Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

7. Summary and Outlook

Abstract

Throughout this book, I have investigated the fundamental properties of optical nanocomposites and their potential as next-generation optical materials. To summarize how my findings bridge different gaps between fundamental research and practice, I, in this chapter, address each of the four main questions that I set out to answer in the introduction. In addition, also provide my perspective on how the challenges that will inevitably arise when the concepts I developed in this book are brought closer to commercialization can be overcome. Finally, I summarize some promising directions for future research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.I. Mercado, Small form factor telephoto camera. Patent US2015/0116569 (2015) R.I. Mercado, Small form factor telephoto camera. Patent US2015/0116569 (2015)
2.
go back to reference P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011) CrossRef P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011) CrossRef
3.
go back to reference X.G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, L. Zschiedrich, Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes. Phys. Rev. B 99(4), 045406 (2019) X.G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, L. Zschiedrich, Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes. Phys. Rev. B 99(4), 045406 (2019)
4.
go back to reference D. Theobald, A. Egel, G. Gomard, U. Lemmer, Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles. Phys. Rev. B 96(3), 033822 (2017) D. Theobald, A. Egel, G. Gomard, U. Lemmer, Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles. Phys. Rev. B 96(3), 033822 (2017)
5.
go back to reference M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007) CrossRef M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007) CrossRef
6.
go back to reference M.I. Mishchenko, L.D. Travis, A. Macke, Scattering of light by polydisperse, randomly oriented, finite circular cylinders. Appl. Opt. 35(24), 4927–4940 (1996) CrossRef M.I. Mishchenko, L.D. Travis, A. Macke, Scattering of light by polydisperse, randomly oriented, finite circular cylinders. Appl. Opt. 35(24), 4927–4940 (1996) CrossRef
7.
go back to reference E.A. Muljarov, T. Weiss, Resonant-state expansion for open optical systems: generalization to magnetic, chiral, and bi-anisotropic materials. Opt. Lett. 43(9), 1978 (2018) E.A. Muljarov, T. Weiss, Resonant-state expansion for open optical systems: generalization to magnetic, chiral, and bi-anisotropic materials. Opt. Lett. 43(9), 1978 (2018)
8.
go back to reference T. Weiss, E.A. Muljarov, How to calculate the pole expansion of the optical scattering matrix from the resonant states. Phys. Rev. B 98(8) (2018) T. Weiss, E.A. Muljarov, How to calculate the pole expansion of the optical scattering matrix from the resonant states. Phys. Rev. B 98(8) (2018)
9.
go back to reference R.M. Ziff, S. Torquato, Percolation of disordered jammed sphere packings. J. Phys. A: Math. Theor. 50(8), 085001 (2017) R.M. Ziff, S. Torquato, Percolation of disordered jammed sphere packings. J. Phys. A: Math. Theor. 50(8), 085001 (2017)
10.
go back to reference S. Torquato, Perspective: Basic understanding of condensed phases of matter via packing models. J. Chem. Phys. 149(2), 020901 (2018) S. Torquato, Perspective: Basic understanding of condensed phases of matter via packing models. J. Chem. Phys. 149(2), 020901 (2018)
11.
go back to reference S. Atkinson, F.H. Stillinger, S. Torquato, Existence of isostatic, maximally random jammed monodisperse hard-disk packings. Proc. Natl. Acad. Sci. U. S. A. 111(52), 18436 (2014) S. Atkinson, F.H. Stillinger, S. Torquato, Existence of isostatic, maximally random jammed monodisperse hard-disk packings. Proc. Natl. Acad. Sci. U. S. A. 111(52), 18436 (2014)
12.
go back to reference L. Pattelli, A. Egel, U. Lemmer, D.S. Wiersma, Role of packing density and spatial correlations in strongly scattering 3D systems. Optica 5(9), 1037–1045 (2018) CrossRef L. Pattelli, A. Egel, U. Lemmer, D.S. Wiersma, Role of packing density and spatial correlations in strongly scattering 3D systems. Optica 5(9), 1037–1045 (2018) CrossRef
13.
go back to reference M.A. Klatt, S. Torquato, Characterization of maximally random jammed sphere packings. III. Transport and electromagnetic properties via correlation functions. Phys. Rev. E 97(1), 012118 (2018) M.A. Klatt, S. Torquato, Characterization of maximally random jammed sphere packings. III. Transport and electromagnetic properties via correlation functions. Phys. Rev. E 97(1), 012118 (2018)
14.
go back to reference S. Torquato, F.H. Stillinger, Controlling the short-range order and packing densities of many-particle systems. J. Phys. Chem. B 106(33), 8354–8359 (2002) CrossRef S. Torquato, F.H. Stillinger, Controlling the short-range order and packing densities of many-particle systems. J. Phys. Chem. B 106(33), 8354–8359 (2002) CrossRef
15.
go back to reference M.V. Rybin, D.S. Filonov, K.B. Samusev, P.A. Belov, Y.S. Kivshar, M.F. Limonov, Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commu. 6, 10102 (2015) M.V. Rybin, D.S. Filonov, K.B. Samusev, P.A. Belov, Y.S. Kivshar, M.F. Limonov, Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commu. 6, 10102 (2015)
16.
go back to reference M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, M. Segev, Amorphous photonic lattices: band gaps, effective mass, and suppressed transport. Phys. Rev. Lett. 106(19), 193904 (2011) M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, M. Segev, Amorphous photonic lattices: band gaps, effective mass, and suppressed transport. Phys. Rev. Lett. 106(19), 193904 (2011)
17.
go back to reference L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, J. Zi, Amorphous photonic crystals with only short-range order. Adv. Mater. 25(37), 5314–5320 (2013) CrossRef L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, J. Zi, Amorphous photonic crystals with only short-range order. Adv. Mater. 25(37), 5314–5320 (2013) CrossRef
18.
go back to reference S. Chandra, S.H. Pathan, S. Mitra, B.H. Modha, A. Goswami, P. Pramanik, Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv. 2(9), 3602–3606 (2012) CrossRef S. Chandra, S.H. Pathan, S. Mitra, B.H. Modha, A. Goswami, P. Pramanik, Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv. 2(9), 3602–3606 (2012) CrossRef
19.
go back to reference J.M. Garcia, T. Mankad, P.O. Holtz, P.J. Wellman, P.M. Petroff, Electronic states tuning of InAs self-assembled quantum dots. Appl. Phys. Lett. 72(24), 3172–3174 (2020) CrossRef J.M. Garcia, T. Mankad, P.O. Holtz, P.J. Wellman, P.M. Petroff, Electronic states tuning of InAs self-assembled quantum dots. Appl. Phys. Lett. 72(24), 3172–3174 (2020) CrossRef
20.
go back to reference P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49(16), D157-D176 (2010) P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49(16), D157-D176 (2010)
21.
go back to reference J.-G. Liu, M. Ueda, High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 19(47), 8907–8919 (2009) CrossRef J.-G. Liu, M. Ueda, High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 19(47), 8907–8919 (2009) CrossRef
22.
go back to reference M. Feuillade, G. Cantagrel, Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article. Patent US20150203710 (2015) M. Feuillade, G. Cantagrel, Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article. Patent US20150203710 (2015)
23.
go back to reference S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 (2010) S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 (2010)
24.
go back to reference H.K. Schmidt, Sol-gel nanocomposites as functional optical materials, in Sol-Gel Optics II, ed. by J.D. Mackenzie, vol. 1758 (International Society for Optics and Photonics. SPIE, 1992), pp. 396–402 H.K. Schmidt, Sol-gel nanocomposites as functional optical materials, in Sol-Gel Optics II, ed. by J.D. Mackenzie, vol. 1758 (International Society for Optics and Photonics. SPIE, 1992), pp. 396–402
25.
go back to reference N. Nakashima, High refractive index glass compositions. Patent US4082427 (1978) N. Nakashima, High refractive index glass compositions. Patent US4082427 (1978)
26.
go back to reference S. Monickam, D. Peters, G. Cooper, Z. Chen, Nanocomposite formulations for optical applications. Patent US20180223107 (2018) S. Monickam, D. Peters, G. Cooper, Z. Chen, Nanocomposite formulations for optical applications. Patent US20180223107 (2018)
27.
go back to reference J.L.H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S.L.-C. Hsu, T.-L. Li, Transparent high refractive index nanocomposite thin films. Mater. Lett. 61(14–15), 2908–2910 (2007) CrossRef J.L.H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S.L.-C. Hsu, T.-L. Li, Transparent high refractive index nanocomposite thin films. Mater. Lett. 61(14–15), 2908–2910 (2007) CrossRef
28.
go back to reference P.T. Chung, C.T. Yang, S.H. Wang, C.W. Chen, A.S. Chiang, C.-Y. Liu, ZrO2/epoxy nanocomposite for LED encapsulation. Mater. Chem. Phys. 136(2–3), 868–876 (2012) CrossRef P.T. Chung, C.T. Yang, S.H. Wang, C.W. Chen, A.S. Chiang, C.-Y. Liu, ZrO2/epoxy nanocomposite for LED encapsulation. Mater. Chem. Phys. 136(2–3), 868–876 (2012) CrossRef
29.
go back to reference S. Lee, H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, U. Paik, Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J. Mater. Chem. 18(15), 1751–1755 (2008) CrossRef S. Lee, H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, U. Paik, Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J. Mater. Chem. 18(15), 1751–1755 (2008) CrossRef
30.
go back to reference H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl. Surface Sci. 258(22), 8564–8569 (2012) CrossRef H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl. Surface Sci. 258(22), 8564–8569 (2012) CrossRef
31.
go back to reference C. Lü, Z. Cui, Z. Li, B. Yang, J. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–530 (2003) CrossRef C. Lü, Z. Cui, Z. Li, B. Yang, J. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–530 (2003) CrossRef
32.
go back to reference C. Lü, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, J. Shen, Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. J. Mater. Chem. 13(9), 2189–2195 (2003) CrossRef C. Lü, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, J. Shen, Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. J. Mater. Chem. 13(9), 2189–2195 (2003) CrossRef
33.
go back to reference C. Lü, C. Guan, Y. Liu, Y. Cheng, B. Yang, PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17(9), 2448–2454 (2005) CrossRef C. Lü, C. Guan, Y. Liu, Y. Cheng, B. Yang, PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17(9), 2448–2454 (2005) CrossRef
34.
go back to reference C. Lü, B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. J. Mater. Chem. 19(19), 2884–2901 (2009) CrossRef C. Lü, B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. J. Mater. Chem. 19(19), 2884–2901 (2009) CrossRef
35.
go back to reference G. Cooper, W. Xu, Z. Chen, High refractive index nanocomposite layer. Patent US10144842. (2018) G. Cooper, W. Xu, Z. Chen, High refractive index nanocomposite layer. Patent US10144842. (2018)
36.
go back to reference A. Garito, Y.-L. Hsiao, R. Gao, J. Zhu, B. Thomas, A. Panackal, J. Sharma, R. Gao, Optical polymer nanocomposites. Patent US20030175004 (2003) A. Garito, Y.-L. Hsiao, R. Gao, J. Zhu, B. Thomas, A. Panackal, J. Sharma, R. Gao, Optical polymer nanocomposites. Patent US20030175004 (2003)
37.
go back to reference T. Ogata, R. Yagi, N. Nakamura, Y. Kuwahara, S. Kurihara, Modulation of polymer refractive indices with diamond nanoparticles for metal-free multilayer film mirrors. ACS Appl. Mater. Interfaces 4(8), 3769–72 (2012) CrossRef T. Ogata, R. Yagi, N. Nakamura, Y. Kuwahara, S. Kurihara, Modulation of polymer refractive indices with diamond nanoparticles for metal-free multilayer film mirrors. ACS Appl. Mater. Interfaces 4(8), 3769–72 (2012) CrossRef
38.
go back to reference I. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W. Klopper, Computation of electromagnetic properties of molecularensembles. Chem. Phys. Chem 21, 878 (2020) I. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W. Klopper, Computation of electromagnetic properties of molecularensembles. Chem. Phys. Chem 21, 878 (2020)
Metadata
Title
Summary and Outlook
Author
Daniel Werdehausen
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-75684-0_7

Premium Partners