Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 1/2022

01-01-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Surface Plasmons in a Nanotube with a Finite-Thickness Wall

Authors: A. V. Korotun, Ya. V. Karandas

Published in: Physics of Metals and Metallography | Issue 1/2022

Login to get access
share
SHARE

Abstract

The frequency dependences of polarizability, absorption and scattering cross sections, and optical radiation efficiency of nanotubes of different metals and different sizes are studied. Expressions for the frequencies of longitudinal and transverse surface plasmon resonances are obtained. The relationship between the theory proposed and the plasmon hybridization model is discussed. The evolution of the polarizability maxima, as well as the absorption and scattering cross sections, upon a change in the geometric parameters and morphology of the core and the shell, is traced.
Literature
1.
go back to reference P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B. 110, No. 14, 7238–7248 (2006). CrossRef P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B. 110, No. 14, 7238–7248 (2006). CrossRef
2.
go back to reference K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B. 107, No. 3, 668–677 (2003). CrossRef K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B. 107, No. 3, 668–677 (2003). CrossRef
3.
go back to reference U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995). CrossRef U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995). CrossRef
4.
go back to reference S. Link and M. A. El-Sayed, “Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003). CrossRef S. Link and M. A. El-Sayed, “Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003). CrossRef
5.
go back to reference P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007). CrossRef P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007). CrossRef
6.
go back to reference C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998). CrossRef C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998). CrossRef
7.
go back to reference B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical biosensors based on plasmonic nanostructures: A review,” Proc. IEEE 104, No. 12, 2380–2408 (2007). CrossRef B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical biosensors based on plasmonic nanostructures: A review,” Proc. IEEE 104, No. 12, 2380–2408 (2007). CrossRef
8.
go back to reference M. R. K. Ali, K. Chen, Y. Wu, M. A. El-Sayed, and N. Fang, “Gold nanoparticles in biological optical imaging,” Nano Today 24, 120–140 (2019). CrossRef M. R. K. Ali, K. Chen, Y. Wu, M. A. El-Sayed, and N. Fang, “Gold nanoparticles in biological optical imaging,” Nano Today 24, 120–140 (2019). CrossRef
9.
go back to reference B. S. Yeo, W. Zhang, C. Vannier, and R. Zenobi, “Enhancement of Raman signals with silver-coated tips,” Appl. Spectrosc. 60, No. 10, 1142–1147 (2006). CrossRef B. S. Yeo, W. Zhang, C. Vannier, and R. Zenobi, “Enhancement of Raman signals with silver-coated tips,” Appl. Spectrosc. 60, No. 10, 1142–1147 (2006). CrossRef
10.
go back to reference J. Yu, Y. Guo, H. Wang, S. Su, C. Zhang, B. Man, and F. Lei, “Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection,” J. Phys. Chem. Lett. 10, No. 13, 3676–3680 (2019). CrossRef J. Yu, Y. Guo, H. Wang, S. Su, C. Zhang, B. Man, and F. Lei, “Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection,” J. Phys. Chem. Lett. 10, No. 13, 3676–3680 (2019). CrossRef
11.
go back to reference T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, “Tip-enhanced Raman spectroscopy: Tip related issues,” Anal. Bioanal. Chem. 407, 8177–8195 (2015). CrossRef T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, “Tip-enhanced Raman spectroscopy: Tip related issues,” Anal. Bioanal. Chem. 407, 8177–8195 (2015). CrossRef
12.
go back to reference X. Wang, Z. Liu, M. Zhuang, H. M. De Zhang, X. Wang, Z. X. Xie, D. Y. Wu, B. Ren, and Z. Q. Tian, “Tip enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,” Appl. Phys. Lett. 91, 101105 (2007). CrossRef X. Wang, Z. Liu, M. Zhuang, H. M. De Zhang, X. Wang, Z. X. Xie, D. Y. Wu, B. Ren, and Z. Q. Tian, “Tip enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,” Appl. Phys. Lett. 91, 101105 (2007). CrossRef
13.
go back to reference K. J. Freedman, C. R. Crick, P. Albella, A. Barik, A. P. Ivanov, S. A. Maier, S. H. Oh, and J. B. Edel, “On-demand surface-and tip-enhanced Raman spectroscopy using dielectrophoretic trapping and nanopore sensing,” ACS Photon. 3, No. 6, 1036–1044 (2016). CrossRef K. J. Freedman, C. R. Crick, P. Albella, A. Barik, A. P. Ivanov, S. A. Maier, S. H. Oh, and J. B. Edel, “On-demand surface-and tip-enhanced Raman spectroscopy using dielectrophoretic trapping and nanopore sensing,” ACS Photon. 3, No. 6, 1036–1044 (2016). CrossRef
14.
go back to reference D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, No. 5685, 788–792 (2004). CrossRef D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, No. 5685, 788–792 (2004). CrossRef
15.
go back to reference J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, No. 18, 3966–3969 (2000). CrossRef J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, No. 18, 3966–3969 (2000). CrossRef
16.
go back to reference S. Zhang, M. Liu, W. Liu, Y. Liu, Z. Li, X. Wang, and F. Yang, “Absorption enhancement in thin film solar cells with bilayer silver nanoparticle arrays,” J. Phys. Commun. 2, No. 5, 055032 (2018). CrossRef S. Zhang, M. Liu, W. Liu, Y. Liu, Z. Li, X. Wang, and F. Yang, “Absorption enhancement in thin film solar cells with bilayer silver nanoparticle arrays,” J. Phys. Commun. 2, No. 5, 055032 (2018). CrossRef
17.
go back to reference Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, and W. D. Wei, “Surface-plasmon-driven hot electron photochemistry,” Chem. Rev. 118, No. 6, 2927–2954 (2018). CrossRef Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, and W. D. Wei, “Surface-plasmon-driven hot electron photochemistry,” Chem. Rev. 118, No. 6, 2927–2954 (2018). CrossRef
18.
go back to reference P. Singh, LSPR Biosensing: Recent Advances and Approaches (Springer, Cham, 2017), pp. 211–238. P. Singh, LSPR Biosensing: Recent Advances and Approaches (Springer, Cham, 2017), pp. 211–238.
19.
go back to reference H. B. Jeon, P. V. Tsalu, and J. W. Ha, “Shape effect on the refractive index sensitivity at localized surface plasmon resonance inflection points of single gold nanocubes with vertices,” Sci. Rep. 9, 13635 (2019). CrossRef H. B. Jeon, P. V. Tsalu, and J. W. Ha, “Shape effect on the refractive index sensitivity at localized surface plasmon resonance inflection points of single gold nanocubes with vertices,” Sci. Rep. 9, 13635 (2019). CrossRef
20.
go back to reference M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photon. 10, 733–739 (2016). CrossRef M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photon. 10, 733–739 (2016). CrossRef
21.
go back to reference I. Jung, M. Kim, M. Kwak, G. Kim, M. Jang, S. M. Kim, D. J. Park, S. Park, “Surface plasmon resonance extension through two-block metal-conducting polymer nanorods,” Nat. Commun. 9, 1010 (2018). CrossRef I. Jung, M. Kim, M. Kwak, G. Kim, M. Jang, S. M. Kim, D. J. Park, S. Park, “Surface plasmon resonance extension through two-block metal-conducting polymer nanorods,” Nat. Commun. 9, 1010 (2018). CrossRef
22.
go back to reference D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 5584, 1160–1163 (2002). CrossRef D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 5584, 1160–1163 (2002). CrossRef
23.
go back to reference C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano. 4, 4559–4564 (2010). CrossRef C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano. 4, 4559–4564 (2010). CrossRef
24.
go back to reference W. He, K. Ai, C. Jiang, Y. Li, X. Song, and L. Lu, “Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy,” Biomaterials 132, 37–47 (2017). CrossRef W. He, K. Ai, C. Jiang, Y. Li, X. Song, and L. Lu, “Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy,” Biomaterials 132, 37–47 (2017). CrossRef
25.
go back to reference J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 1–13 (2016). J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 1–13 (2016).
26.
go back to reference X. Jin, J. He, and J. Ye, “Nanotriangle-based gap-enhanced Raman tags for bioimaging and photothermal therapy,” J. Appl. Phys. 125, 073102 (2019). CrossRef X. Jin, J. He, and J. Ye, “Nanotriangle-based gap-enhanced Raman tags for bioimaging and photothermal therapy,” J. Appl. Phys. 125, 073102 (2019). CrossRef
27.
go back to reference Y. Ren, Q. Chen, H. Qi, and L. Ruan, “Experimental comparison of photothermal conversion efficiency of gold nanotriangle and nanorod in laser induced thermal therapy,” Nanomaterials 7, 416 (2017). CrossRef Y. Ren, Q. Chen, H. Qi, and L. Ruan, “Experimental comparison of photothermal conversion efficiency of gold nanotriangle and nanorod in laser induced thermal therapy,” Nanomaterials 7, 416 (2017). CrossRef
28.
go back to reference Y. Bayazitoglu, S. Kheradmand, and T. K. Tullius, “An overview of nanoparticle assisted laser therapy,” Int. J. Heat Mass Transfer 67, 469–486 (2013). CrossRef Y. Bayazitoglu, S. Kheradmand, and T. K. Tullius, “An overview of nanoparticle assisted laser therapy,” Int. J. Heat Mass Transfer 67, 469–486 (2013). CrossRef
29.
go back to reference A. V. Korotun, A. A. Koval’, V. I. Reva, and I. N. Titov, “Optical absorption of a composite based on bimetallic nanoparticles. Classical approach,” Phys. Met. Metallogr. 120, No. 11, 1040–1046 (2019). CrossRef A. V. Korotun, A. A. Koval’, V. I. Reva, and I. N. Titov, “Optical absorption of a composite based on bimetallic nanoparticles. Classical approach,” Phys. Met. Metallogr. 120, No. 11, 1040–1046 (2019). CrossRef
30.
go back to reference A. V. Korotun and A. A. Koval’, “Dielectric tensor of a metal nanowire with an elliptical cross section,” Phys. Met. Metallogr. 120, No. 7, 621–625 (2019). CrossRef A. V. Korotun and A. A. Koval’, “Dielectric tensor of a metal nanowire with an elliptical cross section,” Phys. Met. Metallogr. 120, No. 7, 621–625 (2019). CrossRef
31.
go back to reference A. A. Koval and A. V. Korotun, “Dielectric function of a spherical metallic nanoparticle,” Phys. Met. Metallogr. 122, No. 3, 230–236 (2021). CrossRef A. A. Koval and A. V. Korotun, “Dielectric function of a spherical metallic nanoparticle,” Phys. Met. Metallogr. 122, No. 3, 230–236 (2021). CrossRef
32.
go back to reference A. V. Korotun and N. I. Pavlyshche, “Influence of the shape of metal nanoparticles on the average absorption and scattering cross sections of electromagnetic radiation,” Fiz. Met. Metalloved. 122, No. 10, 941–949 (2021). A. V. Korotun and N. I. Pavlyshche, “Influence of the shape of metal nanoparticles on the average absorption and scattering cross sections of electromagnetic radiation,” Fiz. Met. Metalloved. 122, No. 10, 941–949 (2021).
33.
go back to reference E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). CrossRef E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). CrossRef
34.
go back to reference E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444–5454 (2004). CrossRef E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444–5454 (2004). CrossRef
35.
go back to reference A. Moradi, “Plasmon hybridization in metallic nanotubes,” J. Phys. Chem. Solids 69, 2936–2938 (2008). CrossRef A. Moradi, “Plasmon hybridization in metallic nanotubes,” J. Phys. Chem. Solids 69, 2936–2938 (2008). CrossRef
36.
go back to reference N. Daneshfar, “Effect of interparticle plasmon coupling and temperature on the optical properties of bimetallic composite nanoparticles with a core–shell structure,” J. Appl. Phys. 117, 123105 (2015). CrossRef N. Daneshfar, “Effect of interparticle plasmon coupling and temperature on the optical properties of bimetallic composite nanoparticles with a core–shell structure,” J. Appl. Phys. 117, 123105 (2015). CrossRef
37.
go back to reference M. Liu and P. Guyot-Sionnest, “Synthesis and optical characterization of Au/Ag core/shell nanorods,” J. Phys. Chem. B 108, 5882–5888 (2004). CrossRef M. Liu and P. Guyot-Sionnest, “Synthesis and optical characterization of Au/Ag core/shell nanorods,” J. Phys. Chem. B 108, 5882–5888 (2004). CrossRef
38.
go back to reference K. Tanabe, “Optical radiation efficiencies of metal nanoparticles for optoelectronic applications,” Mater. Lett. 61, 4573–4575 (2007). CrossRef K. Tanabe, “Optical radiation efficiencies of metal nanoparticles for optoelectronic applications,” Mater. Lett. 61, 4573–4575 (2007). CrossRef
39.
go back to reference E. M. Voronkova, B. N. Grechushnikov, G. I. Distler, and I. P. Petrov, Optical Materials for Infrared Equipment (Mir, Moscow, 1965) [in Russian]. E. M. Voronkova, B. N. Grechushnikov, G. I. Distler, and I. P. Petrov, Optical Materials for Infrared Equipment (Mir, Moscow, 1965) [in Russian].
Metadata
Title
Surface Plasmons in a Nanotube with a Finite-Thickness Wall
Authors
A. V. Korotun
Ya. V. Karandas
Publication date
01-01-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 1/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22010070