Skip to main content
Top
Published in:

17-10-2022

Surface Defect Detection Algorithm Based on Feature-Enhanced YOLO

Authors: Yongfang Xie, Weitao Hu, Shiwen Xie, Lei He

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Surface defect detection is a complicated task to achieve both specific class and precise location of each defect. Specifically for industrial scenario, realizing efficient and accuracy-satisfactory surface defect automatic detection is still a big challenge. Therefore, a surface defect detection algorithm based on feature-enhanced YOLO (FE-YOLO) for practical industrial applications is proposed in this paper. For the purpose of efficient detection, we lighten YOLO model by combining deep separable convolution and dense join. And an improved feature pyramid network is proposed to enhance the spatial location correlation for multi-scale detection layer for the sake of high accuracy. Then, a new loss function of prediction box regression is established to boost the detection accuracy under the high Intersection over Union (IoU) threshold and accelerate model convergence. To select anchor boxes of different scale feature detection layers, we propose a statistical-based k-means++ algorithm, which can improve the quality of initial anchors and accelerate the convergence of the proposed model. Two industrial surface defect datasets, NEU-DET dataset and DeepPCB dataset, are used to verify the effectiveness of the proposed FE-YOLO algorithm. Experimental results demonstrate that FE-YOLO algorithm is lightened nearly 80% compared with YOLOV4. The detection speed is better than the other state-of-the-art surface defect detection algorithms. The defects detection accuracy respectively reaches 83.9% and 98.9% for the NEU-DET dataset and DeepPCB dataset, which are better than the state-of-the-art defect detection methods. The end-to-end fast and accurate detection for industrial surface defects is realized.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Forsyth DA. Computer vision: a modern approach. Upper Saddle River, NJ, USA: Prentice-Hall; 2002. p. 482–539. Forsyth DA. Computer vision: a modern approach. Upper Saddle River, NJ, USA: Prentice-Hall; 2002. p. 482–539.
2.
go back to reference Xie S, Xie Y, Ying H, Jiang Z, Gui W. Neurofuzzy-based plant-wide hierarchical coordinating optimization and control: an application to zinc hydrometallurgy plant. IEEE Trans Industr Electron. 2020;67:2207–19.CrossRef Xie S, Xie Y, Ying H, Jiang Z, Gui W. Neurofuzzy-based plant-wide hierarchical coordinating optimization and control: an application to zinc hydrometallurgy plant. IEEE Trans Industr Electron. 2020;67:2207–19.CrossRef
3.
go back to reference Zhang Y, Jin Y, Chen J, Kan S, Cen Y, Cao Q. PGAN: part-based nondirect coupling embedded GAN for person re-identification. IEEE Multimedia. 2020;27:23–33.CrossRef Zhang Y, Jin Y, Chen J, Kan S, Cen Y, Cao Q. PGAN: part-based nondirect coupling embedded GAN for person re-identification. IEEE Multimedia. 2020;27:23–33.CrossRef
4.
go back to reference Cheon S, Lee H, Kim CO, Lee SH. Convolutional neural network for wafer surface defect classification and the detection of unknown defect class. IEEE Trans Semicond Manuf. 2019;32:163–70.CrossRef Cheon S, Lee H, Kim CO, Lee SH. Convolutional neural network for wafer surface defect classification and the detection of unknown defect class. IEEE Trans Semicond Manuf. 2019;32:163–70.CrossRef
5.
go back to reference Wang H, Zhang J, Tian Y, Chen H, Sun H, Liu K. A simple guidance template-based defect detection method for strip steel surfaces. IEEE Trans Industr Inf. 2019;15:2798–809.CrossRef Wang H, Zhang J, Tian Y, Chen H, Sun H, Liu K. A simple guidance template-based defect detection method for strip steel surfaces. IEEE Trans Industr Inf. 2019;15:2798–809.CrossRef
6.
go back to reference Choi D-C, Jeon Y-J, Kim S, Moon S, Yun J. Detection of pinholes in steel slabs using Gabor filter combination and morphological features. ISIJ Int. 2017;57:1045–53.CrossRef Choi D-C, Jeon Y-J, Kim S, Moon S, Yun J. Detection of pinholes in steel slabs using Gabor filter combination and morphological features. ISIJ Int. 2017;57:1045–53.CrossRef
7.
go back to reference Zhao T, Chen X, Yang L. IPCA-SVM based real-time wrinkling detection approaches for strip steel production process. Int J Wirel Mob Comput. 2019;16:160–5.CrossRef Zhao T, Chen X, Yang L. IPCA-SVM based real-time wrinkling detection approaches for strip steel production process. Int J Wirel Mob Comput. 2019;16:160–5.CrossRef
8.
go back to reference Gao X, Jian M, Hu M, Tanniru M, Li S. Faster multi-defect detection system in shield tunnel using combination of FCN and faster RCNN. Adv Struct Eng. 2019;22:2907–21.CrossRef Gao X, Jian M, Hu M, Tanniru M, Li S. Faster multi-defect detection system in shield tunnel using combination of FCN and faster RCNN. Adv Struct Eng. 2019;22:2907–21.CrossRef
9.
go back to reference Cha Y, Choi W, Suh G, Mahmoudkhani S, Büyüköztürk O. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput Aided Civ Inf Eng. 2018;33:731–47.CrossRef Cha Y, Choi W, Suh G, Mahmoudkhani S, Büyüköztürk O. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput Aided Civ Inf Eng. 2018;33:731–47.CrossRef
10.
go back to reference Zhouhua Z, Shixia M, Tianyi Z. Multi-target defect intelligent recognition of transmission line based on improved faster-RCNN,” 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), 2021;pp. 597-60. Zhouhua Z, Shixia M, Tianyi Z. Multi-target defect intelligent recognition of transmission line based on improved faster-RCNN,” 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), 2021;pp. 597-60.
11.
go back to reference Chen J, Liu Z, Wang H, Núñez A, Han Z. Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE Trans Instrum Meas. 2018;67:257–69.CrossRef Chen J, Liu Z, Wang H, Núñez A, Han Z. Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE Trans Instrum Meas. 2018;67:257–69.CrossRef
12.
go back to reference Mei S, Wang Y, Wen G. Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model. Sensors (Basel, Switzerland), 2018;vol. 18. Mei S, Wang Y, Wen G. Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model. Sensors (Basel, Switzerland), 2018;vol. 18.
13.
go back to reference Tao X, Zhang D, Wen-zhi M, Liu X, Xu D. Automatic metallic surface defect detection and recognition with convolutional neural networks. Appl Sci. 2018;8:1575.CrossRef Tao X, Zhang D, Wen-zhi M, Liu X, Xu D. Automatic metallic surface defect detection and recognition with convolutional neural networks. Appl Sci. 2018;8:1575.CrossRef
14.
go back to reference Fu G, et al. A deep-learning-based approach for fast and robust steel surface defects classification. Opt Lasers Eng. 2019;121:397–405.CrossRef Fu G, et al. A deep-learning-based approach for fast and robust steel surface defects classification. Opt Lasers Eng. 2019;121:397–405.CrossRef
15.
go back to reference He Y, Song K, Dong H, Yan Y. Semi-supervised defect classification of steel surface based on multi-training and generative adversarial network. Opt Lasers Eng. 2019;122:294–302.CrossRef He Y, Song K, Dong H, Yan Y. Semi-supervised defect classification of steel surface based on multi-training and generative adversarial network. Opt Lasers Eng. 2019;122:294–302.CrossRef
16.
go back to reference He Y, Song K, Meng Q, Yan Y. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans Instrum Meas. 2020;69:1493–504.CrossRef He Y, Song K, Meng Q, Yan Y. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans Instrum Meas. 2020;69:1493–504.CrossRef
17.
go back to reference Li W, Ye X, Zhao Y, Wang W. Strip steel surface defect detection based on improved YOLOv3 algorithm. Acta Electron Sin. 2020;48:1284–92. Li W, Ye X, Zhao Y, Wang W. Strip steel surface defect detection based on improved YOLOv3 algorithm. Acta Electron Sin. 2020;48:1284–92.
18.
19.
go back to reference Redmon J, Divvala S, Girshick RB, Farhadi A. You only look once: unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016;pp. 779-788. Redmon J, Divvala S, Girshick RB, Farhadi A. You only look once: unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016;pp. 779-788.
20.
go back to reference Redmon J, Farhadi A. YOLO9000: better, faster, stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017;pp. 6517-6525. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017;pp. 6517-6525.
21.
go back to reference Farhadi A, Redmon J. Yolov3: an incremental improvement. In: Computer Vision and Pattern Recognition. Berlin/Heidelberg, Germany: Springer; 2018. p. 1804–2767. Farhadi A, Redmon J. Yolov3: an incremental improvement. In: Computer Vision and Pattern Recognition. Berlin/Heidelberg, Germany: Springer; 2018. p. 1804–2767.
22.
go back to reference Howard AG, et al. Searching for MobileNetV3. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019;pp. 1314-1324. Howard AG, et al. Searching for MobileNetV3. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019;pp. 1314-1324.
23.
go back to reference Howard AG, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. ArXiv, vol. abs/1704.04861, 2017. Howard AG, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. ArXiv, vol. abs/​1704.​04861, 2017.
24.
go back to reference Sandler M, Howard AG, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018;pp. 4510-4520. Sandler M, Howard AG, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018;pp. 4510-4520.
25.
go back to reference Tan M, Le Q. EfficientNet: rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning, 2019: PMLR, pp. 6105-6114. Tan M, Le Q. EfficientNet: rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning, 2019: PMLR, pp. 6105-6114.
26.
go back to reference Ma N, Zhang X, Zheng HT, Sun J. ShuffleNet V2: practical guidelines for efficient CNN architecture design. In ECCV, 2018. Ma N, Zhang X, Zheng HT, Sun J. ShuffleNet V2: practical guidelines for efficient CNN architecture design. In ECCV, 2018.
27.
go back to reference Zhang X, Zhou X, Lin M, Sun J. ShuffleNet: an extremely efficient convolutional neural network for mobile devices. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018;pp. 6848-6856. Zhang X, Zhou X, Lin M, Sun J. ShuffleNet: an extremely efficient convolutional neural network for mobile devices. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018;pp. 6848-6856.
28.
go back to reference Lin TY, Dollár P, Girshick RB, He K, Hariharan B, Belongie SJ. Feature pyramid networks for object detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017;pp. 936-944. Lin TY, Dollár P, Girshick RB, He K, Hariharan B, Belongie SJ. Feature pyramid networks for object detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017;pp. 936-944.
29.
go back to reference Zheng Z, Wang P, Liu W, Li J, Ye R, Ren D. Distance-IoU loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence. 2020;34(07):12993–3000.CrossRef Zheng Z, Wang P, Liu W, Li J, Ye R, Ren D. Distance-IoU loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence. 2020;34(07):12993–3000.CrossRef
30.
go back to reference Song K, Yan Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl Surf Sci. 2013;285:858–64.CrossRef Song K, Yan Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl Surf Sci. 2013;285:858–64.CrossRef
31.
go back to reference Wang K, Liew JH, Zou Y, Zhou D, Feng J. PANet: few-shot image semantic segmentation with prototype alignment. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019;pp. 9196-9205. Wang K, Liew JH, Zou Y, Zhou D, Feng J. PANet: few-shot image semantic segmentation with prototype alignment. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019;pp. 9196-9205.
32.
go back to reference Tan M, Pang R, Le QV. Efficientdet: scalable and efficient object detection. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, 2020;pp. 10781-10790. Tan M, Pang R, Le QV. Efficientdet: scalable and efficient object detection. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, 2020;pp. 10781-10790.
33.
go back to reference Ren S, He K, Girshick RB, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2015;39:1137–49.CrossRef Ren S, He K, Girshick RB, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2015;39:1137–49.CrossRef
36.
go back to reference He F, Tang S, Mehrkanoon S, Huang X, Yang J. A real-time PCB defect detector based on supervised and semi-supervised learning. In ESANN, 2020. He F, Tang S, Mehrkanoon S, Huang X, Yang J. A real-time PCB defect detector based on supervised and semi-supervised learning. In ESANN, 2020.
Metadata
Title
Surface Defect Detection Algorithm Based on Feature-Enhanced YOLO
Authors
Yongfang Xie
Weitao Hu
Shiwen Xie
Lei He
Publication date
17-10-2022
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10061-z

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner