Skip to main content
Top

2022 | OriginalPaper | Chapter

4. Sustainability Metrics for Aero Gas Turbine Engines

Author : Özgür Ballı

Published in: Progress in Sustainable Aviation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The global aviation fleet numbers rise as a result of increase in flight numbers and hours. Aviation transportation industry causes the environmental degradation and global warming effect. In this regard, greener and sustainable aviation issues have been more interested in researchers, engine manufacturers, and society in recent years. This study presents a model about sustainable aviation for finding the environmental effects and sustainable level of aero-engine systems. These metrics consist of the general aviation metrics, energy-based metrics, exergy-based aviation metrics, environmental-based metrics, and sustainability-based metrics. These aviation metrics are applied to a real turbofan engine to assess the engine’s sustainability level and its main components.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Acikkalp, E. (2017). Ecologic and sustainable objective thermodynamic evaluation of molten carbonate fuel cell- supercritical CO2 Brayton cycle hybrid system. International Journal of Hydrogen Energy, 42(9), 6272–6280.CrossRef Acikkalp, E. (2017). Ecologic and sustainable objective thermodynamic evaluation of molten carbonate fuel cell- supercritical CO2 Brayton cycle hybrid system. International Journal of Hydrogen Energy, 42(9), 6272–6280.CrossRef
go back to reference Akdeniz, H. Y. (2022). Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints. Energy, 243, 123179.CrossRef Akdeniz, H. Y. (2022). Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints. Energy, 243, 123179.CrossRef
go back to reference Akdeniz, H. Y., & Balli, O. (2021a). Energetic and exergetic assessment of operating biofuel, hydrogen and conventional JP-8 in a J69 type of aircraft turbojet engine. Journal of Thermal Analysis and Calorimetry, 146, 1709–1721.CrossRef Akdeniz, H. Y., & Balli, O. (2021a). Energetic and exergetic assessment of operating biofuel, hydrogen and conventional JP-8 in a J69 type of aircraft turbojet engine. Journal of Thermal Analysis and Calorimetry, 146, 1709–1721.CrossRef
go back to reference Akdeniz, H. Y., & Balli, O. (2021b). Effects of bypass ratio change trend on performance in a military aircraft turbofan engine with comparative assessment. Journal of Energy Resources Technology, 143, 120905–120901.CrossRef Akdeniz, H. Y., & Balli, O. (2021b). Effects of bypass ratio change trend on performance in a military aircraft turbofan engine with comparative assessment. Journal of Energy Resources Technology, 143, 120905–120901.CrossRef
go back to reference Akdeniz, H. Y., & Balli, O. (2022). Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft. Energy, 238, 121745.CrossRef Akdeniz, H. Y., & Balli, O. (2022). Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft. Energy, 238, 121745.CrossRef
go back to reference Angulo-Brown, F. (1991). An ecological optimization criterion for finite-time heat engines. Journal of Applied Physics, 69, 7465–7469.CrossRef Angulo-Brown, F. (1991). An ecological optimization criterion for finite-time heat engines. Journal of Applied Physics, 69, 7465–7469.CrossRef
go back to reference Atilgan, R., & Turan, O. (2020). Economy and exergy of aircraft turboprop engine at dynamic loads. Energy, 213, 118827.CrossRef Atilgan, R., & Turan, O. (2020). Economy and exergy of aircraft turboprop engine at dynamic loads. Energy, 213, 118827.CrossRef
go back to reference Aydin, H., Turan, O., Karakoc, T. H., & Midilli, A. (2013). Exergo-sustainability indicators of aturboprop aircraft for the phases of a flight. Energy, 58, 550–560.CrossRef Aydin, H., Turan, O., Karakoc, T. H., & Midilli, A. (2013). Exergo-sustainability indicators of aturboprop aircraft for the phases of a flight. Energy, 58, 550–560.CrossRef
go back to reference Aygun, H., & Turan, O. (2021a). Entropy, energy and exergy for measuring PW4000 turbofan sustainability. International Journal of Turbo Jet-Engines, 38, 397–409. Aygun, H., & Turan, O. (2021a). Entropy, energy and exergy for measuring PW4000 turbofan sustainability. International Journal of Turbo Jet-Engines, 38, 397–409.
go back to reference Aygun, H., & Turan, O. (2022). Application of genetic algorithm in exergy and sustainability: A case of aero-gas turbine engine at cruise phase. Energy, 238, 121644.CrossRef Aygun, H., & Turan, O. (2022). Application of genetic algorithm in exergy and sustainability: A case of aero-gas turbine engine at cruise phase. Energy, 238, 121644.CrossRef
go back to reference Aygun, H., Erkara, S., & Turan, O. (2022). Comprehensive exergo- sustainability analysis for a next generation aero engine. Energy, 239, 122364.CrossRef Aygun, H., Erkara, S., & Turan, O. (2022). Comprehensive exergo- sustainability analysis for a next generation aero engine. Energy, 239, 122364.CrossRef
go back to reference Baklacioglu, T., Turan, O., & Aydin, H. (2021). Modeling of relative exergy destruction for turboprop engine components using deep learning artificial neural networks. International Journal of Turbo Jet-Engines, 39, 377–390. Baklacioglu, T., Turan, O., & Aydin, H. (2021). Modeling of relative exergy destruction for turboprop engine components using deep learning artificial neural networks. International Journal of Turbo Jet-Engines, 39, 377–390.
go back to reference Balli, O. (2014). Afterburning effect on the energetic and exergetic performance of an experimental turbojet engine (TJE). International Journal of Exergy, 14(2), 205–236.CrossRef Balli, O. (2014). Afterburning effect on the energetic and exergetic performance of an experimental turbojet engine (TJE). International Journal of Exergy, 14(2), 205–236.CrossRef
go back to reference Balli, O. (2017a). Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. Applied Thermal Engineering, 111, 152–169.CrossRef Balli, O. (2017a). Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. Applied Thermal Engineering, 111, 152–169.CrossRef
go back to reference Balli, O. (2017b). Advanced exergy analyses of an aircraft turboprop engine (TPE). Energy, 124, 599–612.CrossRef Balli, O. (2017b). Advanced exergy analyses of an aircraft turboprop engine (TPE). Energy, 124, 599–612.CrossRef
go back to reference Balli, O. (2017c). Exergy modeling for evaluating sustainability level of a high by-passturbofan engine used on commercial aircrafts. Applied Thermal Engineering, 123, 138–155.CrossRef Balli, O. (2017c). Exergy modeling for evaluating sustainability level of a high by-passturbofan engine used on commercial aircrafts. Applied Thermal Engineering, 123, 138–155.CrossRef
go back to reference Balli, O. (2019). Advanced exergy analysis of a turbofan engine (TFE): Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. The International Journal of Turbo & Jet Engines, 36(3), 305–327. Balli, O. (2019). Advanced exergy analysis of a turbofan engine (TFE): Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. The International Journal of Turbo & Jet Engines, 36(3), 305–327.
go back to reference Balli, O. (2020a). Exergetic, exergoeconomic, sustainability and environmental damage cost analyses of J85 turbojet engine with afterburner. The International Journal of Turbo & Jet Engines, 37(2), 167–194.CrossRef Balli, O. (2020a). Exergetic, exergoeconomic, sustainability and environmental damage cost analyses of J85 turbojet engine with afterburner. The International Journal of Turbo & Jet Engines, 37(2), 167–194.CrossRef
go back to reference Balli, O., & Caliskan, H. (2021a). Turbofan engine performances from aviation, thermodynamic and environmental perspectives. Energy, 232, 121031.CrossRef Balli, O., & Caliskan, H. (2021a). Turbofan engine performances from aviation, thermodynamic and environmental perspectives. Energy, 232, 121031.CrossRef
go back to reference Balli, O., & Caliskan, H. (2021b). On-design and off-design operation performance assessments of an aero turboprop engine used on unmanned aerial vehicles (UAVs) in terms of aviation, thermodynamic, environmental and sustainability perspectives. Energy Conversion and Management, 243, 114403.CrossRef Balli, O., & Caliskan, H. (2021b). On-design and off-design operation performance assessments of an aero turboprop engine used on unmanned aerial vehicles (UAVs) in terms of aviation, thermodynamic, environmental and sustainability perspectives. Energy Conversion and Management, 243, 114403.CrossRef
go back to reference Balli, O., & Hepbasli, A. (2013). Energetic and exergetic analyses of T56 turbopropengine. Energy Conversion and Management, 73, 106–120.CrossRef Balli, O., & Hepbasli, A. (2013). Energetic and exergetic analyses of T56 turbopropengine. Energy Conversion and Management, 73, 106–120.CrossRef
go back to reference Balli, O., & Hepbasli, A. (2014). Exergoeconomic, sustainability and environmental damage costanalyses of T56 turboprop engine. Energy, 64, 582–600.CrossRef Balli, O., & Hepbasli, A. (2014). Exergoeconomic, sustainability and environmental damage costanalyses of T56 turboprop engine. Energy, 64, 582–600.CrossRef
go back to reference Balli, O., Sohret, Y., & Karakoc, T. H. (2018). The effects of hydrogen fuel usage on the exergetic performance of a turbojet engine. International Journal of Hydrogen Energy, 43(23), 10848–10858.CrossRef Balli, O., Sohret, Y., & Karakoc, T. H. (2018). The effects of hydrogen fuel usage on the exergetic performance of a turbojet engine. International Journal of Hydrogen Energy, 43(23), 10848–10858.CrossRef
go back to reference Balli, O., Dalkiran, A., & Karakoc, T. H. (2021a). Energetic, exergetic, exergoeconomic, environmental (4E) and sustainability performances of an unmanned aerial vehicle micro turbojet engine. Aircraft Engineering and Aerospace Technology, 93(7), 1254–1275.CrossRef Balli, O., Dalkiran, A., & Karakoc, T. H. (2021a). Energetic, exergetic, exergoeconomic, environmental (4E) and sustainability performances of an unmanned aerial vehicle micro turbojet engine. Aircraft Engineering and Aerospace Technology, 93(7), 1254–1275.CrossRef
go back to reference Balli, O., Ozbek, E., Ekici, S., Midilli, A., & Karakoc, T. H. (2021b). Thermodynamic comparison of TF33 turbofan engine fueled by hydrogen in benchmark with kerosene. Fuel, 306, 121686.CrossRef Balli, O., Ozbek, E., Ekici, S., Midilli, A., & Karakoc, T. H. (2021b). Thermodynamic comparison of TF33 turbofan engine fueled by hydrogen in benchmark with kerosene. Fuel, 306, 121686.CrossRef
go back to reference Balli, O., Ekici, S., & Karakoc, T. H. (2021c). TF33 Turbofan engine in every respect: Performance, environmental, and sustainability assessment. Environmental Progress & Sustainable Energy, 40, e13578.CrossRef Balli, O., Ekici, S., & Karakoc, T. H. (2021c). TF33 Turbofan engine in every respect: Performance, environmental, and sustainability assessment. Environmental Progress & Sustainable Energy, 40, e13578.CrossRef
go back to reference Balli, O., Aygun, H., & Turan, O. (2022). Enhanced dynamic exergy analysis of a micro-jet (m-jet) engine at various modes. Energy, 239, 121911.CrossRef Balli, O., Aygun, H., & Turan, O. (2022). Enhanced dynamic exergy analysis of a micro-jet (m-jet) engine at various modes. Energy, 239, 121911.CrossRef
go back to reference Coban, K., Sohret, Y., Colpan, C. O., & Karakoc, T. H. (2017a). Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel. Energy, 140, 1358–1367.CrossRef Coban, K., Sohret, Y., Colpan, C. O., & Karakoc, T. H. (2017a). Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel. Energy, 140, 1358–1367.CrossRef
go back to reference Coban, K., Colpan, C. O., & Karakoc, T. H. (2017b). Application of thermodynamic laws on a military helicopter engine. Energy, 140, 1247–1436.CrossRef Coban, K., Colpan, C. O., & Karakoc, T. H. (2017b). Application of thermodynamic laws on a military helicopter engine. Energy, 140, 1247–1436.CrossRef
go back to reference Daly, M., & Gunston, B. (1996). Jane’s Aero-Engines. ISBN: 0710614055. Jane’s Information Group Limited. Sential House. 163. Brighton Road. Coulsdon. SurreyCR5 2NH. Printed Pear Tree Image Processing. Stevenage, Herts. Daly, M., & Gunston, B. (1996). Jane’s Aero-Engines. ISBN: 0710614055. Jane’s Information Group Limited. Sential House. 163. Brighton Road. Coulsdon. SurreyCR5 2NH. Printed Pear Tree Image Processing. Stevenage, Herts.
go back to reference Dinc, A., Sohret, Y., & Ekici, S. (2020). Exergy analysis of a three-spool turboprop engine during the flight of a cargo aircraft. Aircraft Engineering and Aerospace Technology, 92(10), 1495–1503.CrossRef Dinc, A., Sohret, Y., & Ekici, S. (2020). Exergy analysis of a three-spool turboprop engine during the flight of a cargo aircraft. Aircraft Engineering and Aerospace Technology, 92(10), 1495–1503.CrossRef
go back to reference Dincer, I., & Rosen, M. A. (2007). Exergy energy, environment, and sustainable development. Elsevier. Dincer, I., & Rosen, M. A. (2007). Exergy energy, environment, and sustainable development. Elsevier.
go back to reference Ehyaei, M. A., Anjiridezfuli, A., & Rosen, M. A. (2013). Exergetic analysis of an aircraft turbojet engine with an afterburner. Thermal Science, 17, 1181–1194.CrossRef Ehyaei, M. A., Anjiridezfuli, A., & Rosen, M. A. (2013). Exergetic analysis of an aircraft turbojet engine with an afterburner. Thermal Science, 17, 1181–1194.CrossRef
go back to reference Ekici, S., Sohret, Y., Coban, K., Altuntas, O., & Karakoc, T. H. (2018). Sustainability metrics of a small scale turbojet engine. International Journal of Turbo Jet Engines, 35(2), 113–119.CrossRef Ekici, S., Sohret, Y., Coban, K., Altuntas, O., & Karakoc, T. H. (2018). Sustainability metrics of a small scale turbojet engine. International Journal of Turbo Jet Engines, 35(2), 113–119.CrossRef
go back to reference El-Sayed, A. F. (2008). Aircraft propulsion and gas turbine engines. CRC Press.CrossRef El-Sayed, A. F. (2008). Aircraft propulsion and gas turbine engines. CRC Press.CrossRef
go back to reference IPCC. (2018). Global warming of 1.5°C-IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways. In V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), The context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://www.ipcc.ch/sr15/ IPCC. (2018). Global warming of 1.5°C-IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways. In V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), The context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://​www.​ipcc.​ch/​sr15/​
go back to reference Koruyucu, E., Altuntas, O., & Karakoc, T. H. (2020). Exergetic investigation of a turboshaft helicopter engine related to engine power. SAE International Journal of Aerospace, 13(2), 257–267.CrossRef Koruyucu, E., Altuntas, O., & Karakoc, T. H. (2020). Exergetic investigation of a turboshaft helicopter engine related to engine power. SAE International Journal of Aerospace, 13(2), 257–267.CrossRef
go back to reference Kotas, T. J. (2013). The exergy method of thermal plant analysis. Elsevier. Kotas, T. J. (2013). The exergy method of thermal plant analysis. Elsevier.
go back to reference Lucia, U., & Acikkalp, E. (2017). Irreversible thermodynamic analysis and application for molecular heat engines. Chemical Physics, 494, 47–55.CrossRef Lucia, U., & Acikkalp, E. (2017). Irreversible thermodynamic analysis and application for molecular heat engines. Chemical Physics, 494, 47–55.CrossRef
go back to reference Ozel, G., Acikkalp, E., Savas, A. F., & Yamık, H. (2015). Novel thermoenvironmental evaluation criteria and comparing them for an actual heat engine. Energy Conversion and Management, 106, 1118–1123.CrossRef Ozel, G., Acikkalp, E., Savas, A. F., & Yamık, H. (2015). Novel thermoenvironmental evaluation criteria and comparing them for an actual heat engine. Energy Conversion and Management, 106, 1118–1123.CrossRef
go back to reference Ozen, D. N., Uysal, C., & Balli, O. (2020). Thermoeconomic analysis of T56 turboprop engine under different load conditions. Journal of Thermal Science and Technology, 40(2), 251–265. Ozen, D. N., Uysal, C., & Balli, O. (2020). Thermoeconomic analysis of T56 turboprop engine under different load conditions. Journal of Thermal Science and Technology, 40(2), 251–265.
go back to reference Rakopoulos, C. D., & Giakoumis, E. G. (2006). Second-law analyses applied to internal combustion engines operation. Progress in Energy and Combustion Science, 32(1), 2–47.CrossRef Rakopoulos, C. D., & Giakoumis, E. G. (2006). Second-law analyses applied to internal combustion engines operation. Progress in Energy and Combustion Science, 32(1), 2–47.CrossRef
go back to reference Sohret, Y. (2021b). Defining ecologic thermo-environmental index for aero-engines as a novel performance criterion. Propulsion and Power Research, 10(4), 374–382.CrossRef Sohret, Y. (2021b). Defining ecologic thermo-environmental index for aero-engines as a novel performance criterion. Propulsion and Power Research, 10(4), 374–382.CrossRef
go back to reference Sohret, Y., Ekici, S., Altuntas, O., & Karakoc, T. H. (2019). LCA of the maintenance of a piston-prop engine. Aircraft Engineering and Aerospace Technology, 91(7), 987–993.CrossRef Sohret, Y., Ekici, S., Altuntas, O., & Karakoc, T. H. (2019). LCA of the maintenance of a piston-prop engine. Aircraft Engineering and Aerospace Technology, 91(7), 987–993.CrossRef
go back to reference Turan, O., Atilgan, R., Altuntas, O., & Synylo, K. (2013). Environmental impact assessment of a turboprop engine with the aid of exergy. Energy, 53, 664–671. Turan, O., Atilgan, R., Altuntas, O., & Synylo, K. (2013). Environmental impact assessment of a turboprop engine with the aid of exergy. Energy, 53, 664–671.
go back to reference Turgut, E. T., Cavcar, M., Usanmaz, O., Canarslanlar, A. O., Dogeroglu, T., Armutlu, K., & Yay, O. D. (2014). Fuel flow analysis for the cruise phase of commercial aircraft on domestic routes. Aerospace Science and Technology, 37, 1–9.CrossRef Turgut, E. T., Cavcar, M., Usanmaz, O., Canarslanlar, A. O., Dogeroglu, T., Armutlu, K., & Yay, O. D. (2014). Fuel flow analysis for the cruise phase of commercial aircraft on domestic routes. Aerospace Science and Technology, 37, 1–9.CrossRef
go back to reference Tuzcu, H., Sohret, H., & Caliskan, H. (2020). Energy, environment and enviroeconomic analyses and assessments of the turbofan engine used in aviation industry. Environmental Progress & Sustainable Energy. Paper no: e13547, 1–8. https://doi.org/10.1002/ep.13547 Tuzcu, H., Sohret, H., & Caliskan, H. (2020). Energy, environment and enviroeconomic analyses and assessments of the turbofan engine used in aviation industry. Environmental Progress & Sustainable Energy. Paper no: e13547, 1–8. https://​doi.​org/​10.​1002/​ep.​13547
go back to reference Yildirim, E., Ekici, S., Altuntas, O., Hepbasli, A., & Karakoc, T. H. (2017). Energy, exergy analysis, and sustainability assessment of different engine powers for helicopter engines. International Journal of Green Energy, 14(13), 1093–1099.CrossRef Yildirim, E., Ekici, S., Altuntas, O., Hepbasli, A., & Karakoc, T. H. (2017). Energy, exergy analysis, and sustainability assessment of different engine powers for helicopter engines. International Journal of Green Energy, 14(13), 1093–1099.CrossRef
Metadata
Title
Sustainability Metrics for Aero Gas Turbine Engines
Author
Özgür Ballı
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-031-12296-5_4