
go back to reference Hadfi, R., & Ito, T. (2016b). Multilayered multiagent system for traffic simulation. In International conference on autonomous agents and multi-agent systems (AAMAS), Singapore, May 9–13, 2016. Hadfi, R., & Ito, T. (2016b). Multilayered multiagent system for traffic simulation. In International conference on autonomous agents and multi-agent systems (AAMAS), Singapore, May 9–13, 2016.
26.
go back to reference Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (task load index): Results of empirical and theoretical research. Advances in Psychology, 52, 139–183.CrossRef Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (task load index): Results of empirical and theoretical research. Advances in Psychology, 52, 139–183.CrossRef
27.
go back to reference Hayes, B., & Shah, J. A. (2017). Improving robot controller transparency through autonomous policy explanation. In Proceedings of the 2017 ACM/IEEE international conference on human–robot interaction (pp. 303–312). ACM. Hayes, B., & Shah, J. A. (2017). Improving robot controller transparency through autonomous policy explanation. In Proceedings of the 2017 ACM/IEEE international conference on human–robot interaction (pp. 303–312). ACM.
28.
go back to reference Hoffman, G. (2013). Evaluating fluency in human–robot collaboration. In International conference on human–robot interaction (HRI), workshop on human robot collaboration (Vol. 381, pp. 1–8). Hoffman, G. (2013). Evaluating fluency in human–robot collaboration. In International conference on human–robot interaction (HRI), workshop on human robot collaboration (Vol. 381, pp. 1–8).
29.
go back to reference Horvitz, E. (1999). Principles of mixed-initiative user interfaces. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 159–166). ACM. Horvitz, E. (1999). Principles of mixed-initiative user interfaces. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 159–166). ACM.
30.
go back to reference Huang, S. H., Held, D., Abbeel, P., & Dragan, A. D. (2019). Enabling robots to communicate their objectives. Autonomous Robots, 43(2), 309–326. CrossRef Huang, S. H., Held, D., Abbeel, P., & Dragan, A. D. (2019). Enabling robots to communicate their objectives. Autonomous Robots, 43(2), 309–326. CrossRef
31.
go back to reference Khan, O., Poupart, P., Black, J., Sucar, L., Morales, E., & Hoey, J. (2011). Automatically generated explanations for markov decision processes. In Decision theory models for applications in AI: Concepts and solutions (pp. 144–163). Khan, O., Poupart, P., Black, J., Sucar, L., Morales, E., & Hoey, J. (2011). Automatically generated explanations for markov decision processes. In Decision theory models for applications in AI: Concepts and solutions (pp. 144–163).
32.
go back to reference Khan, O. Z., Poupart, P., & Black, J. P. (2009). Minimal sufficient explanations for factored Markov decision processes. In ICAPS. Khan, O. Z., Poupart, P., & Black, J. P. (2009). Minimal sufficient explanations for factored Markov decision processes. In ICAPS.
33.
go back to reference Kim, B., Khanna, R., & Koyejo, O. O. (2016). Examples are not enough, learn to criticize! criticism for interpretability. In Advances in neural information processing systems (pp. 2280–2288). Kim, B., Khanna, R., & Koyejo, O. O. (2016). Examples are not enough, learn to criticize! criticism for interpretability. In Advances in neural information processing systems (pp. 2280–2288).
34.
go back to reference Kim, B., Rudin, C., & Shah, J. A. (2014). The Bayesian case model: A generative approach for case-based reasoning and prototype classification. In Advances in neural information processing systems (pp. 1952–1960). Kim, B., Rudin, C., & Shah, J. A. (2014). The Bayesian case model: A generative approach for case-based reasoning and prototype classification. In Advances in neural information processing systems (pp. 1952–1960).
35.
go back to reference Kosti, S., Sarne, D., & Kaminka, G. A. (2014). A novel user-guided interface for robot search. In Proceedings of the international conference on intelligent robots and systems (IROS) (pp. 3305–3310). Kosti, S., Sarne, D., & Kaminka, G. A. (2014). A novel user-guided interface for robot search. In Proceedings of the international conference on intelligent robots and systems (IROS) (pp. 3305–3310).
36.
go back to reference Lage, I., Lifschitz, D., Doshi-Velez, F., & Amir, O. (2019a). Exploring computational user models for agent policy summarization. In Proceedings of the 28th international joint conference on artificial intelligence (IJCAI). Lage, I., Lifschitz, D., Doshi-Velez, F., & Amir, O. (2019a). Exploring computational user models for agent policy summarization. In Proceedings of the 28th international joint conference on artificial intelligence (IJCAI).
37.
go back to reference Lage, I., Lifschitz, D., Doshi-Velez, F., & Amir, O. (2019b). Toward robust policy summarization. In Proceedings of the 18th international conference on autonomous agents and multi-agent systems (AAMAS). Lage, I., Lifschitz, D., Doshi-Velez, F., & Amir, O. (2019b). Toward robust policy summarization. In Proceedings of the 18th international conference on autonomous agents and multi-agent systems (AAMAS).
38.
go back to reference Langley, P., Meadows, B., Sridharan, M., & Choi, D. (2017). Explainable agency for intelligent autonomous systems. In AAAI (pp. 4762–4764). Langley, P., Meadows, B., Sridharan, M., & Choi, D. (2017). Explainable agency for intelligent autonomous systems. In AAAI (pp. 4762–4764).
39.
go back to reference Lin, R., Kraus, S., Agmon, N., Barrett, S., & Stone, P. (2011). Comparing agents’ success against people in security domains. In Proceedings of the twenty-fifth AAAI conference on artificial intelligence. Lin, R., Kraus, S., Agmon, N., Barrett, S., & Stone, P. (2011). Comparing agents’ success against people in security domains. In Proceedings of the twenty-fifth AAAI conference on artificial intelligence.
40.
go back to reference Lin, R., Kraus, S., Oshrat, Y., & Gal, Y. K. (2010). Facilitating the evaluation of automated negotiators using peer designed agents. In Proceedings of the twenty-fourth AAAI conference on artificial intelligence. Lin, R., Kraus, S., Oshrat, Y., & Gal, Y. K. (2010). Facilitating the evaluation of automated negotiators using peer designed agents. In Proceedings of the twenty-fourth AAAI conference on artificial intelligence.
42.
go back to reference Lomas, M., Chevalier, R., Cross II, E. V., Garrett, R. C., Hoare, J., & Kopack, M. (2012). Explaining robot actions. In Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction (pp. 187–188). ACM. Lomas, M., Chevalier, R., Cross II, E. V., Garrett, R. C., Hoare, J., & Kopack, M. (2012). Explaining robot actions. In Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction (pp. 187–188). ACM.
43.
go back to reference Manisterski, E., Lin, R., & Kraus, S. (2008). Understanding how people design trading agents over time. In Proceedings of 7th international joint conference on autonomous agents and multiagent systems (AAMAS) (pp. 1593–1596). Manisterski, E., Lin, R., & Kraus, S. (2008). Understanding how people design trading agents over time. In Proceedings of 7th international joint conference on autonomous agents and multiagent systems (AAMAS) (pp. 1593–1596).
44.
go back to reference Mash, M., Lin. R., & Sarne. D. (2014). Peer-design agents for reliably evaluating distribution of outcomes in environments involving people. In Proceedings of the international conference on autonomous agents and multi-agent systems (AAMAS) (pp. 949–956). Mash, M., Lin. R., & Sarne. D. (2014). Peer-design agents for reliably evaluating distribution of outcomes in environments involving people. In Proceedings of the international conference on autonomous agents and multi-agent systems (AAMAS) (pp. 949–956).
45.
go back to reference McGuinness, D. L., Glass, A., Wolverton, M., & Da Silva, P. P. (2007a). A categorization of explanation questions for task processing systems. In ExaCt (pp. 42–48). McGuinness, D. L., Glass, A., Wolverton, M., & Da Silva, P. P. (2007a). A categorization of explanation questions for task processing systems. In ExaCt (pp. 42–48).
46.
go back to reference McGuinness, D. L., Glass, A., Wolverton, M., & Da Silva, P. P. (2007b). Explaining task processing in cognitive assistants that learn. In AAAI spring symposium: Interaction challenges for intelligent assistants (pp. 80–87). McGuinness, D. L., Glass, A., Wolverton, M., & Da Silva, P. P. (2007b). Explaining task processing in cognitive assistants that learn. In AAAI spring symposium: Interaction challenges for intelligent assistants (pp. 80–87).
47.
go back to reference Myers, K. L. (2006). Metatheoretic plan summarization and comparison. In ICAPS (pp. 182–192). Myers, K. L. (2006). Metatheoretic plan summarization and comparison. In ICAPS (pp. 182–192).
48.
go back to reference Nikolaidis, S., & Shah, J. (2013). Human–robot cross-training: Computational formulation, modeling and evaluation of a human team training strategy. In Proceedings of the 8th ACM/IEEE international conference on human–robot interaction (pp. 33–40). IEEE Press. Nikolaidis, S., & Shah, J. (2013). Human–robot cross-training: Computational formulation, modeling and evaluation of a human team training strategy. In Proceedings of the 8th ACM/IEEE international conference on human–robot interaction (pp. 33–40). IEEE Press.
49.
go back to reference Norman, D. A. (1983). Some observations on mental models. Mental Models, 7(112), 7–14. Norman, D. A. (1983). Some observations on mental models. Mental Models, 7(112), 7–14.
50.
go back to reference Olsen, D. R., & Goodrich, M. A. (2003). Metrics for evaluating human–robot interactions. In Proceedings of PERMIS (Vol. 2003, p. 4). Olsen, D. R., & Goodrich, M. A. (2003). Metrics for evaluating human–robot interactions. In Proceedings of PERMIS (Vol. 2003, p. 4).
51.
go back to reference Ribeiro, M. T., Singh, S., & Guestrin, C. (2016a). Model-agnostic interpretability of machine learning. arXiv preprint arXiv:1606.05386. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016a). Model-agnostic interpretability of machine learning. arXiv preprint arXiv:​1606.​05386.
52.
go back to reference Ribeiro, M. T., Singh, S., & Guestrin, C. (2016b). Why should i trust you?: Explaining the predictions of any classifier. In Proceedings of ACM international conference on knowledge discovery and data mining (pp. 1135–1144). ACM. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016b). Why should i trust you?: Explaining the predictions of any classifier. In Proceedings of ACM international conference on knowledge discovery and data mining (pp. 1135–1144). ACM.
53.
go back to reference Sampedro, C., Rodriguez-Ramos, A., Bavle, H., Carrio, A., de la Puente, P., & Campoy, P. (2018). A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. Journal of Intelligent & Robotic Systems. https://doi.org/10.1007/s10846-018-0898-1. Sampedro, C., Rodriguez-Ramos, A., Bavle, H., Carrio, A., de la Puente, P., & Campoy, P. (2018). A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. Journal of Intelligent & Robotic Systems. https://​doi.​org/​10.​1007/​s10846-018-0898-1.
54.
go back to reference Scherer, J., Yahyanejad, S., Hayat, S., Yanmaz, E., Andre, T., Khan, A., Vukadinovic, V., Bettstetter, C., Hellwagner, H., & Rinner, B. (2015). An autonomous multi-UAV system for search and rescue. In Proceedings of the first workshop on micro aerial vehicle networks, systems, and applications for civilian use, DroNet ’15 (pp. 33–38). ACM, New York, NY, USA. https://doi.org/10.1145/2750675.2750683. Scherer, J., Yahyanejad, S., Hayat, S., Yanmaz, E., Andre, T., Khan, A., Vukadinovic, V., Bettstetter, C., Hellwagner, H., & Rinner, B. (2015). An autonomous multi-UAV system for search and rescue. In Proceedings of the first workshop on micro aerial vehicle networks, systems, and applications for civilian use, DroNet ’15 (pp. 33–38). ACM, New York, NY, USA. https://​doi.​org/​10.​1145/​2750675.​2750683.
55.
go back to reference Seegebarth, B., Müller, F., Schattenberg, B., & Biundo, S. (2012). Making hybrid plans more clear to human users-a formal approach for generating sound explanations. In Twenty-second international conference on automated planning and scheduling. Seegebarth, B., Müller, F., Schattenberg, B., & Biundo, S. (2012). Making hybrid plans more clear to human users-a formal approach for generating sound explanations. In Twenty-second international conference on automated planning and scheduling.
56.
go back to reference Selten, R., Mitzkewitz, M., & Uhlich, G. (1997). Duopoly strategies programmed by experienced players. Econometrica, 65(3), 517–555.MathSciNetCrossRefMATH Selten, R., Mitzkewitz, M., & Uhlich, G. (1997). Duopoly strategies programmed by experienced players. Econometrica, 65(3), 517–555.MathSciNetCrossRefMATH
57.
go back to reference Sohrabi, S., Baier, J. A., & McIlraith, S. A. (2011). Preferred explanations: Theory and generation via planning. In AAAI. Sohrabi, S., Baier, J. A., & McIlraith, S. A. (2011). Preferred explanations: Theory and generation via planning. In AAAI.
58.
go back to reference Sreedharan, S., Srivastava, S., & Kambhampati, S. (2018). Hierarchical expertise level modeling for user specific contrastive explanations. In IJCAI (pp. 4829–4836). Sreedharan, S., Srivastava, S., & Kambhampati, S. (2018). Hierarchical expertise level modeling for user specific contrastive explanations. In IJCAI (pp. 4829–4836).
59.
go back to reference Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G., Hirschberg, J., Kalyanakrishnan, S., Kamar, E., Kraus, S., Leyton-Brown, K., Parkes, D., William, P., AnnaLee, S., Julie, S., Milind, T., & Astro, T. (2016). Artificial intelligence and life in 2030. One hundred year study on artificial intelligence: Report of the 2015–2016 study panel. Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G., Hirschberg, J., Kalyanakrishnan, S., Kamar, E., Kraus, S., Leyton-Brown, K., Parkes, D., William, P., AnnaLee, S., Julie, S., Milind, T., & Astro, T. (2016). Artificial intelligence and life in 2030. One hundred year study on artificial intelligence: Report of the 2015–2016 study panel.
60.
go back to reference Stubbs, K., Hinds, P. J., & Wettergreen, D. (2007). Autonomy and common ground in human–robot interaction: A field study. IEEE Intelligent Systems, 22(2), 42–50.CrossRef Stubbs, K., Hinds, P. J., & Wettergreen, D. (2007). Autonomy and common ground in human–robot interaction: A field study. IEEE Intelligent Systems, 22(2), 42–50.CrossRef
63.
go back to reference Torrey, L., & Taylor, M. (2013). Teaching on a budget: Agents advising agents in reinforcement learning. In Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems (pp. 1053–1060). Torrey, L., & Taylor, M. (2013). Teaching on a budget: Agents advising agents in reinforcement learning. In Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems (pp. 1053–1060).
64.
go back to reference Urieli, D., & Stone, P. (2014). Tactex’13: A champion adaptive power trading agent. In Proceedings of the twenty-eighth conference on artificial intelligence (AAAI’14) (pp. 465–471). Urieli, D., & Stone, P. (2014). Tactex’13: A champion adaptive power trading agent. In Proceedings of the twenty-eighth conference on artificial intelligence (AAAI’14) (pp. 465–471).
65.
go back to reference Velagapudi, P., Wang, J., Wang, H., Scerri, P., Lewis, M., & Sycara, K. (2008). Synchronous vs. asynchronous video in multi-robot search. In ACHI’08 (pp. 224–229). Velagapudi, P., Wang, J., Wang, H., Scerri, P., Lewis, M., & Sycara, K. (2008). Synchronous vs. asynchronous video in multi-robot search. In ACHI’08 (pp. 224–229).
66.
go back to reference Vellido, A., Martín-Guerrero, J. D., & Lisboa, P. J. (2012). Making machine learning models interpretable. ESANN, 12, 163–172. Vellido, A., Martín-Guerrero, J. D., & Lisboa, P. J. (2012). Making machine learning models interpretable. ESANN, 12, 163–172.
68.
go back to reference Wang, N., Pynadath, D. V., & Hill, S. G. (2016). The impact of pomdp-generated explanations on trust and performance in human–robot teams. In Proceedings of the 2016 international conference on autonomous agents & multiagent systems (pp. 997–1005). Wang, N., Pynadath, D. V., & Hill, S. G. (2016). The impact of pomdp-generated explanations on trust and performance in human–robot teams. In Proceedings of the 2016 international conference on autonomous agents & multiagent systems (pp. 997–1005).
69.
go back to reference Wang, H., Velagapudi, P., Scerri, P., Sycara, K., & Lewis, M. (2009). Using humans as sensors in robotic search. In FUSION’09 (pp. 1249 – 1256). Wang, H., Velagapudi, P., Scerri, P., Sycara, K., & Lewis, M. (2009). Using humans as sensors in robotic search. In FUSION’09 (pp. 1249 – 1256).
70.
go back to reference Wellman, M., Greenwald, A., & Stone, P. (2007). Autonomous bidding agents—Strategies and lessons from the trading agent competition. Cambridge: MIT Press.CrossRef Wellman, M., Greenwald, A., & Stone, P. (2007). Autonomous bidding agents—Strategies and lessons from the trading agent competition. Cambridge: MIT Press.CrossRef
73.
go back to reference Zhang, Y., Sreedharan, S., Kulkarni, A., Chakraborti, T., Zhuo, H. H., & Kambhampati, S. (2017) Plan explicability and predictability for robot task planning. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 1313–1320). IEEE. Zhang, Y., Sreedharan, S., Kulkarni, A., Chakraborti, T., Zhuo, H. H., & Kambhampati, S. (2017) Plan explicability and predictability for robot task planning. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 1313–1320). IEEE.
74.
go back to reference Zhu, X. (2015). Machine teaching: An inverse problem to machine learning and an approach toward optimal education. In AAAI (pp. 4083–4087). Zhu, X. (2015). Machine teaching: An inverse problem to machine learning and an approach toward optimal education. In AAAI (pp. 4083–4087).
Metadata
Title
Summarizing agent strategies
Authors
Ofra Amir
Finale Doshi-Velez
David Sarne
Publication date
26-07-2019
Publisher
Springer US
Published in
Autonomous Agents and Multi-Agent Systems / Issue 5/2019
Print ISSN: 1387-2532
Electronic ISSN: 1573-7454
DOI
https://doi.org/10.1007/s10458-019-09418-w

Premium Partner