Skip to main content
Top

2022 | OriginalPaper | Chapter

Sustainability Implications of Additive Manufacturing

Authors : Nabila Afif Mohmd Arifin, Muhamad Zameri Mat Saman, Safian Sharif, Nor Hasrul Akhmal Ngadiman

Published in: Human-Centered Technology for a Better Tomorrow

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Additive manufacturing is the industrial production name for 3D printing, which is one of the advanced technologies in the fourth industrial revolution. 3D printing involves the production of a 3D product using a layer by layer technique. Complex structures can be produced through AM which was no possible using conventional method as it has the potential to assemble parts, consequently minimizing the production process. In addition, through the AM process, less waste is generated during manufacturing and lightweight components can be produced which makes it beneficial in terms of materials and costs. Therefore, additive manufacturing is seen to have an impact on sustainability. This paper will review the implications of AM on sustainability, which includes the environmental, economic and social aspects. Clear understanding of sustainability impacts of AM is crucial in order to assist companies and researchers to make the best decisions before switching to AM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stock T, Seliger G (2016) Opportunities of sustainable manufacturing in Industry 4.0. Procedia CIRP 40:536–541 Stock T, Seliger G (2016) Opportunities of sustainable manufacturing in Industry 4.0. Procedia CIRP 40:536–541
3.
go back to reference Despeisse M, Yang M, Evans S, Ford S, Minshall T (2017) Sustainable value roadmapping framework for additive manufacturing. Procedia CIRP 61:594–599CrossRef Despeisse M, Yang M, Evans S, Ford S, Minshall T (2017) Sustainable value roadmapping framework for additive manufacturing. Procedia CIRP 61:594–599CrossRef
4.
go back to reference Ribeiro I, Matos F, Jacinto C, Salman H, Cardeal G, Carvalho H, Godina R, Peças P (2020) Framework for life cycle sustainability assessment of additive manufacturing. Sustainability 12(3) Ribeiro I, Matos F, Jacinto C, Salman H, Cardeal G, Carvalho H, Godina R, Peças P (2020) Framework for life cycle sustainability assessment of additive manufacturing. Sustainability 12(3)
5.
go back to reference Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215–243CrossRef Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215–243CrossRef
6.
go back to reference Gutowski T, Jiang S, Cooper D (2017) Note on the rate and energy efficiency limits for additive manufacturing. J Ind Ecol 21:1–11CrossRef Gutowski T, Jiang S, Cooper D (2017) Note on the rate and energy efficiency limits for additive manufacturing. J Ind Ecol 21:1–11CrossRef
7.
go back to reference Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies, 2nd edn. Springer, Berlin Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies, 2nd edn. Springer, Berlin
8.
go back to reference Wohler T (2012) Wohler report. 3D printing and additive manufacturing state of the industry Wohler T (2012) Wohler report. 3D printing and additive manufacturing state of the industry
9.
go back to reference Huang SH, Liu P, Mokasdar A (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 1191–1203 Huang SH, Liu P, Mokasdar A (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 1191–1203
10.
go back to reference Rejeski D, Zhao F, Huang Y (2018) Research needs and recommendations on environmental implications of additive manufacturing. Addit Manuf 19:21–28 Rejeski D, Zhao F, Huang Y (2018) Research needs and recommendations on environmental implications of additive manufacturing. Addit Manuf 19:21–28
11.
go back to reference Verhoef LA, Budde BW, Chockalingam C, García Nodar B, van Wijk AJM (2018) The effect of additive manufacturing on global energy demand: an assessment using a bottom-up approach. Energy Policy 112:349–360CrossRef Verhoef LA, Budde BW, Chockalingam C, García Nodar B, van Wijk AJM (2018) The effect of additive manufacturing on global energy demand: an assessment using a bottom-up approach. Energy Policy 112:349–360CrossRef
12.
go back to reference Garcia FL, Moris VA, da S, Nunes AO, Silva DAL (2018) Environmental performance of additive manufacturing process-an overview. Rapid Prototyping J 24(7):1166–1177 Garcia FL, Moris VA, da S, Nunes AO, Silva DAL (2018) Environmental performance of additive manufacturing process-an overview. Rapid Prototyping J 24(7):1166–1177
13.
go back to reference Kreiger M, Pearce JM (2013) Environmental life cycle analysis of distributed three-dimensional printing and conventional manufacturing of polymer products. ACS Sustain Chem Eng 1(12):1511–1519CrossRef Kreiger M, Pearce JM (2013) Environmental life cycle analysis of distributed three-dimensional printing and conventional manufacturing of polymer products. ACS Sustain Chem Eng 1(12):1511–1519CrossRef
14.
go back to reference Kellens K, Renaldi R, Dewulf W, Kruth JP, Duflou JR (2014) Environmental impact modeling of selective laser sintering processes. Rapid Prototyping J 20(6):459–470CrossRef Kellens K, Renaldi R, Dewulf W, Kruth JP, Duflou JR (2014) Environmental impact modeling of selective laser sintering processes. Rapid Prototyping J 20(6):459–470CrossRef
15.
go back to reference Baumers M, Tuck C, Hague R, Ashcroft I, Wildman R (2010) A comparative study of metallic additive manufacturing power consumption. In: 21st annual international solid freeform fabrication symposium—an additive manufacturing conference (SFF 2010), pp 278–288 Baumers M, Tuck C, Hague R, Ashcroft I, Wildman R (2010) A comparative study of metallic additive manufacturing power consumption. In: 21st annual international solid freeform fabrication symposium—an additive manufacturing conference (SFF 2010), pp 278–288
16.
go back to reference Bekker ACM, Verlinden JC (2018) Life cycle assessment of wire + arc additive manufacturing compared to green sand casting and CNC milling in stainless steel. J Clean Prod 177:438–447CrossRef Bekker ACM, Verlinden JC (2018) Life cycle assessment of wire + arc additive manufacturing compared to green sand casting and CNC milling in stainless steel. J Clean Prod 177:438–447CrossRef
17.
go back to reference Bourhis FL, Kerbrat O, Dembinski L, Hascoet JY, Mognol P (2014) Predictive model for environmental assessment in additive manufacturing process. Procedia CIRP 15:26–31CrossRef Bourhis FL, Kerbrat O, Dembinski L, Hascoet JY, Mognol P (2014) Predictive model for environmental assessment in additive manufacturing process. Procedia CIRP 15:26–31CrossRef
18.
go back to reference Huang R, Riddle M, Graziano D, Warren J, Das S, Nimbalkar S, Cresko J, Masanet E (2016) Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J Clean Prod 135:1559–1570CrossRef Huang R, Riddle M, Graziano D, Warren J, Das S, Nimbalkar S, Cresko J, Masanet E (2016) Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J Clean Prod 135:1559–1570CrossRef
19.
go back to reference Ingarao G, Priarone PC, Deng Y, Paraskevas D (2018) Environmental modelling of aluminium based components manufacturing routes: additive manufacturing versus machining versus forming. J Clean Prod 176:261–275CrossRef Ingarao G, Priarone PC, Deng Y, Paraskevas D (2018) Environmental modelling of aluminium based components manufacturing routes: additive manufacturing versus machining versus forming. J Clean Prod 176:261–275CrossRef
20.
go back to reference Jin M, Tang R, Ji Y, Liu F, Gao L, Huisingh D (2017) Impact of advanced manufacturing on sustainability: an overview of the special volume on advanced manufacturing for sustainability and low fossil carbon emissions. J Clean Prod 161:69–74CrossRef Jin M, Tang R, Ji Y, Liu F, Gao L, Huisingh D (2017) Impact of advanced manufacturing on sustainability: an overview of the special volume on advanced manufacturing for sustainability and low fossil carbon emissions. J Clean Prod 161:69–74CrossRef
21.
go back to reference Ma J, Harstvedt JD, Dunaway D, Bian L, Jaradat R (2018) An exploratory investigation of additively manufactured product life cycle sustainability assessment. J Clean Prod 192:55–70CrossRef Ma J, Harstvedt JD, Dunaway D, Bian L, Jaradat R (2018) An exploratory investigation of additively manufactured product life cycle sustainability assessment. J Clean Prod 192:55–70CrossRef
22.
go back to reference Malshe H, Nagarajan H, Pan Y, Haapala K (2015) Profile of sustainability in additive manufacturing and environmental assessment of a novel stereolithography process. In: ASME international manufacturing science and engineering conference, pp 1–11 Malshe H, Nagarajan H, Pan Y, Haapala K (2015) Profile of sustainability in additive manufacturing and environmental assessment of a novel stereolithography process. In: ASME international manufacturing science and engineering conference, pp 1–11
23.
go back to reference Paris H, Mokhtarian H, Museau M, Coatane E, Ituarte IF (2016) Manufacturing technology comparative environmental impacts of additive and subtractive manufacturing technologies. CIRP Ann 65:29–32 Paris H, Mokhtarian H, Museau M, Coatane E, Ituarte IF (2016) Manufacturing technology comparative environmental impacts of additive and subtractive manufacturing technologies. CIRP Ann 65:29–32
24.
go back to reference Zhang H, Nagel JK, Al-Qas A, Gibbons E, Lee JJY (2018) Additive manufacturing with bioinspired sustainable product design: a conceptual model. Procedia Manuf 26:880–891CrossRef Zhang H, Nagel JK, Al-Qas A, Gibbons E, Lee JJY (2018) Additive manufacturing with bioinspired sustainable product design: a conceptual model. Procedia Manuf 26:880–891CrossRef
25.
go back to reference Balogun VA, Kirkwood ND, Mativenga PT (2014) Direct electrical energy demand in fused deposition modelling. Procedia CIRP 15:38–43CrossRef Balogun VA, Kirkwood ND, Mativenga PT (2014) Direct electrical energy demand in fused deposition modelling. Procedia CIRP 15:38–43CrossRef
26.
go back to reference Lyons R, Newell A, Ghadimi P, Papakostas N (2020) Environmental impacts of conventional and additive manufacturing for the production of Ti-6Al-4V knee implant: a life cycle approach. Int J Adv Manuf Technol Lyons R, Newell A, Ghadimi P, Papakostas N (2020) Environmental impacts of conventional and additive manufacturing for the production of Ti-6Al-4V knee implant: a life cycle approach. Int J Adv Manuf Technol
27.
go back to reference Hodonou C, Kerbrat O, Balazinski M, Brochu M (2020) Process selection charts based on economy and environment: subtractive or additive manufacturing to produce structural components of aircraft. Int J Interact Des Manuf 14(3):861–873CrossRef Hodonou C, Kerbrat O, Balazinski M, Brochu M (2020) Process selection charts based on economy and environment: subtractive or additive manufacturing to produce structural components of aircraft. Int J Interact Des Manuf 14(3):861–873CrossRef
28.
go back to reference Tagliaferri V, Trovalusci F, Guarino S, Venettacci S (2019) Environmental and economic analysis of FDM, SLS and MJF additive manufacturing technologies. Materials 12(24) Tagliaferri V, Trovalusci F, Guarino S, Venettacci S (2019) Environmental and economic analysis of FDM, SLS and MJF additive manufacturing technologies. Materials 12(24)
29.
go back to reference Böckin D, Tillman AM (2019) Environmental assessment of additive manufacturing in the automotive industry. J Clean Prod 226:977–987CrossRef Böckin D, Tillman AM (2019) Environmental assessment of additive manufacturing in the automotive industry. J Clean Prod 226:977–987CrossRef
30.
go back to reference Yosofi M, Kerbrat O, Mognol P (2019) Additive manufacturing processes from an environmental point of view: a new methodology for combining technical, economic, and environmental predictive models. Int J Adv Manuf Technol 102(9–12):4073–4085CrossRef Yosofi M, Kerbrat O, Mognol P (2019) Additive manufacturing processes from an environmental point of view: a new methodology for combining technical, economic, and environmental predictive models. Int J Adv Manuf Technol 102(9–12):4073–4085CrossRef
31.
go back to reference Faludi J, Van Sice CM, Shi Y, Bower J, Brooks OMK (2019) Novel materials can radically improve whole-system environmental impacts of additive manufacturing. J Clean Prod 212:1580–1590CrossRef Faludi J, Van Sice CM, Shi Y, Bower J, Brooks OMK (2019) Novel materials can radically improve whole-system environmental impacts of additive manufacturing. J Clean Prod 212:1580–1590CrossRef
32.
go back to reference Liu Z, Jiang Q, Ning F, Kim H, Cong W, Xu C, Zhang H (2018) Investigation of energy requirements and environmental performance for additive manufacturing processes. Sustainability 10(10):3606CrossRef Liu Z, Jiang Q, Ning F, Kim H, Cong W, Xu C, Zhang H (2018) Investigation of energy requirements and environmental performance for additive manufacturing processes. Sustainability 10(10):3606CrossRef
33.
go back to reference Yang Y, Li L, Pan Y, Sun Z (2017) Energy consumption modeling of stereolithography-based additive manufacturing toward environmental sustainability. J Ind Ecol 21:S168–S178CrossRef Yang Y, Li L, Pan Y, Sun Z (2017) Energy consumption modeling of stereolithography-based additive manufacturing toward environmental sustainability. J Ind Ecol 21:S168–S178CrossRef
34.
go back to reference Tang Y, Mak K, Zhao YF (2016) A framework to reduce product environmental impact through design optimization for additive manufacturing. J Clean Prod 137:1560–1572CrossRef Tang Y, Mak K, Zhao YF (2016) A framework to reduce product environmental impact through design optimization for additive manufacturing. J Clean Prod 137:1560–1572CrossRef
35.
go back to reference Priarone PC, Pagone E, Martina F, Catalano AR, Settineri L (2020) Multi-criteria environmental and economic impact assessment of wire arc additive manufacturing. CIRP Ann 69(1):37–40CrossRef Priarone PC, Pagone E, Martina F, Catalano AR, Settineri L (2020) Multi-criteria environmental and economic impact assessment of wire arc additive manufacturing. CIRP Ann 69(1):37–40CrossRef
36.
go back to reference Ron T, Levy GK, Dolev O, Leon A, Shirizly A, Aghion E (2019) Environmental behavior of low carbon steel produced by a wire arc additive manufacturing process. Metals 9(8) Ron T, Levy GK, Dolev O, Leon A, Shirizly A, Aghion E (2019) Environmental behavior of low carbon steel produced by a wire arc additive manufacturing process. Metals 9(8)
37.
go back to reference Priarone PC, Ingarao G, Lunetto V, Di Lorenzo R, Settineri L (2018) The role of re-design for additive manufacturing on the process environmental performance. Procedia CIRP 69:124–129CrossRef Priarone PC, Ingarao G, Lunetto V, Di Lorenzo R, Settineri L (2018) The role of re-design for additive manufacturing on the process environmental performance. Procedia CIRP 69:124–129CrossRef
38.
go back to reference Faludi J, Bayley C, Bhogal S, Iribarne M (2015) Comparing environmental impacts of additive manufacturing vs traditional machining via life-cycle assessment. Rapid Prototyping J 21(1):14–33CrossRef Faludi J, Bayley C, Bhogal S, Iribarne M (2015) Comparing environmental impacts of additive manufacturing vs traditional machining via life-cycle assessment. Rapid Prototyping J 21(1):14–33CrossRef
39.
go back to reference Senyana L, Cormier D (2014) An environmental impact comparison of distributed and centralized manufacturing scenarios. Adv Mater Res 875–877:1449–1453CrossRef Senyana L, Cormier D (2014) An environmental impact comparison of distributed and centralized manufacturing scenarios. Adv Mater Res 875–877:1449–1453CrossRef
40.
go back to reference Jiang R, Kleer R, Piller FT (2017) Predicting the future of additive manufacturing: a Delphi study on economic and societal implications of 3D printing for 2030. Technol Forecast Soc Chang 117:84–97CrossRef Jiang R, Kleer R, Piller FT (2017) Predicting the future of additive manufacturing: a Delphi study on economic and societal implications of 3D printing for 2030. Technol Forecast Soc Chang 117:84–97CrossRef
41.
go back to reference Khorram Niaki M, Nonino F, Palombi G, Torabi SA (2019) Economic sustainability of additive manufacturing: contextual factors driving its performance in rapid prototyping. J Manuf Technol Manag 30(2):353–365CrossRef Khorram Niaki M, Nonino F, Palombi G, Torabi SA (2019) Economic sustainability of additive manufacturing: contextual factors driving its performance in rapid prototyping. J Manuf Technol Manag 30(2):353–365CrossRef
42.
go back to reference Li Y, Linke BS, Voet H, Falk B, Schmitt R, Lam M (2017) Cost, sustainability and surface roughness quality—a comprehensive analysis of products made with personal 3D printers. CIRP J Manuf Sci Technol 16:1–11CrossRef Li Y, Linke BS, Voet H, Falk B, Schmitt R, Lam M (2017) Cost, sustainability and surface roughness quality—a comprehensive analysis of products made with personal 3D printers. CIRP J Manuf Sci Technol 16:1–11CrossRef
43.
go back to reference Rickenbacher L, Spierings A, Wegener K (2013) An integrated cost model for selective laser melting (SLM). Rapid Prototyping J 19(3):208–214CrossRef Rickenbacher L, Spierings A, Wegener K (2013) An integrated cost model for selective laser melting (SLM). Rapid Prototyping J 19(3):208–214CrossRef
44.
go back to reference Xu F, Wong YS, Loh HT (2001) Toward generic models for comparative evaluation and process selection in rapid prototyping and manufacturing. J Manuf Syst 19(5):283–296CrossRef Xu F, Wong YS, Loh HT (2001) Toward generic models for comparative evaluation and process selection in rapid prototyping and manufacturing. J Manuf Syst 19(5):283–296CrossRef
45.
go back to reference Šoškić Z, Monti GL, Montanari S, Monti M, Cardu M (2019) Production cost model of the multi-jet-fusion technology. Proc Inst Mech Eng Part C J Mech Eng Sci 1–13 Šoškić Z, Monti GL, Montanari S, Monti M, Cardu M (2019) Production cost model of the multi-jet-fusion technology. Proc Inst Mech Eng Part C J Mech Eng Sci 1–13
46.
go back to reference Lindemann C, Reiher T, Jahnke U, Koch R (2015) Towards a sustainable and economic selection of part candidates for additive manufacturing. Rapid Prototyping J 21(2):216–227CrossRef Lindemann C, Reiher T, Jahnke U, Koch R (2015) Towards a sustainable and economic selection of part candidates for additive manufacturing. Rapid Prototyping J 21(2):216–227CrossRef
47.
go back to reference Westerweel B, Basten RJI, van Houtum GJ (2018) Traditional or additive manufacturing? Assessing component design options through lifecycle cost analysis. Eur J Oper Res 270(2):570–585MathSciNetMATHCrossRef Westerweel B, Basten RJI, van Houtum GJ (2018) Traditional or additive manufacturing? Assessing component design options through lifecycle cost analysis. Eur J Oper Res 270(2):570–585MathSciNetMATHCrossRef
48.
go back to reference Kamps T, Lutter-Guenther M, Seidel C, Gutowski T, Reinhart G (2018) Cost and energy efficient manufacture of gears by laser beam melting. CIRP J Manuf Sci Technol 21:47–60CrossRef Kamps T, Lutter-Guenther M, Seidel C, Gutowski T, Reinhart G (2018) Cost and energy efficient manufacture of gears by laser beam melting. CIRP J Manuf Sci Technol 21:47–60CrossRef
49.
go back to reference Laureijs RE, Roca JB, Narra SP, Montgomery C, Beuth JL, Fuchs ERH (2017) Metal additive manufacturing: cost competitive beyond low volumes. J Manuf Sci E T ASME 139:8CrossRef Laureijs RE, Roca JB, Narra SP, Montgomery C, Beuth JL, Fuchs ERH (2017) Metal additive manufacturing: cost competitive beyond low volumes. J Manuf Sci E T ASME 139:8CrossRef
50.
go back to reference Huang R, Ulu E, Kara LB, Whitefoot KS (2017) Cost minimization in metal additive manufacturing using concurrent structure and process optimization. In: ASME 2017 international design engineering technical conference & computers and information in engineering conference computers and information in engineering conference, pp 1–10 Huang R, Ulu E, Kara LB, Whitefoot KS (2017) Cost minimization in metal additive manufacturing using concurrent structure and process optimization. In: ASME 2017 international design engineering technical conference & computers and information in engineering conference computers and information in engineering conference, pp 1–10
51.
go back to reference Fera M, Macchiaroli R, Fruggiero F, Lambiase A (2018) A new perspective for production process analysis using additive manufacturing-complexity vs production volume. Int J Adv Manuf Technol 95(1–4):673–685CrossRef Fera M, Macchiaroli R, Fruggiero F, Lambiase A (2018) A new perspective for production process analysis using additive manufacturing-complexity vs production volume. Int J Adv Manuf Technol 95(1–4):673–685CrossRef
52.
go back to reference Ott K, Pascher H, Sihn W (2019) Improving sustainability and cost efficiency for spare part allocation strategies by utilisation of additive manufacturing technologies. Procedia Manuf 33:123–130CrossRef Ott K, Pascher H, Sihn W (2019) Improving sustainability and cost efficiency for spare part allocation strategies by utilisation of additive manufacturing technologies. Procedia Manuf 33:123–130CrossRef
53.
go back to reference Rudolph JP, Emmelmann C (2017) A cloud-based platform for automated order processing in additive manufacturing. Procedia CIRP 63:412–417CrossRef Rudolph JP, Emmelmann C (2017) A cloud-based platform for automated order processing in additive manufacturing. Procedia CIRP 63:412–417CrossRef
54.
go back to reference Mai J, Zhang L, Tao F, Ren L (2016) Customized production based on distributed 3D printing services in cloud manufacturing. Int J Adv Manuf Technol 84(1–4):71–83CrossRef Mai J, Zhang L, Tao F, Ren L (2016) Customized production based on distributed 3D printing services in cloud manufacturing. Int J Adv Manuf Technol 84(1–4):71–83CrossRef
55.
go back to reference Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9–12):1147–1155CrossRef Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9–12):1147–1155CrossRef
56.
go back to reference Ruffo M, Tuck C, Hague R (2006) Cost estimation for rapid manufacturing—laser sintering production for low to medium volumes. Proc Inst Mech Eng Part B J Eng Manuf 220(9):1417–1427CrossRef Ruffo M, Tuck C, Hague R (2006) Cost estimation for rapid manufacturing—laser sintering production for low to medium volumes. Proc Inst Mech Eng Part B J Eng Manuf 220(9):1417–1427CrossRef
57.
go back to reference Hopkinson N, Dickens P (2003) Analysis of rapid manufacturing—using layer manufacturing processes for production. Proc Inst Mech Eng C J Mech Eng Sci 217(1):31–40CrossRef Hopkinson N, Dickens P (2003) Analysis of rapid manufacturing—using layer manufacturing processes for production. Proc Inst Mech Eng C J Mech Eng Sci 217(1):31–40CrossRef
58.
go back to reference Emelogu A, Marufuzzaman M, Thompson SM, Shamsaei N, Bian L (2016) Additive manufacturing of biomedical implants: a feasibility assessment via supply-chain cost analysis. Addit Manuf 11:97–113 Emelogu A, Marufuzzaman M, Thompson SM, Shamsaei N, Bian L (2016) Additive manufacturing of biomedical implants: a feasibility assessment via supply-chain cost analysis. Addit Manuf 11:97–113
59.
go back to reference Lindemann C, Jahnke U, Moi M, Koch R (2012) Analyzing product lifecycle costs for a better understanding of cost drivers in additive manufacturing, pp 177–188 Lindemann C, Jahnke U, Moi M, Koch R (2012) Analyzing product lifecycle costs for a better understanding of cost drivers in additive manufacturing, pp 177–188
60.
go back to reference Scott A, Harrison TP (2015) Additive manufacturing in an end-to-end supply chain setting. 3D Printing Additive Manuf 2(2):65–77 Scott A, Harrison TP (2015) Additive manufacturing in an end-to-end supply chain setting. 3D Printing Additive Manuf 2(2):65–77
61.
go back to reference Khajavi SH, Baumers M, Holmström J, Özcan E, Atkin J, Jackson W, Li W (2018) To kit or not to kit: analysing the value of model-based kitting for additive manufacturing. Comput Ind 98:100–117CrossRef Khajavi SH, Baumers M, Holmström J, Özcan E, Atkin J, Jackson W, Li W (2018) To kit or not to kit: analysing the value of model-based kitting for additive manufacturing. Comput Ind 98:100–117CrossRef
62.
go back to reference Urbanic RJ, Saqib SM (2019) A manufacturing cost analysis framework to evaluate machining and fused filament fabrication additive manufacturing approaches. Int J Adv Manuf Technol 102(9–12):3091–3108CrossRef Urbanic RJ, Saqib SM (2019) A manufacturing cost analysis framework to evaluate machining and fused filament fabrication additive manufacturing approaches. Int J Adv Manuf Technol 102(9–12):3091–3108CrossRef
63.
go back to reference Sutherland JW, Richter JS, Hutchins MJ, Dornfeld D, Dzombak R, Mangold J, Robinson S, Hauschild MZ, Bonou A, Schönsleben P, Friemann F (2016) The role of manufacturing in affecting the social dimension of sustainability. CIRP Ann Manuf Technol 65(2):689–712CrossRef Sutherland JW, Richter JS, Hutchins MJ, Dornfeld D, Dzombak R, Mangold J, Robinson S, Hauschild MZ, Bonou A, Schönsleben P, Friemann F (2016) The role of manufacturing in affecting the social dimension of sustainability. CIRP Ann Manuf Technol 65(2):689–712CrossRef
64.
go back to reference Benoît C, Mazijn B (2013) United Nations Environment Programme. CIRAIG, Interuniversity Research Centre for the Life Cycle of Products, P. and S., & Canadian Electronic Library. Guidelines for social life cycle assessment of products (2013) Benoît C, Mazijn B (2013) United Nations Environment Programme. CIRAIG, Interuniversity Research Centre for the Life Cycle of Products, P. and S., & Canadian Electronic Library. Guidelines for social life cycle assessment of products (2013)
65.
go back to reference Chen D, Heyer S, Ibbotson S, Salonitis K, Steingrímsson JG, Thiede S (2015) Direct digital manufacturing: definition, evolution, and sustainability implications. J Clean Prod 107:615–625CrossRef Chen D, Heyer S, Ibbotson S, Salonitis K, Steingrímsson JG, Thiede S (2015) Direct digital manufacturing: definition, evolution, and sustainability implications. J Clean Prod 107:615–625CrossRef
66.
go back to reference Kondoh S, Tateno T, Kishita Y, Komoto H (2017) The potential of additive manufacturing technology for realizing a sustainable society, pp 475–486 Kondoh S, Tateno T, Kishita Y, Komoto H (2017) The potential of additive manufacturing technology for realizing a sustainable society, pp 475–486
67.
go back to reference Matos F, Jacinto C (2018) Additive manufacturing technology: mapping social impacts. J Manuf Technol Manag 30(1):70–97CrossRef Matos F, Jacinto C (2018) Additive manufacturing technology: mapping social impacts. J Manuf Technol Manag 30(1):70–97CrossRef
Metadata
Title
Sustainability Implications of Additive Manufacturing
Authors
Nabila Afif Mohmd Arifin
Muhamad Zameri Mat Saman
Safian Sharif
Nor Hasrul Akhmal Ngadiman
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-4115-2_35