Skip to main content
Top

2025 | OriginalPaper | Chapter

15. Sustainable Aviation Fuel: A Future Outlook

Author : Claudia Gutiérrez-Antonio

Published in: Sustainable Aviation Fuels

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter begins by highlighting the urgent need for sustainable aviation fuel (SAF) in reducing the aviation sector's carbon footprint, which accounts for a significant portion of global emissions. It discusses the ambitious goals set by the International Air Transport Association (IATA) and the International Civil Aviation Organization (ICAO) to achieve carbon-neutral growth and reduce emissions by 2050. The text explores the four-pillar strategy proposed to meet these objectives, with a particular focus on the development of alternative fuels as the most promising avenue. It delves into the various types of biomass that can be used to produce SAF, including triglycerides, lignocellulosic materials, and sugar and starchy feedstocks, each with its own conversion pathways and challenges. The chapter also examines the technical standards and sustainability certifications required for SAF, such as those set by the American Society of Testing and Materials (ASTM) and the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). It provides a detailed overview of the advancements in SAF production technologies, including hydroprocessing, pyrolysis, and gasification, and discusses the economic and environmental considerations associated with each method. The text concludes by highlighting the future directions and challenges in the production of SAF, emphasizing the need for innovation, standardization, and the integration of renewable energy sources to achieve a sustainable aviation sector.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
3.
go back to reference Atsonios, K., Kougioumtzis, M. A., Panopoulos, K. D., & Kakaras, E. (2015). Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison. Applied Energy, 138, 346–366.CrossRef Atsonios, K., Kougioumtzis, M. A., Panopoulos, K. D., & Kakaras, E. (2015). Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison. Applied Energy, 138, 346–366.CrossRef
4.
go back to reference Brandt, K. L., Martinez-Valencia, L., & Wolcott, M. P. (2022). Cumulative impact of federal and state policy on minimum selling price of sustainable aviation fuel. Frontiers in Energy Research, 10, 828789.CrossRef Brandt, K. L., Martinez-Valencia, L., & Wolcott, M. P. (2022). Cumulative impact of federal and state policy on minimum selling price of sustainable aviation fuel. Frontiers in Energy Research, 10, 828789.CrossRef
5.
go back to reference Burov, N. O., Savelenko, V. D., Ershov, M. A., Vikhritskaya, A. O., Tikhomirova, E. O., Klimov, N. A., Kapustin, V. M., Chernysheva, E. A., Sereda, A. V., Abdellatief, T. M. M., Ramadan, M., & Abdelkareem, M. A. (2023). Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass. Renewable Energy, 215, 118898.CrossRef Burov, N. O., Savelenko, V. D., Ershov, M. A., Vikhritskaya, A. O., Tikhomirova, E. O., Klimov, N. A., Kapustin, V. M., Chernysheva, E. A., Sereda, A. V., Abdellatief, T. M. M., Ramadan, M., & Abdelkareem, M. A. (2023). Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass. Renewable Energy, 215, 118898.CrossRef
7.
go back to reference de Sousa, F. P., dos Reis, G. P., & Pasa, V. M. D. (2024). Catalytic pyrolysis of vegetable oils over NbOPO4 for SAF and green diesel production. Journal of Analytical and Applied Pyrolysis, 177, 106314.CrossRef de Sousa, F. P., dos Reis, G. P., & Pasa, V. M. D. (2024). Catalytic pyrolysis of vegetable oils over NbOPO4 for SAF and green diesel production. Journal of Analytical and Applied Pyrolysis, 177, 106314.CrossRef
8.
go back to reference Domínguez-García, S., Gutiérrez-Antonio, C., De Lira-Flores, J. A., & Ponce-Ortega, J. M. (2017). Optimal planning for the supply chain of biofuels for aviation in Mexico. Clean Technologies and Environmental Policy, 19, 1387–1402.CrossRef Domínguez-García, S., Gutiérrez-Antonio, C., De Lira-Flores, J. A., & Ponce-Ortega, J. M. (2017). Optimal planning for the supply chain of biofuels for aviation in Mexico. Clean Technologies and Environmental Policy, 19, 1387–1402.CrossRef
9.
go back to reference Domínguez-García, S., Gutiérrez-Antonio, C., De Lira-Flores, J. A., Ponce-Ortega, J. M., & El-Halwagi, M. M. (2017). Strategic planning for the supply chain of aviation biofuel with consideration of hydrogen production. Industrial & Engineering Chemistry Research, 56(46), 13812–13830.CrossRef Domínguez-García, S., Gutiérrez-Antonio, C., De Lira-Flores, J. A., Ponce-Ortega, J. M., & El-Halwagi, M. M. (2017). Strategic planning for the supply chain of aviation biofuel with consideration of hydrogen production. Industrial & Engineering Chemistry Research, 56(46), 13812–13830.CrossRef
11.
go back to reference Emmanouilidou, E., Mitkidou, S., Agapiou, A., & Kokkinos, N. C. (2023). Solid waste biomass as a potential feedstock for producing sustainable aviation fuel: A systematic review. Renewable Energy, 206, 897–907.CrossRef Emmanouilidou, E., Mitkidou, S., Agapiou, A., & Kokkinos, N. C. (2023). Solid waste biomass as a potential feedstock for producing sustainable aviation fuel: A systematic review. Renewable Energy, 206, 897–907.CrossRef
12.
go back to reference Gutiérrez-Antonio, C., Romero-Izquierdo, A. G., Gómez-Castro, F. I., & Hernández, S. (2021). Production processes of renewable aviation fuel – Present technologies and future trends. Elsevier. ISBN: 9780128197196. Gutiérrez-Antonio, C., Romero-Izquierdo, A. G., Gómez-Castro, F. I., & Hernández, S. (2021). Production processes of renewable aviation fuel – Present technologies and future trends. Elsevier. ISBN: 9780128197196.
13.
go back to reference Hanafi, S. A., Elmelawy, M. S., Shalaby, N. H., El-Syed, H. A., Eshaq, G., & Mostafa, M. S. (2016). Hydrocracking of waste chicken fat as a cost effective feedstock for renewable fuel production: A kinetic study. Egyptian Journal of Petroleum, 25(4), 531–537.CrossRef Hanafi, S. A., Elmelawy, M. S., Shalaby, N. H., El-Syed, H. A., Eshaq, G., & Mostafa, M. S. (2016). Hydrocracking of waste chicken fat as a cost effective feedstock for renewable fuel production: A kinetic study. Egyptian Journal of Petroleum, 25(4), 531–537.CrossRef
22.
go back to reference Jain, S., & Kumar, S. (2024). A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives. Energy, 296, 131130.CrossRef Jain, S., & Kumar, S. (2024). A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives. Energy, 296, 131130.CrossRef
23.
go back to reference Kamali, F. P., Rossi Borges, J. A., Osseweijer, P., & Posada, J. A. (2018). Towards social sustainability: Screening potential social and governance issues for biojet fuel supply chains in Brazil. Renewable and Sustainable Energy Reviews, 92, 50–61.CrossRef Kamali, F. P., Rossi Borges, J. A., Osseweijer, P., & Posada, J. A. (2018). Towards social sustainability: Screening potential social and governance issues for biojet fuel supply chains in Brazil. Renewable and Sustainable Energy Reviews, 92, 50–61.CrossRef
24.
go back to reference Kang, S., Li, X., Fan, J., & Chang, J. (2013). Hydrothermal conversion of lignin: A review. Renewable and Sustainable Energy Reviews, 27, 546–558.CrossRef Kang, S., Li, X., Fan, J., & Chang, J. (2013). Hydrothermal conversion of lignin: A review. Renewable and Sustainable Energy Reviews, 27, 546–558.CrossRef
25.
go back to reference Klein, B. C., Chagas, M. F., Junqueira, T. L., Ferreira Rezende, M. C. A., de Fátima Cardoso, T., Cavalett, O., & Bonomi, A. (2018). Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Applied Energy, 209, 290–305.CrossRef Klein, B. C., Chagas, M. F., Junqueira, T. L., Ferreira Rezende, M. C. A., de Fátima Cardoso, T., Cavalett, O., & Bonomi, A. (2018). Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Applied Energy, 209, 290–305.CrossRef
26.
go back to reference Lamichhane, G., Acharya, A., Poudel, D. K., Aryal, B., Gyawali, N., Niraula, P., Phuyal, S. R., Budhathoki, P., & Parajuli, N. (2021). Recent advances in bioethanol production from Lignocellulosic biomass. International Journal of Green Energy, 18(7), 731–744.CrossRef Lamichhane, G., Acharya, A., Poudel, D. K., Aryal, B., Gyawali, N., Niraula, P., Phuyal, S. R., Budhathoki, P., & Parajuli, N. (2021). Recent advances in bioethanol production from Lignocellulosic biomass. International Journal of Green Energy, 18(7), 731–744.CrossRef
27.
go back to reference Lau, J. I. C., Wang, Y. S., Ang, T., Seo, J. C. F., Khadaroo, S. N. B. A., Chew, J. J., Lup, A. N. K., & Sunarso, J. J. (2024). Emerging technologies, policies and challenges toward implementing sustainable aviation fuel (SAF). Biomass and Bioenergy, 186, 107277.CrossRef Lau, J. I. C., Wang, Y. S., Ang, T., Seo, J. C. F., Khadaroo, S. N. B. A., Chew, J. J., Lup, A. N. K., & Sunarso, J. J. (2024). Emerging technologies, policies and challenges toward implementing sustainable aviation fuel (SAF). Biomass and Bioenergy, 186, 107277.CrossRef
28.
go back to reference Leila, M., Whalen, J., & Bergthorson, J. (2018). Strategic spatial and temporal design of renewable diesel and biojet fuel supply chains: Case study of California, USA. Energy, 156, 181–195.CrossRef Leila, M., Whalen, J., & Bergthorson, J. (2018). Strategic spatial and temporal design of renewable diesel and biojet fuel supply chains: Case study of California, USA. Energy, 156, 181–195.CrossRef
29.
go back to reference López-Fernández, A., Bolonio, D., Amez, I., Castells, B., Ortega, M. F., & García-Martínez, M. J. (2021). Design and pinch analysis of a GFT process for production of biojet fuel from biomass and plastics. Energies, 14(19), 6035.CrossRef López-Fernández, A., Bolonio, D., Amez, I., Castells, B., Ortega, M. F., & García-Martínez, M. J. (2021). Design and pinch analysis of a GFT process for production of biojet fuel from biomass and plastics. Energies, 14(19), 6035.CrossRef
30.
go back to reference Maity, S. K. (2015). Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renewable and Sustainable Energy Reviews, 43, 1427–1445.CrossRef Maity, S. K. (2015). Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renewable and Sustainable Energy Reviews, 43, 1427–1445.CrossRef
31.
go back to reference Matos-Ríos, D. M., Martínez-Guido, S. I., Ponce Ortega, J. M., Gómez-Castro, F. I., García-Trejo, J. F., & Gutiérrez-Antonio, C. (2022). Optimal supply chain design for renewable aviation fuel production in México considering the full use of nonedible biomass. ACS Sustainable Chemistry and Engineering, 10(30), 9770–9786.CrossRef Matos-Ríos, D. M., Martínez-Guido, S. I., Ponce Ortega, J. M., Gómez-Castro, F. I., García-Trejo, J. F., & Gutiérrez-Antonio, C. (2022). Optimal supply chain design for renewable aviation fuel production in México considering the full use of nonedible biomass. ACS Sustainable Chemistry and Engineering, 10(30), 9770–9786.CrossRef
32.
go back to reference Moreno-Gómez, A. L., Gutiérrez-Antonio, C., Gómez-Castro, F. I., & Hernández, S. (2021). Modelling, simulation and intensification of the hydroprocessing of chicken fat to produce renewable aviation fuel. Chemical Engineering and Processing – Process Intensification, 159, 108250.CrossRef Moreno-Gómez, A. L., Gutiérrez-Antonio, C., Gómez-Castro, F. I., & Hernández, S. (2021). Modelling, simulation and intensification of the hydroprocessing of chicken fat to produce renewable aviation fuel. Chemical Engineering and Processing – Process Intensification, 159, 108250.CrossRef
33.
go back to reference Nilanjana, B. (2023). Biomass to energy – An analysis of current technologies, prospects, and challenges. Bioenergy Research, 16(2), 683–716.CrossRef Nilanjana, B. (2023). Biomass to energy – An analysis of current technologies, prospects, and challenges. Bioenergy Research, 16(2), 683–716.CrossRef
35.
go back to reference Prabhjot Kaur, P., Ghoshal, G., & Banerjee, U. C. (2019). 3 – Traditional bio-preservation in beverages: fermented beverages. In A. M. Grumezescu & A. M. Holban (Eds.), Preservatives and preservation approaches in beverages (pp. 69–113). Academic Press. Prabhjot Kaur, P., Ghoshal, G., & Banerjee, U. C. (2019). 3 – Traditional bio-preservation in beverages: fermented beverages. In A. M. Grumezescu & A. M. Holban (Eds.), Preservatives and preservation approaches in beverages (pp. 69–113). Academic Press.
36.
go back to reference Prussi, M., Lee, U., Wang, M., Malina, R., Valin, H., Taheripour, F., Velarde, C., Staples, M. D., Lonza, L., & Hileman, J. I. (2021). CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. Renewable and Sustainable Energy Reviews, 150, 111398.CrossRef Prussi, M., Lee, U., Wang, M., Malina, R., Valin, H., Taheripour, F., Velarde, C., Staples, M. D., Lonza, L., & Hileman, J. I. (2021). CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. Renewable and Sustainable Energy Reviews, 150, 111398.CrossRef
37.
go back to reference Sharma, R. K., Ananda, M., Rana, B. S., Kumar, R., Farooqui, S. A., Sibi, M. G., & Sinha, A. K. (2012). Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts. Catalysis Today, 198(1), 314–320.CrossRef Sharma, R. K., Ananda, M., Rana, B. S., Kumar, R., Farooqui, S. A., Sibi, M. G., & Sinha, A. K. (2012). Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts. Catalysis Today, 198(1), 314–320.CrossRef
38.
go back to reference Shayegh, F., Farshi, A., & Dehgan, A. (2012). A kinetics lumped model for VGO catalytic cracking in a fluidized bed reactor. Petroleum Science and Technology, 30(9), 945–957.CrossRef Shayegh, F., Farshi, A., & Dehgan, A. (2012). A kinetics lumped model for VGO catalytic cracking in a fluidized bed reactor. Petroleum Science and Technology, 30(9), 945–957.CrossRef
39.
go back to reference Singh, J. (1996). Economic and environmental aspects of bio-energy productivity. In P. Chartier, G. L. Ferrero, U. M. Henius, S. Hultberg, J. Sachau, & M. Wiinblad (Eds.), Biomass for energy and the environment (pp. 1865–1868). Pergamon.CrossRef Singh, J. (1996). Economic and environmental aspects of bio-energy productivity. In P. Chartier, G. L. Ferrero, U. M. Henius, S. Hultberg, J. Sachau, & M. Wiinblad (Eds.), Biomass for energy and the environment (pp. 1865–1868). Pergamon.CrossRef
40.
go back to reference Song, M., Zhang, X., Chen, Y., Zhang, Q., Chen, L., Liu, J., & Ma, L. (2023). Hydroprocessing of lipids: An effective production process for sustainable aviation fuel. Energy, 283, 129107.CrossRef Song, M., Zhang, X., Chen, Y., Zhang, Q., Chen, L., Liu, J., & Ma, L. (2023). Hydroprocessing of lipids: An effective production process for sustainable aviation fuel. Energy, 283, 129107.CrossRef
41.
go back to reference Speight, J. G. (2020). 14 – A biorefinery. In J. G. Speight (Ed.), The refinery of the future (2nd ed., pp. 515–548). Gulf Professional Publishing.CrossRef Speight, J. G. (2020). 14 – A biorefinery. In J. G. Speight (Ed.), The refinery of the future (2nd ed., pp. 515–548). Gulf Professional Publishing.CrossRef
42.
go back to reference Staš, M., Auersvald, M., Kejla, L., Vrtiška, D., Kroufek, J., & Kubička, D. (2020). Quantitative analysis of pyrolysis bio-oils: A review. TrAC Trends in Analytical Chemistry, 126, 115857.CrossRef Staš, M., Auersvald, M., Kejla, L., Vrtiška, D., Kroufek, J., & Kubička, D. (2020). Quantitative analysis of pyrolysis bio-oils: A review. TrAC Trends in Analytical Chemistry, 126, 115857.CrossRef
43.
go back to reference Tanzil, A. H., Zhang, X., Wolcott, M., Brandt, K., Stöckle, M., Murthy, G., & Garcia-Perez, M. (2021). Evaluation of dry corn ethanol bio-refinery concepts for the production of sustainable aviation fuel. Biomass and Bioenergy, 146, 105937.CrossRef Tanzil, A. H., Zhang, X., Wolcott, M., Brandt, K., Stöckle, M., Murthy, G., & Garcia-Perez, M. (2021). Evaluation of dry corn ethanol bio-refinery concepts for the production of sustainable aviation fuel. Biomass and Bioenergy, 146, 105937.CrossRef
44.
go back to reference Tao, L., Markham, J. N., Haqb, Z., & Biddya, M. J. (2017). Techno-economic analysis for upgrading the biomass-derived ethanol-to-jet blendstocks. Green Chemistry, 19, 1082–1101.CrossRef Tao, L., Markham, J. N., Haqb, Z., & Biddya, M. J. (2017). Techno-economic analysis for upgrading the biomass-derived ethanol-to-jet blendstocks. Green Chemistry, 19, 1082–1101.CrossRef
45.
go back to reference Verma, D., Kumar, R., Ranaa, B. S., & Sinha, A. K. (2011). Aviation fuel production from lipids by a single-step route using hierarchical mesoporous zeolites. Energy & Environmental Science, 5, 667–1671. Verma, D., Kumar, R., Ranaa, B. S., & Sinha, A. K. (2011). Aviation fuel production from lipids by a single-step route using hierarchical mesoporous zeolites. Energy & Environmental Science, 5, 667–1671.
46.
go back to reference Wang, Z., Burra, K. G., Lei, T., & Gupta, A. K. (2021). Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review. Progress in Energy and Combustion Science, 84, 100899.CrossRef Wang, Z., Burra, K. G., Lei, T., & Gupta, A. K. (2021). Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review. Progress in Energy and Combustion Science, 84, 100899.CrossRef
47.
go back to reference Wang, W.-C., Liu, Y.-C., & Nugroho, R. A. A. (2022). Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis. Energy, 239(Part A), 121970.CrossRef Wang, W.-C., Liu, Y.-C., & Nugroho, R. A. A. (2022). Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis. Energy, 239(Part A), 121970.CrossRef
48.
go back to reference Watson, M. J., Machado, P. G., da Silva, A. V., Saltar, Y., Ribeiro, C. O., Nascimento, C. A. O., & Dowling, A. W. (2024). Sustainable aviation fuel technologies, costs, emissions, policies, and markets: A critical review. Journal of Cleaner Production, 449, 141472.CrossRef Watson, M. J., Machado, P. G., da Silva, A. V., Saltar, Y., Ribeiro, C. O., Nascimento, C. A. O., & Dowling, A. W. (2024). Sustainable aviation fuel technologies, costs, emissions, policies, and markets: A critical review. Journal of Cleaner Production, 449, 141472.CrossRef
49.
go back to reference Xiu, S., & Shahbazi, A. (2012). Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews, 16(7), 4406–4414.CrossRef Xiu, S., & Shahbazi, A. (2012). Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews, 16(7), 4406–4414.CrossRef
50.
go back to reference Yang, L., & Ge, X. (2016). Chapter three – Biogas and syngas upgrading. In Y. Li & X. Ge (Eds.), Advances in bioenergy (Vol. 1, pp. 125–188). Elsevier. Yang, L., & Ge, X. (2016). Chapter three – Biogas and syngas upgrading. In Y. Li & X. Ge (Eds.), Advances in bioenergy (Vol. 1, pp. 125–188). Elsevier.
51.
go back to reference Yao, G., Staples, M. D., Malina, R., & Tyner, W. E. (2017). Stochastic techno-economic analysis of alcohol-to-jet fuel production. Biotechnoly for Biofuels, 10, 18.CrossRef Yao, G., Staples, M. D., Malina, R., & Tyner, W. E. (2017). Stochastic techno-economic analysis of alcohol-to-jet fuel production. Biotechnoly for Biofuels, 10, 18.CrossRef
52.
go back to reference Zahid, I., Nazir, M. H., Chiang, K., Christo, F., & Ameen, M. (2024). Current outlook on sustainable feedstocks and processes for sustainable aviation fuel production. Current Opinion in Green and Sustainable Chemistry, 49, 100959.CrossRef Zahid, I., Nazir, M. H., Chiang, K., Christo, F., & Ameen, M. (2024). Current outlook on sustainable feedstocks and processes for sustainable aviation fuel production. Current Opinion in Green and Sustainable Chemistry, 49, 100959.CrossRef
53.
go back to reference Zhang, Y., Bi, P., Wang, J., Jiang, P., Wu, X., Xue, H., Liu, J., Zhou, X., & Li, Q. (2015). Production of jet and diesel biofuels from renewable lignocellulosic biomass. Applied Energy, 150, 128–137.CrossRef Zhang, Y., Bi, P., Wang, J., Jiang, P., Wu, X., Xue, H., Liu, J., Zhou, X., & Li, Q. (2015). Production of jet and diesel biofuels from renewable lignocellulosic biomass. Applied Energy, 150, 128–137.CrossRef
Metadata
Title
Sustainable Aviation Fuel: A Future Outlook
Author
Claudia Gutiérrez-Antonio
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-83721-0_15

Premium Partner