Skip to main content
Top

2025 | OriginalPaper | Chapter

7. Sustainable Aviation Fuel Production: Step Towards a More Prosperous and Energy-Independent Future

Authors : Prerna Tripathi, Abhay Kumar Choubey

Published in: Sustainable Aviation Fuels

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the critical role of sustainable aviation fuel (SAF) in mitigating greenhouse gas emissions and promoting energy independence in the aviation sector. It examines the various feedstocks available for SAF production, ranging from first-generation food crops to fourth-generation genetically modified organisms and non-biological resources. The text provides an in-depth analysis of different production pathways, including hydroprocessed renewable jet (HRJ) fuels, Fischer–Tropsch (FT) fuels, and alcohol-to-jet (ATJ) processes, highlighting their unique advantages and challenges. The chapter also explores the environmental and economic considerations of SAF production, emphasizing the need for sustainable practices that do not compromise food security or ecosystem integrity. Furthermore, it discusses the current obstacles in the commercialization of SAF, such as feedstock availability, cost-effectiveness, and regulatory hurdles, and offers recommendations for overcoming these challenges. The future prospects of SAF are also examined, with a focus on the potential of advanced technologies and policy interventions to drive the widespread adoption of sustainable aviation fuels. The chapter concludes with a call for continued research, innovation, and collaboration to accelerate the transition to a more prosperous and energy-independent future for the aviation industry.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
2.
go back to reference Agarwal, R. K. (2012). Review of technologies to achieve sustainable (Green) aviation. Intechopen. Agarwal, R. K. (2012). Review of technologies to achieve sustainable (Green) aviation. Intechopen.
3.
go back to reference Faaij, A., & van Dijk, M. (2012). White paper on sustainable jet fuel. SkyNRG (SkyNRG). Faaij, A., & van Dijk, M. (2012). White paper on sustainable jet fuel. SkyNRG (SkyNRG).
4.
go back to reference Hemighaus, G., Boval, T., Bosley, C., Organ, R., Lind, J., Brouette, R., Thompson, T., Lynch, J., & Jones, J. (2006). Alternative jet fuels, a supplement to Chevron’s aviation fuels technical review. Chevron Corporation. Hemighaus, G., Boval, T., Bosley, C., Organ, R., Lind, J., Brouette, R., Thompson, T., Lynch, J., & Jones, J. (2006). Alternative jet fuels, a supplement to Chevron’s aviation fuels technical review. Chevron Corporation.
5.
go back to reference Air Transport Action Group. (2011). Beginner’s guide to aviation biofuels (2nd ed.). Air Transport Action Group. Air Transport Action Group. (2011). Beginner’s guide to aviation biofuels (2nd ed.). Air Transport Action Group.
6.
go back to reference Rekoske, J. (2010). Biofuels: Challenges & opportunities. Asia Pacific Clean Energy Summit and Expo. Rekoske, J. (2010). Biofuels: Challenges & opportunities. Asia Pacific Clean Energy Summit and Expo.
7.
go back to reference Hari, K., Thushara, Y., Zahira, & Binitha, N. N. (2015). Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renewable and Sustainable Energy Reviews, 42, 1234–1244.CrossRef Hari, K., Thushara, Y., Zahira, & Binitha, N. N. (2015). Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renewable and Sustainable Energy Reviews, 42, 1234–1244.CrossRef
8.
go back to reference Air Transport Action Group. (2017). Beginner’s guide to sustainable aviation fuel. Air Transport Action Group. Air Transport Action Group. (2017). Beginner’s guide to sustainable aviation fuel. Air Transport Action Group.
9.
go back to reference Adin, M. S., Altun, S., & Adin, M. S. (2021). Effect of using bioethanol as fuel on start-up and warm-up exhaust emissions from a diesel power generator. International Journal of Ambient Energy, 43, 1–7. Adin, M. S., Altun, S., & Adin, M. S. (2021). Effect of using bioethanol as fuel on start-up and warm-up exhaust emissions from a diesel power generator. International Journal of Ambient Energy, 43, 1–7.
10.
go back to reference Lee, R. A., & Lavoi, J. M. (2013). From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers, 3, 6–11.CrossRef Lee, R. A., & Lavoi, J. M. (2013). From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers, 3, 6–11.CrossRef
11.
go back to reference Air Transport Action Group. (2011). Beginner’s guide to aviation biofuels. Air Transport Action Group. Air Transport Action Group. (2011). Beginner’s guide to aviation biofuels. Air Transport Action Group.
12.
go back to reference Moioli, E., Salvati, F., Chiesa, M., Siecha, R. T., Manenti, F., Laio, F., et al. (2018). Analysis of the current world biofuel production under a water–food–energy nexus perspective. Advances in Water Resources, 121, 22–31.CrossRef Moioli, E., Salvati, F., Chiesa, M., Siecha, R. T., Manenti, F., Laio, F., et al. (2018). Analysis of the current world biofuel production under a water–food–energy nexus perspective. Advances in Water Resources, 121, 22–31.CrossRef
13.
go back to reference Keles, D., Choumert-Nkolo, J., Motel, P. C., & Kéré, E. N. (2018). Does the expansion of biofuels encroach on the forest? Journal of Forest Economics, 33(1), 75–82.CrossRef Keles, D., Choumert-Nkolo, J., Motel, P. C., & Kéré, E. N. (2018). Does the expansion of biofuels encroach on the forest? Journal of Forest Economics, 33(1), 75–82.CrossRef
14.
go back to reference Sims, R., Flammini, A., Puri, S., & Bracco, S. (2015). Opportunities for agrifood chains to become energy-smart (pp. 1–198). Food and Agriculture Organization & United States Agency for International Development. Sims, R., Flammini, A., Puri, S., & Bracco, S. (2015). Opportunities for agrifood chains to become energy-smart (pp. 1–198). Food and Agriculture Organization & United States Agency for International Development.
15.
go back to reference Heinrich, G. (2018). Jatropha curcas L. – An alternative oil crop. In M. Kaltschmitt & U. Neuling (Eds.), Biokerosene: Status and prospects (pp. 237–257). Springer. Biotechnol. Biofuels 10, 1–16.CrossRef Heinrich, G. (2018). Jatropha curcas L. – An alternative oil crop. In M. Kaltschmitt & U. Neuling (Eds.), Biokerosene: Status and prospects (pp. 237–257). Springer. Biotechnol. Biofuels 10, 1–16.CrossRef
16.
go back to reference Molefe, M., Nkazi, D., & Mukaya, H. E. (2019). Method selection for biojet and biogasoline fuel production from Castor oil: A review. Energy & Fuels, 33(7), 5918–5932.CrossRef Molefe, M., Nkazi, D., & Mukaya, H. E. (2019). Method selection for biojet and biogasoline fuel production from Castor oil: A review. Energy & Fuels, 33(7), 5918–5932.CrossRef
17.
go back to reference Moniruzzaman, M., Yaakob, Z., Shahinuzzaman, M., Khatun, R., & Islam, A. K. M. A. (2017). Jatropha biofuel industry: The challenges. In E. Jacob-Lopes & L. Q. Zepka (Eds.), Frontiers in bioenergy and biofuels. IntechOpen. Moniruzzaman, M., Yaakob, Z., Shahinuzzaman, M., Khatun, R., & Islam, A. K. M. A. (2017). Jatropha biofuel industry: The challenges. In E. Jacob-Lopes & L. Q. Zepka (Eds.), Frontiers in bioenergy and biofuels. IntechOpen.
18.
go back to reference Hendricks, R. C., & Bushnell, D. M. (2008, 17 February). Halophytes energy feedstocks: Back to our roots. In Proceedings of the 12th international symposium on transport phenomena and dynamics of rotating machinery, Honolulu, HI, USA. Hendricks, R. C., & Bushnell, D. M. (2008, 17 February). Halophytes energy feedstocks: Back to our roots. In Proceedings of the 12th international symposium on transport phenomena and dynamics of rotating machinery, Honolulu, HI, USA.
19.
go back to reference Caicedo, M., Barros, J., & Ordás, B. (2016). Redefining agricultural residues as bioenergy feedstocks. Materials, 9, 635.CrossRef Caicedo, M., Barros, J., & Ordás, B. (2016). Redefining agricultural residues as bioenergy feedstocks. Materials, 9, 635.CrossRef
20.
go back to reference Staples, M. D., Malina, R., Suresh, P., Hileman, J. I., & Barrett, S. R. H. (2018). Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy, 114(C), 342–354.CrossRef Staples, M. D., Malina, R., Suresh, P., Hileman, J. I., & Barrett, S. R. H. (2018). Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy, 114(C), 342–354.CrossRef
21.
go back to reference Pandiyan, K., Singh, A., Singh, S., Saxena, A. K., & Nain, L. (2019). Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renewable Energy, 132(C), 723–741.CrossRef Pandiyan, K., Singh, A., Singh, S., Saxena, A. K., & Nain, L. (2019). Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renewable Energy, 132(C), 723–741.CrossRef
22.
go back to reference Mi, Z., & Sick, V. (2020). Taking a shortcut: Direct power-to-X conversion. Frontiers in Energy Research, 8, 153.CrossRef Mi, Z., & Sick, V. (2020). Taking a shortcut: Direct power-to-X conversion. Frontiers in Energy Research, 8, 153.CrossRef
23.
go back to reference Lee, R. A., & Lavoie, J.-M. (2013). From first- to third- generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers, 3, 6–11.CrossRef Lee, R. A., & Lavoie, J.-M. (2013). From first- to third- generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers, 3, 6–11.CrossRef
24.
go back to reference Yujie, S., Song, K., Jhang, P., Yuquing, S., Cheng, X., & Chen, X. (2017). Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 74(C), 402–411. Yujie, S., Song, K., Jhang, P., Yuquing, S., Cheng, X., & Chen, X. (2017). Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 74(C), 402–411.
25.
go back to reference Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.CrossRef Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.CrossRef
26.
go back to reference Tao, L., Milbrandt, A., Zhang, Y., & Wang, W. C. (2017). Techno-economic and resource analysis of hydroprocessed renewable jet fuel. Biotechnology for Biofuels, 10, 1–16.CrossRef Tao, L., Milbrandt, A., Zhang, Y., & Wang, W. C. (2017). Techno-economic and resource analysis of hydroprocessed renewable jet fuel. Biotechnology for Biofuels, 10, 1–16.CrossRef
27.
go back to reference Doshi, A., Pascoe, S., Coglan, L., & Rainey, T. J. (2016). Economic and policy issues in the production of algae-based biofuels: A review. Renewable and Sustainable Energy Reviews, 64, 329–337.CrossRef Doshi, A., Pascoe, S., Coglan, L., & Rainey, T. J. (2016). Economic and policy issues in the production of algae-based biofuels: A review. Renewable and Sustainable Energy Reviews, 64, 329–337.CrossRef
28.
go back to reference Behrendt, D., Schreiber, C., Pfaff, C., et al. (2018). Algae as a potential source of biokerosene and diesel-opportunities and challenges. In M. Kaltschmitt & U. Neuling (Eds.), Biokerosene (pp. 303–324). Springer.CrossRef Behrendt, D., Schreiber, C., Pfaff, C., et al. (2018). Algae as a potential source of biokerosene and diesel-opportunities and challenges. In M. Kaltschmitt & U. Neuling (Eds.), Biokerosene (pp. 303–324). Springer.CrossRef
29.
go back to reference Alalwan, H. A., Alminshid, A. H., & Aljaafari, H. A. S. (2019). Promising evolution of biofuel generations. Subject review. Renewable Energy Focus, 28, 127–139.CrossRef Alalwan, H. A., Alminshid, A. H., & Aljaafari, H. A. S. (2019). Promising evolution of biofuel generations. Subject review. Renewable Energy Focus, 28, 127–139.CrossRef
30.
go back to reference Arvidsson, R., Persson, S., Froling, M., & Svanstrom, M. (2011). Life cycle assessment of hydrotreated vegetable oil from rape, oil palm and Jatropha. Journal of Cleaner Production, 19, 129–137.CrossRef Arvidsson, R., Persson, S., Froling, M., & Svanstrom, M. (2011). Life cycle assessment of hydrotreated vegetable oil from rape, oil palm and Jatropha. Journal of Cleaner Production, 19, 129–137.CrossRef
31.
go back to reference Gong, D. Y., Kaario, O., Tilli, A., Larmi, M., & Tanner, F. X. (2010). A computational investigation of hydrotreated vegetable oil sprays using RANS and a modified version of the RNG kɛ model in OpenFOAM. SAE World Congress. Gong, D. Y., Kaario, O., Tilli, A., Larmi, M., & Tanner, F. X. (2010). A computational investigation of hydrotreated vegetable oil sprays using RANS and a modified version of the RNG kɛ model in OpenFOAM. SAE World Congress.
32.
go back to reference Aatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: Trade-off between NOx, particulate emission and fuel consumption of a heavy duty engine. SAE International. Aatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: Trade-off between NOx, particulate emission and fuel consumption of a heavy duty engine. SAE International.
33.
go back to reference Commercial case business evaluation of Dynamotive’s fast pyrolysis and upgrading processes. Dynamotive Energy Systems Corporation. Commercial case business evaluation of Dynamotive’s fast pyrolysis and upgrading processes. Dynamotive Energy Systems Corporation.
35.
go back to reference Clean alternative fuels: Fischer–Tropsch, United States Environmental Protection Agency EPA420-F-00-036, 2002. Clean alternative fuels: Fischer–Tropsch, United States Environmental Protection Agency EPA420-F-00-036, 2002.
36.
go back to reference Saynor, B., Bauen, A., & Leach, M. (2003). The potential for renewable energy sources in aviation. PRESAV final report. Saynor, B., Bauen, A., & Leach, M. (2003). The potential for renewable energy sources in aviation. PRESAV final report.
37.
go back to reference Kreutz, T. G., Larson, E. D., Liu, G., & Williams, R. H. (2008). Fischer–Tropsch fuels from coal and biomass. In 25th annual international Pittsburgh coal conference. Kreutz, T. G., Larson, E. D., Liu, G., & Williams, R. H. (2008). Fischer–Tropsch fuels from coal and biomass. In 25th annual international Pittsburgh coal conference.
38.
go back to reference Moser, B. R. (2010). Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope. Lipid Technology, 22, 270–273.CrossRef Moser, B. R. (2010). Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope. Lipid Technology, 22, 270–273.CrossRef
39.
go back to reference Acute toxicity of biodiesel to freshwater and marine organisms. (1996). Development of rapeseed biodiesel for use in high speed diesel engines (pp. 117–131). Progress report. Acute toxicity of biodiesel to freshwater and marine organisms. (1996). Development of rapeseed biodiesel for use in high speed diesel engines (pp. 117–131). Progress report.
40.
go back to reference Roberts, W. L. (2008). Bio jet fuels. In The fifth international biofuels conference. Roberts, W. L. (2008). Bio jet fuels. In The fifth international biofuels conference.
41.
go back to reference Wardle, D. A. (2003). Global sale of green air travel supported using biodiesel. Renewable and Sustainable Energy Reviews, 7, 64–71.CrossRef Wardle, D. A. (2003). Global sale of green air travel supported using biodiesel. Renewable and Sustainable Energy Reviews, 7, 64–71.CrossRef
42.
go back to reference Hemighaus, G., Boval, T., Bosley, C., Organ, R., Lind, J., Brouette, R., et al. (2006). Alternative jet fuels, a supplement to Chevron’s aviation fuels technical review. Chevron Corporation. Hemighaus, G., Boval, T., Bosley, C., Organ, R., Lind, J., Brouette, R., et al. (2006). Alternative jet fuels, a supplement to Chevron’s aviation fuels technical review. Chevron Corporation.
43.
go back to reference Balat, M., & Balat, M. (2009). Political, economic and environmental impacts of biomass-based hydrogen. International Journal of Hydrogen Energy, 34(9), 3589–3603.CrossRef Balat, M., & Balat, M. (2009). Political, economic and environmental impacts of biomass-based hydrogen. International Journal of Hydrogen Energy, 34(9), 3589–3603.CrossRef
44.
go back to reference Faab, R. (2001). Cryoplane: Flugzeuge mit Wasserstoffantrieb. Accessed 13 April 2006. Faab, R. (2001). Cryoplane: Flugzeuge mit Wasserstoffantrieb. Accessed 13 April 2006.
45.
go back to reference Birkenstock, W. (1998). Hydrogen aircraft fuel research plans. Flug Revue, 66 (September). Birkenstock, W. (1998). Hydrogen aircraft fuel research plans. Flug Revue, 66 (September).
46.
go back to reference Airbus Deutschland GmbH, liquid hydrogen fuelled aircraft-system analysis: final technical report (Publishable Version). (2003). Accessed 13 April 2006. Airbus Deutschland GmbH, liquid hydrogen fuelled aircraft-system analysis: final technical report (Publishable Version). (2003). Accessed 13 April 2006.
47.
go back to reference Hileman, J. I., Ortiz, D. S., Bartis, J. T., Wong, H. M., Donohoo, P. E., & Weiss, M. A. (2009). Near-term feasibility of alternative jet fuels. RAND Infrastruct Saf Environ. Hileman, J. I., Ortiz, D. S., Bartis, J. T., Wong, H. M., Donohoo, P. E., & Weiss, M. A. (2009). Near-term feasibility of alternative jet fuels. RAND Infrastruct Saf Environ.
48.
go back to reference Elia, J. A., Baliban, R. C., Floudas, C. A., Gurau, B., Weingarten, M. B., & Klotz, S. D. (2013). Hardwood biomass to gasoline, diesel, and jet fuel: 2. Supply chain optimization framework for a network of thermochemical refineries. Energy & Fuels, 27(8), 4325–4352.CrossRef Elia, J. A., Baliban, R. C., Floudas, C. A., Gurau, B., Weingarten, M. B., & Klotz, S. D. (2013). Hardwood biomass to gasoline, diesel, and jet fuel: 2. Supply chain optimization framework for a network of thermochemical refineries. Energy & Fuels, 27(8), 4325–4352.CrossRef
49.
go back to reference Tan, E. C. D., Marker, T. L., & Roberts, M. J. (2014). Direct production of gasoline and diesel fuels from biomass via integrated hydropyrolysis and hydroconversion process-a techno- economic analysis. Environmental Progress & Sustainable Energy, 33(2), 609–617.CrossRef Tan, E. C. D., Marker, T. L., & Roberts, M. J. (2014). Direct production of gasoline and diesel fuels from biomass via integrated hydropyrolysis and hydroconversion process-a techno- economic analysis. Environmental Progress & Sustainable Energy, 33(2), 609–617.CrossRef
50.
go back to reference Augusdinata, D. B., Zhao, F., Ileleji, K., & DeLaurentis, D. (2011). Life cycle assessment of potential biojet fuel production in the United States. Environmental Science & Technology, 45(21), 9133–9143.CrossRef Augusdinata, D. B., Zhao, F., Ileleji, K., & DeLaurentis, D. (2011). Life cycle assessment of potential biojet fuel production in the United States. Environmental Science & Technology, 45(21), 9133–9143.CrossRef
51.
go back to reference Slims, R. E. H., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101(6), 1570–1580.CrossRef Slims, R. E. H., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101(6), 1570–1580.CrossRef
52.
go back to reference Wang, W.-C., & Tao, L. (2016). Bio-jet fuel conversion technologies. Renewable and Sustainable Energy Reviews, 53, 801–822.CrossRef Wang, W.-C., & Tao, L. (2016). Bio-jet fuel conversion technologies. Renewable and Sustainable Energy Reviews, 53, 801–822.CrossRef
53.
go back to reference Xia, Q.-N., Cuan, Q., Liu, X.-H., Gong, X.-Q., Guan-Zhong, L., & Wang, Y.-Q. (2014). Pd/NbOPO4 multifucntional catalysts for the direct production of liquid alkanes for Aldol Adducts of Furans. Angewandte Chemie International Ed, 53(37), 9755–9760.CrossRef Xia, Q.-N., Cuan, Q., Liu, X.-H., Gong, X.-Q., Guan-Zhong, L., & Wang, Y.-Q. (2014). Pd/NbOPO4 multifucntional catalysts for the direct production of liquid alkanes for Aldol Adducts of Furans. Angewandte Chemie International Ed, 53(37), 9755–9760.CrossRef
54.
go back to reference Güell, B. M., Bugge, M., Kempegowda, R. S., George, A., & Paap, S. M. (2012). Benchmark of conversion and production technologies for synthetic biofuels for aviation. SINTEF Energy Research. Güell, B. M., Bugge, M., Kempegowda, R. S., George, A., & Paap, S. M. (2012). Benchmark of conversion and production technologies for synthetic biofuels for aviation. SINTEF Energy Research.
55.
go back to reference Nor Afzanizam, B. S., Mohammad Nazri, B. M. J., Chongcheng, T., & Johan, N. (2014). A review of biomass gasification technology to produce syngas. American-Eurasian Journal of Sustainable Agriculture, 8(7), 69. Nor Afzanizam, B. S., Mohammad Nazri, B. M. J., Chongcheng, T., & Johan, N. (2014). A review of biomass gasification technology to produce syngas. American-Eurasian Journal of Sustainable Agriculture, 8(7), 69.
56.
go back to reference Kreutz, T. G., Larson, E. D., Liu, G., & Williams, R. H. (2008). Fischer-Tropsch fuels from coal and biomass. In 25th annual international Pittsburgh coal conference (Vol. 29, No. 2. 10). Princeton University. Kreutz, T. G., Larson, E. D., Liu, G., & Williams, R. H. (2008). Fischer-Tropsch fuels from coal and biomass. In 25th annual international Pittsburgh coal conference (Vol. 29, No. 2. 10). Princeton University.
57.
go back to reference Vannice, M. A., & Garten, R. L. (1980). Influence of the support on the catalytic behavior of ruthenium in CO/H/sub 2/synthesis reactions. Journal of Catalysis, 63(1), 255–260.CrossRef Vannice, M. A., & Garten, R. L. (1980). Influence of the support on the catalytic behavior of ruthenium in CO/H/sub 2/synthesis reactions. Journal of Catalysis, 63(1), 255–260.CrossRef
58.
go back to reference Steynberg, A. P., Dry, M. E., Davis, B., & Breman, B. (2004). Fischer Tropsch reactors. Studies in surface science. Catalysis., 152, 64–195. Steynberg, A. P., Dry, M. E., Davis, B., & Breman, B. (2004). Fischer Tropsch reactors. Studies in surface science. Catalysis., 152, 64–195.
59.
go back to reference Lugue, R., De la Osa, A. R., Campelo, J. M., Romero, A. A., Valverde, J. A., & Sanchez, P. (2012). Design and development of catalysts for Biomass-to-Liquid-Fischer–Tropsch (BTL-FT) processes for biofuels production. Energy & Environmental Science, 5(1), 5186–5202.CrossRef Lugue, R., De la Osa, A. R., Campelo, J. M., Romero, A. A., Valverde, J. A., & Sanchez, P. (2012). Design and development of catalysts for Biomass-to-Liquid-Fischer–Tropsch (BTL-FT) processes for biofuels production. Energy & Environmental Science, 5(1), 5186–5202.CrossRef
60.
go back to reference Fox, E. B., Liu, Z.-W., & Liu, Z.-T. (2013). Ultraclean fuels production and utilization for the twenty-first century: Advances troward sustainable transportation fuels. Energy & Fuels, 27(11), 6335–6338.CrossRef Fox, E. B., Liu, Z.-W., & Liu, Z.-T. (2013). Ultraclean fuels production and utilization for the twenty-first century: Advances troward sustainable transportation fuels. Energy & Fuels, 27(11), 6335–6338.CrossRef
61.
go back to reference Morgan, T., Santillan-Jimenez, E., Harman-Ware, E. A., Ji, Y., Grubb, D., & Crocker, M. (2012). Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts. Chemical Engineering Journal, 189–190(2), 346–355.CrossRef Morgan, T., Santillan-Jimenez, E., Harman-Ware, E. A., Ji, Y., Grubb, D., & Crocker, M. (2012). Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts. Chemical Engineering Journal, 189–190(2), 346–355.CrossRef
62.
go back to reference Yang, Y., Wang, Q., Zhang, X., Wang, L., & Li, G. (2013). Hydrotreating of C18 fatty acids to hydrocarbons on sulphided NiW/SiO₂–Al₂O3. Fuel Processing Technology, 116, 165.CrossRef Yang, Y., Wang, Q., Zhang, X., Wang, L., & Li, G. (2013). Hydrotreating of C18 fatty acids to hydrocarbons on sulphided NiW/SiO₂–Al₂O3. Fuel Processing Technology, 116, 165.CrossRef
63.
go back to reference Hari, T. K., & Yaakob, Z. (2015). Production of diesel fuel by the hydrotreatment of jatropha oil derived fatty acid methyl esters over γ-Al2O3 and SiO2 supported Ni Co bimetallic catalysts. Reaction Kinetics, Mechanisms, and Catalysis, 116(1), 1–15.CrossRef Hari, T. K., & Yaakob, Z. (2015). Production of diesel fuel by the hydrotreatment of jatropha oil derived fatty acid methyl esters over γ-Al2O3 and SiO2 supported Ni Co bimetallic catalysts. Reaction Kinetics, Mechanisms, and Catalysis, 116(1), 1–15.CrossRef
64.
go back to reference Jeong, C. M., Park, G. W., Choi, J.-d.-r., Kang, J. W., Kim, S. M., Lee, W. H., Woo, S. L., & Chang, H. N. (2011). Steel reforming of volatile fatty acids (VFAs) over supported Pt/Al2O3 catalysts. International Journal of Hydrogen Energy, 36(13), 7505–7515.CrossRef Jeong, C. M., Park, G. W., Choi, J.-d.-r., Kang, J. W., Kim, S. M., Lee, W. H., Woo, S. L., & Chang, H. N. (2011). Steel reforming of volatile fatty acids (VFAs) over supported Pt/Al2O3 catalysts. International Journal of Hydrogen Energy, 36(13), 7505–7515.CrossRef
65.
go back to reference Hari, T. K., Yakoob, Z., & Binitha, N. N. (2015). Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renewable and Sustainable Energy Reviews, 42, 1234–1244.CrossRef Hari, T. K., Yakoob, Z., & Binitha, N. N. (2015). Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renewable and Sustainable Energy Reviews, 42, 1234–1244.CrossRef
66.
go back to reference International Air Transport Association. (2020). Fact sheet 2: Sustainable aviation fuel: Technical certification. International Air Transport Association. International Air Transport Association. (2020). Fact sheet 2: Sustainable aviation fuel: Technical certification. International Air Transport Association.
67.
go back to reference Directorate-General for Energy. (2017). High biofuel blends in aviation. European Commission. Directorate-General for Energy. (2017). High biofuel blends in aviation. European Commission.
68.
go back to reference Chiaramonti, D., Prussi, M., Buffi, M., & Tacconi, D. (2014). Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels. Applied Energy, 136, 767–774.CrossRef Chiaramonti, D., Prussi, M., Buffi, M., & Tacconi, D. (2014). Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels. Applied Energy, 136, 767–774.CrossRef
69.
go back to reference Serrano-Ruiz, J. C., Ramos-Fernández, E. V., & Sepúlveda-Escribano, A. (2012). From biodiesel and bioethanol to liquid hydrocarbon fuels: New hydrotreating and advanced microbial technologies. Energy & Environmental Science, 5(2), 5638.CrossRef Serrano-Ruiz, J. C., Ramos-Fernández, E. V., & Sepúlveda-Escribano, A. (2012). From biodiesel and bioethanol to liquid hydrocarbon fuels: New hydrotreating and advanced microbial technologies. Energy & Environmental Science, 5(2), 5638.CrossRef
70.
go back to reference Zhang, M., & Yu, Y. (2013). Dehydration of ethanol to ethylene. Industrial and Engineering Chemistry Research, 52(28), 9505–9514.CrossRef Zhang, M., & Yu, Y. (2013). Dehydration of ethanol to ethylene. Industrial and Engineering Chemistry Research, 52(28), 9505–9514.CrossRef
71.
go back to reference Hari, T. K., Yaakob, Z., & Binitha, N. N. (2015). Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renewable and Sustainable Energy Reviews, 42, 1234–1244.CrossRef Hari, T. K., Yaakob, Z., & Binitha, N. N. (2015). Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renewable and Sustainable Energy Reviews, 42, 1234–1244.CrossRef
72.
go back to reference Pandey P. K. (2011). Opportunities in bio-fuels for aviation. National seminar on bioenergy Solutions. Pandey P. K. (2011). Opportunities in bio-fuels for aviation. National seminar on bioenergy Solutions.
73.
go back to reference Holmgren, J. (2008). Bio aviation fuel. In World biofuels markets congress. Holmgren, J. (2008). Bio aviation fuel. In World biofuels markets congress.
Metadata
Title
Sustainable Aviation Fuel Production: Step Towards a More Prosperous and Energy-Independent Future
Authors
Prerna Tripathi
Abhay Kumar Choubey
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-83721-0_7

Premium Partner