Skip to main content
Top

2014 | OriginalPaper | Chapter

18. Superior Damping of Hybrid Carbon Fiber Composites Grafted by ZnO Nanorods

Authors : A. Alipour Skandani, N. Masghouni, M. Al-Haik

Published in: Topics in Modal Analysis, Volume 7

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The elevated specific strength of fiber reinforced plastics (FRP) is the prominent drive for their ever-growing applications. Their inadequate vibrational damping properties prevent them from replacing conventional metal alloys for certain structural applications. In this study we attempt to utilize a low temperature hydrothermal synthesis to grow ZnO nanorods on the surface of woven carbon fibers and implement the resulting hybridized fibers in an epoxy matrix composite. X-ray diffraction and scanning electron microscopy are carried out to study the morphology of the surface-grown nanorods and their adhesion to the substrate carbon fibers. Two-layered hybrid composite laminas are tested for their structural damping properties using dynamic mechanical analysis (DMA). It is observed that the ZnO nanorods can enhance the damping figure of merit of the composites by 40 % without a major delineation in the storage modulus. The enhanced damping performance can be attributed to the additional surfaces manifested by the presence of the ZnO nanorods and, consequently, augmenting the sliding and frictional mechanisms. Furthermore, ZnO as piezoelectric material has the energy scavenging advantages over other 1D nanostructures which ultimately constitutes the fabricated hybrid composites as a multifunctional structural material for energy harvesting applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Qin Y, Wang X, Wang ZL (2008) Microfibre-nanowire hybrid structure for energy scavenging. Nature 451(7180):809–813 Qin Y, Wang X, Wang ZL (2008) Microfibre-nanowire hybrid structure for energy scavenging. Nature 451(7180):809–813
2.
go back to reference Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246 Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246
3.
go back to reference Galan U, Lin Y, Ehlert GJ, Sodano HA (2011) Effect of ZnO nanowire morphology on the interfacial strength of nanowire coated carbon fibers. Compos Sci Technol 71(7):946–954 Galan U, Lin Y, Ehlert GJ, Sodano HA (2011) Effect of ZnO nanowire morphology on the interfacial strength of nanowire coated carbon fibers. Compos Sci Technol 71(7):946–954
4.
go back to reference Galan U, Ehlert GJ, Lin Y, Sodano HA (2009) Effect of morphology of ZnO nanowire arrays on interfacial shear strength in carbon fiber composites. Mater Res Soc Symp Proc 1174:1105–1101 Galan U, Ehlert GJ, Lin Y, Sodano HA (2009) Effect of morphology of ZnO nanowire arrays on interfacial shear strength in carbon fiber composites. Mater Res Soc Symp Proc 1174:1105–1101
5.
go back to reference Ehlert GJ, Lin Y, Galan U, Sodano HA (2011) Interaction of ZnO nanowires with carbon fibers for hierarchical composites with high interfacial strength. J Solid Mech Mater Eng 4(11):1687–1698 Ehlert GJ, Lin Y, Galan U, Sodano HA (2011) Interaction of ZnO nanowires with carbon fibers for hierarchical composites with high interfacial strength. J Solid Mech Mater Eng 4(11):1687–1698
6.
go back to reference Tonezzer M, Lacerda RG (2010) Integrated zinc oxide nanowires/carbon microfiber gas sensors. Sens Actuat B-Chem 150(2):517–522 Tonezzer M, Lacerda RG (2010) Integrated zinc oxide nanowires/carbon microfiber gas sensors. Sens Actuat B-Chem 150(2):517–522
7.
go back to reference Jo SH, Banerjee D, Ren ZF (2004) Field emission of zinc oxide nanowires grown on carbon cloth. Appl Phys Lett 85(8):1407 Jo SH, Banerjee D, Ren ZF (2004) Field emission of zinc oxide nanowires grown on carbon cloth. Appl Phys Lett 85(8):1407
8.
go back to reference Unalan HE, Wei D, Suzuki K, Dalal S, Hiralal P, Matsumoto H et al (2008) Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers. Appl Phys Lett 93(13):133116 Unalan HE, Wei D, Suzuki K, Dalal S, Hiralal P, Matsumoto H et al (2008) Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers. Appl Phys Lett 93(13):133116
9.
go back to reference Na J-S, Gong B, Scarel G, Parsons GN (2009) Surface polarity shielding and hierarchical ZnO nano-architectures produced using sequential hydrothermal crystal synthesis and thin film atomic layer deposition. ACS Nano 3(10):3191–3199 Na J-S, Gong B, Scarel G, Parsons GN (2009) Surface polarity shielding and hierarchical ZnO nano-architectures produced using sequential hydrothermal crystal synthesis and thin film atomic layer deposition. ACS Nano 3(10):3191–3199
10.
go back to reference Zhou W, Jin HB (2011) Acoustic emission based flexural characteristics of glass fiber reinforced composites embedded with ZnO nanowhiskers. J Compos Mater 46(3):291–299 Zhou W, Jin HB (2011) Acoustic emission based flexural characteristics of glass fiber reinforced composites embedded with ZnO nanowhiskers. J Compos Mater 46(3):291–299
11.
go back to reference Shankar K, Lakkad SC (1982) Damping in fibre reinforced plastics. J Mater Sci Lett 1:53–57 Shankar K, Lakkad SC (1982) Damping in fibre reinforced plastics. J Mater Sci Lett 1:53–57
12.
go back to reference Adams RD, Maheri MR (2003) Damping in advanced polymer–matrix composites. J Alloy Compd 355(1–2):126–130 Adams RD, Maheri MR (2003) Damping in advanced polymer–matrix composites. J Alloy Compd 355(1–2):126–130
13.
go back to reference Chandra R, Singh SP, Gupta K (2002) Micromechanical damping models for fiber-reinforced composites: a comparative study. Compos Part A-Appl Sci Manuf 33(6):787–796 Chandra R, Singh SP, Gupta K (2002) Micromechanical damping models for fiber-reinforced composites: a comparative study. Compos Part A-Appl Sci Manuf 33(6):787–796
14.
go back to reference Hudnut SW, Chung DDL (1995) Use of submicron diameter carbon filaments for reinforcement between continuous carbon-fiber layers in a polymer-matrix composite. Carbon 33(11):1627–1631 Hudnut SW, Chung DDL (1995) Use of submicron diameter carbon filaments for reinforcement between continuous carbon-fiber layers in a polymer-matrix composite. Carbon 33(11):1627–1631
15.
go back to reference Chung DDL (2003) Structural composite materials tailored for damping. J Alloy Compd 355(1–2):216–223 Chung DDL (2003) Structural composite materials tailored for damping. J Alloy Compd 355(1–2):216–223
16.
go back to reference Vlasveld DPN, Bersee HEN, Picken SJ (2005) Nanocomposite matrix for increased fibre composite strength. Polymer 46(23):10269–10278 Vlasveld DPN, Bersee HEN, Picken SJ (2005) Nanocomposite matrix for increased fibre composite strength. Polymer 46(23):10269–10278
17.
go back to reference Dutra RCL, Soares BG, Campos EA, Silva JLG (2000) Hybrid composites based on polypropylene and carbon fiber and epoxy matrix. Polymer 41(10):3841–3849 Dutra RCL, Soares BG, Campos EA, Silva JLG (2000) Hybrid composites based on polypropylene and carbon fiber and epoxy matrix. Polymer 41(10):3841–3849
18.
go back to reference Sun L, Gibson RF, Gordaninejad F, Suhr J (2009) Energy absorption capability of nanocomposites: a review. Compos Sci Technol 69(14):2392–2409 Sun L, Gibson RF, Gordaninejad F, Suhr J (2009) Energy absorption capability of nanocomposites: a review. Compos Sci Technol 69(14):2392–2409
19.
go back to reference Zhou X, Shin E, Wang KW, Bakis CE (2004) Interfacial damping characteristics of carbon nanotube-based composites. Compos Sci Technol 64(15):2425–2437 Zhou X, Shin E, Wang KW, Bakis CE (2004) Interfacial damping characteristics of carbon nanotube-based composites. Compos Sci Technol 64(15):2425–2437
20.
go back to reference Thostenson ET, Chou TW (2004) Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J Phys D Appl Phys 35(16):L77–L80 Thostenson ET, Chou TW (2004) Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J Phys D Appl Phys 35(16):L77–L80
21.
go back to reference Rajoria H, Jalili N (2005) Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Compos Sci Technol 65(14):2079–2093 Rajoria H, Jalili N (2005) Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Compos Sci Technol 65(14):2079–2093
22.
go back to reference Jin L, Bower C, Zhou O (1998) Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett 73(9):1197–1199 Jin L, Bower C, Zhou O (1998) Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett 73(9):1197–1199
23.
go back to reference Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-compo sites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64(15):2363–2371 Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-compo sites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64(15):2363–2371
24.
go back to reference Suhr J, Koratkar N, Keblinski P, Ajayan P (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4(2):134–137 Suhr J, Koratkar N, Keblinski P, Ajayan P (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4(2):134–137
25.
go back to reference Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10(1):013001 Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10(1):013001
26.
go back to reference Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4(11):1013–1098 Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4(11):1013–1098
27.
go back to reference Xiang B, Wang P, Zhang X, Dayeh SA, Aplin DPR, Soci C et al (2007) Rational synthesis of p-Type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett 7(2):323–328 Xiang B, Wang P, Zhang X, Dayeh SA, Aplin DPR, Soci C et al (2007) Rational synthesis of p-Type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett 7(2):323–328
28.
go back to reference Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mat 15(5):464–466 Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mat 15(5):464–466
29.
go back to reference Zhang Q, Liu J, Sager R, Dai L, Baur J (2009) Hierarchical composites of carbon nanotubes on carbon fiber: influence of growth condition on fiber tensile properties. Compos Sci Technol 69(5):594–601 Zhang Q, Liu J, Sager R, Dai L, Baur J (2009) Hierarchical composites of carbon nanotubes on carbon fiber: influence of growth condition on fiber tensile properties. Compos Sci Technol 69(5):594–601
30.
go back to reference Lin Y, Shaffer JW, Sodano HA (2010) Electrolytic deposition of PZT on carbon fibers for fabricating multifunctional composites. Smart Mater Struct 19(12):124004 Lin Y, Shaffer JW, Sodano HA (2010) Electrolytic deposition of PZT on carbon fibers for fabricating multifunctional composites. Smart Mater Struct 19(12):124004
31.
go back to reference Lin Y, Ehlert G, Sodano HA (2009) Increased interface strength in carbon fiber composites through a ZnO nanowire interphase. Adv Funct Mater 19(16):2654–2660 Lin Y, Ehlert G, Sodano HA (2009) Increased interface strength in carbon fiber composites through a ZnO nanowire interphase. Adv Funct Mater 19(16):2654–2660
32.
go back to reference Sumita M, Gohda H, Asai S, Miyasaka K (1991) New damping materials composed of piezoelectric and electro-conductive, particle-filled polymer composites: effect of the electro mechanical coupling factor. Makromol Chem Rapid Commun 12:657–661 Sumita M, Gohda H, Asai S, Miyasaka K (1991) New damping materials composed of piezoelectric and electro-conductive, particle-filled polymer composites: effect of the electro mechanical coupling factor. Makromol Chem Rapid Commun 12:657–661
33.
go back to reference Liu Z, Wang Y, Huang G, Wu J (2008) Damping characteristics of chlorobutyl rubber/poly(ethyl acrylate)/piezoelectric ceramic/carbon black composites. J Appl Polym Sci 108(6):3670–3676 Liu Z, Wang Y, Huang G, Wu J (2008) Damping characteristics of chlorobutyl rubber/poly(ethyl acrylate)/piezoelectric ceramic/carbon black composites. J Appl Polym Sci 108(6):3670–3676
34.
go back to reference Alipour Skandani A, Masghouni N, Case SW, Leo DJ, Al-Haik M (2012) Enhanced vibration damping of carbon fibers-ZnO nanorods hybrid composites. Appl Phys Lett 101(7):073111 Alipour Skandani A, Masghouni N, Case SW, Leo DJ, Al-Haik M (2012) Enhanced vibration damping of carbon fibers-ZnO nanorods hybrid composites. Appl Phys Lett 101(7):073111
Metadata
Title
Superior Damping of Hybrid Carbon Fiber Composites Grafted by ZnO Nanorods
Authors
A. Alipour Skandani
N. Masghouni
M. Al-Haik
Copyright Year
2014
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6585-0_18

Premium Partners