Skip to main content
Top

2020 | OriginalPaper | Chapter

Surface Modification of PVDF Copolymer Nanofiber by Chitosan/Ag(NP)/Nanosilica Composite

Authors : M. Nasir, R. I. Sugatri, D. M. Agustini

Published in: 4th International Conference on Nanotechnologies and Biomedical Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

PVDF copolymer nanofiber showed good chemical, mechanical and high hydrophobicity properties. PVDF copolymer nanofiber can be modified and functionalized by introducing hydrophilic and antibacterial materials such as chitosan composite. In this work, PVDF copolymer nanofiber with an average diameter 427.00 nm was modified by dip-coating process by using mixture of chitosan/Ag(NP)/nanosilica. Chitosan/Ag(NP)/nanosilica/PVDF copolymer nanofiber composite was successfully synthesized after analysis and confirmed by using ATR-FTIR spectroscopy, scanning electron microscopy (SEM), water contact angle and water spreading time analysis. SEM analysis showed the diameter of chitosan/Ag(NP)/nanosilica/PVDF copolymer nanofiber has an average diameter 443.50 nm. Post dip coating, it was found the specific vibration band peak IR spectrum which identify the presence of chitosan, SiO2, and the shifting band peak which was caused by interaction between chitosan and Ag0 in nanofiber composite. Chitosan/Ag(NP)/nanosilica/PVDF copolymer nanofiber composite with different content of nanosilica have lower water contact angle than pristine PVDF copolymer nanofiber. Water contact angle of PVDF copolymer nanofiber, chitosan/Ag(NP)/nanosilica (0.05%)/PVDF copolymer nanofiber and chitosan/Ag(NP)/nanosilica (0.20%)/PVDF copolymer nanofiber were 108°, 60° and 77°, respectively. Water spreading time analysis showed that modified PVDF copolymer has faster water spreading time than pristine PVDF copolymer nanofiber. It meant modification of PVDF copolymer nanofiber by chitosan/Ag(NP)/nanosilica gave hydrophilic and antibacterial properties to nanofiber.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yuan, J., Geng, J., Xing, Z., Shen, J., Kang, I.K., Byun, H.: Electrospinning of antibacterial poly(vinylidene fluoride) nanofibers containing silver nanoparticles. J. Appl. Polym. Sci. 116, 668–672 (2010) Yuan, J., Geng, J., Xing, Z., Shen, J., Kang, I.K., Byun, H.: Electrospinning of antibacterial poly(vinylidene fluoride) nanofibers containing silver nanoparticles. J. Appl. Polym. Sci. 116, 668–672 (2010)
2.
go back to reference Sethupathy, M., Sethuraman, V., Manisankar, P.: Preparation of PVDF/SiO2 composite nanofiber membrane using electrospinning for polymer electrolyte analysis. Soft Nanosci. Lett. 3, 37–43 (2013)CrossRef Sethupathy, M., Sethuraman, V., Manisankar, P.: Preparation of PVDF/SiO2 composite nanofiber membrane using electrospinning for polymer electrolyte analysis. Soft Nanosci. Lett. 3, 37–43 (2013)CrossRef
3.
go back to reference Fontananova, E., Bahattab, M.A., Aljlil, S.A., Alowairdy, M., Rinaldi, G., Vuono, D., Nagy, J.B., Drioli, E., Profio, G.: From hydrophobic to hydrophilic polyvinylidenefluoride (PVDF) membranes by gaining new insights into material’s properties. RSC (2015). https://doi.org/10.1039/C5RA08388ECrossRef Fontananova, E., Bahattab, M.A., Aljlil, S.A., Alowairdy, M., Rinaldi, G., Vuono, D., Nagy, J.B., Drioli, E., Profio, G.: From hydrophobic to hydrophilic polyvinylidenefluoride (PVDF) membranes by gaining new insights into material’s properties. RSC (2015). https://​doi.​org/​10.​1039/​C5RA08388ECrossRef
4.
go back to reference Sheikh, F.A., Zargar, M.A., Tamboli, A.H., Kim, H.: A super hydrophilic modification of Poly(vinylidene fluoride) (PVDF) nanofibers: By in situ hydrothermal approach. Appl. Surf. Sci. 365, 417–425 (2016)CrossRef Sheikh, F.A., Zargar, M.A., Tamboli, A.H., Kim, H.: A super hydrophilic modification of Poly(vinylidene fluoride) (PVDF) nanofibers: By in situ hydrothermal approach. Appl. Surf. Sci. 365, 417–425 (2016)CrossRef
5.
go back to reference Peng, L., Lei, W., Yu, P., Luo, Y.: Polyvinylidene fluoride (PVDF)/hydrophobic nano-silica (H-SiO2) coated superhydrophobic porous materials for water/oil separation. RSC Adv. 6, 10365–10371 (2016)CrossRef Peng, L., Lei, W., Yu, P., Luo, Y.: Polyvinylidene fluoride (PVDF)/hydrophobic nano-silica (H-SiO2) coated superhydrophobic porous materials for water/oil separation. RSC Adv. 6, 10365–10371 (2016)CrossRef
6.
go back to reference Kang, G.D., Cao, Y.M.: Application and modifiction of poly(vinylidene fluoride) (PVDF) membranes—a review. J. Membr. Sci. 463, 145–165 (2014)CrossRef Kang, G.D., Cao, Y.M.: Application and modifiction of poly(vinylidene fluoride) (PVDF) membranes—a review. J. Membr. Sci. 463, 145–165 (2014)CrossRef
8.
go back to reference Boributh, S., Chanachai, A., Jiraratananon, R.: Modification of PVDF membrane by chitosan solution for reducing protein fouling. J. Membr. Sci. 342, 97–104 (2009)CrossRef Boributh, S., Chanachai, A., Jiraratananon, R.: Modification of PVDF membrane by chitosan solution for reducing protein fouling. J. Membr. Sci. 342, 97–104 (2009)CrossRef
9.
go back to reference Chanachai, A., Meksup, K., Jiraratananon, R.: Coating of hydrophobic hollow fiber PVDF membrane with chitosan for protection against wetting and falvor loss in osmotic distillation process. Sep. Purif. Technol. 72, 217–224 (2010)CrossRef Chanachai, A., Meksup, K., Jiraratananon, R.: Coating of hydrophobic hollow fiber PVDF membrane with chitosan for protection against wetting and falvor loss in osmotic distillation process. Sep. Purif. Technol. 72, 217–224 (2010)CrossRef
10.
go back to reference Rhazi, M., Desbrieres, A., Tolaimate, A., Alagui, A., Vottero, P.: Investigation of different natural sources of chitin: influence of the source and deacetylation process on the physicochemical characteristics of chitosan. Polym. Int. 49, 337–344 (2000)CrossRef Rhazi, M., Desbrieres, A., Tolaimate, A., Alagui, A., Vottero, P.: Investigation of different natural sources of chitin: influence of the source and deacetylation process on the physicochemical characteristics of chitosan. Polym. Int. 49, 337–344 (2000)CrossRef
11.
go back to reference Prabhu, S., Poulose, E.K.: Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 1–10 (2012)CrossRef Prabhu, S., Poulose, E.K.: Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 1–10 (2012)CrossRef
12.
go back to reference Abdelgawad, A.M., Hudson, S.M., Rojas, O.J.: Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr. Polym. 100, 166–178 (2014)CrossRef Abdelgawad, A.M., Hudson, S.M., Rojas, O.J.: Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr. Polym. 100, 166–178 (2014)CrossRef
14.
go back to reference Gorji, B., Ghasri, M.R.A., Fazaeli, R., Niksirat, N.: Synthesis and characterizations of silica nanoparticles by a new sol-gel method. J. Appl. Chem. Res. 6, 22–26 (2012) Gorji, B., Ghasri, M.R.A., Fazaeli, R., Niksirat, N.: Synthesis and characterizations of silica nanoparticles by a new sol-gel method. J. Appl. Chem. Res. 6, 22–26 (2012)
15.
go back to reference Attaollahi, N., Ahmad, A., Hamzah, H., Rahman, M.Y.A., Mohamed, N.S.: Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int. J. Electrochem. Sci. 7, 6693–6703 (2012) Attaollahi, N., Ahmad, A., Hamzah, H., Rahman, M.Y.A., Mohamed, N.S.: Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int. J. Electrochem. Sci. 7, 6693–6703 (2012)
16.
go back to reference Sivakumar, P, Gunasekaran, M, Sasikumar, M, Jagadeesan, A.: PVDF-HFP based porous polymer electrolyte for lithium battery applications. Int. J. Sci. Res., 22–25 (2013). ISSN (Online): 2319-7064 Sivakumar, P, Gunasekaran, M, Sasikumar, M, Jagadeesan, A.: PVDF-HFP based porous polymer electrolyte for lithium battery applications. Int. J. Sci. Res., 22–25 (2013). ISSN (Online): 2319-7064
17.
go back to reference Nasir, M., Matsumoto, H., Danno, T., Minagawa, M., Irisawa, T., Shioya, M., Tanioka, A.: Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. J. Polym. Sci., Part B: Polym. Phys. 44, 779–786 (2006)CrossRef Nasir, M., Matsumoto, H., Danno, T., Minagawa, M., Irisawa, T., Shioya, M., Tanioka, A.: Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. J. Polym. Sci., Part B: Polym. Phys. 44, 779–786 (2006)CrossRef
18.
go back to reference Conradi, M., Intihar, G., Zorko, M.: Mechanical and wetting properties of nanosilica/epoxy-coated stainless steel. Mater. Technol. 49, 613–618 (2015) Conradi, M., Intihar, G., Zorko, M.: Mechanical and wetting properties of nanosilica/epoxy-coated stainless steel. Mater. Technol. 49, 613–618 (2015)
19.
go back to reference Vadillo, D.C., Soucemarianadin, A., Delattre, C., Roux, D.C.D.: Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces. Phys. Fluids 21, 122002 1–122002 8 (2009)CrossRef Vadillo, D.C., Soucemarianadin, A., Delattre, C., Roux, D.C.D.: Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces. Phys. Fluids 21, 122002 1–122002 8 (2009)CrossRef
Metadata
Title
Surface Modification of PVDF Copolymer Nanofiber by Chitosan/Ag(NP)/Nanosilica Composite
Authors
M. Nasir
R. I. Sugatri
D. M. Agustini
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-31866-6_45