Skip to main content
Top

2016 | OriginalPaper | Chapter

SVM and ELM: Who Wins? Object Recognition with Deep Convolutional Features from ImageNet

Authors : Lei Zhang, David Zhang, Fengchun Tian

Published in: Proceedings of ELM-2015 Volume 1

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep learning with a convolutional neural network (CNN) has been proved to be very effective in feature extraction and representation of images. For image classification problems, this work aim at finding which classifier is more competitive based on high-level deep features of images. In this paper, we have discussed the nearest neighbor, support vector machines and extreme learning machines for image classification under deep convolutional activation feature representation. Specifically, we adopt the benchmark object recognition dataset from multiple sources with domain bias for evaluating different classifiers. The deep features of the object dataset are obtained by a well-trained CNN with five convolutional layers and three fully-connected layers on the challenging ImageNet. Experiments demonstrate that the ELMs outperform SVMs in cross-domain recognition tasks. In particular, state-of-the-art results are obtained by kernel ELM which outperforms SVMs with about 4 % of the average accuracy. The Features and MATLAB codes in this paper are available in http://​www.​escience.​cn/​people/​lei/​index.​html.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
2.
go back to reference Lawrence, S., Giles, C.L., Ah Chung, T., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997) Lawrence, S., Giles, C.L., Ah Chung, T., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)
3.
4.
5.
go back to reference Salakhutdinov, R., Hinton, G.: Deep Boltzman machines. In: Proceedings International Conference Artificial Intelligence and Statistics, pp. 448–455 (2009) Salakhutdinov, R., Hinton, G.: Deep Boltzman machines. In: Proceedings International Conference Artificial Intelligence and Statistics, pp. 448–455 (2009)
6.
go back to reference Huang, G.B., Lee, H., Learned-Miller, E.: Learning hierarchical representations for face verification with convolutional deep belief networks. In: Proceedings IEEE International Computer Vision and Pattern Recognition, pp. 2518–2525 (2012) Huang, G.B., Lee, H., Learned-Miller, E.: Learning hierarchical representations for face verification with convolutional deep belief networks. In: Proceedings IEEE International Computer Vision and Pattern Recognition, pp. 2518–2525 (2012)
7.
go back to reference Sun, Y., Wang, X., Tang, X.: Hybrid deep learning for face verification. In: Proceedings IEEE International Conference Computer Vision (2013) Sun, Y., Wang, X., Tang, X.: Hybrid deep learning for face verification. In: Proceedings IEEE International Conference Computer Vision (2013)
8.
go back to reference Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In Proceedinga IEEE International Computer Vision and Pattern Recognition (2014) Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In Proceedinga IEEE International Computer Vision and Pattern Recognition (2014)
10.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. NIPS (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. NIPS (2012)
11.
go back to reference Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In Proceedings IEEE International Conference Computer Vision and Pattern Recognition, pp. 3642–3649 (2012) Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In Proceedings IEEE International Conference Computer Vision and Pattern Recognition, pp. 3642–3649 (2012)
12.
go back to reference Karpathy, A., Toderici, G., Shetty, S., Leung, T.: Large-scale video classification with convolutional neural networks. In Proceedings IEEE International Conference Computer Vision and Pattern Recognition, pp. 1725–1732 (2014) Karpathy, A., Toderici, G., Shetty, S., Leung, T.: Large-scale video classification with convolutional neural networks. In Proceedings IEEE International Conference Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)
13.
go back to reference Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In Proceedings IEEE International Conference Computer Vision and Pattern Recognition, pp. 512–519 (2014) Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In Proceedings IEEE International Conference Computer Vision and Pattern Recognition, pp. 512–519 (2014)
14.
go back to reference Girshick, R., Donahue, J., Darrell, T., Malik, J.: Accurate object detection and semantic segmentation. In Proceedings IEEE International Conference Computer Vision and Pattern Recognition, pp. 580–587 (2014) Girshick, R., Donahue, J., Darrell, T., Malik, J.: Accurate object detection and semantic segmentation. In Proceedings IEEE International Conference Computer Vision and Pattern Recognition, pp. 580–587 (2014)
15.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. arXiv:1406.4729 He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. arXiv:​1406.​4729
16.
go back to reference Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? ICCV, pp. 2146–2153 (2009) Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? ICCV, pp. 2146–2153 (2009)
17.
go back to reference Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. arXiv:1310.1531 (2013) Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. arXiv:​1310.​1531 (2013)
18.
go back to reference Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefMATH Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefMATH
19.
go back to reference Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)MATH Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)MATH
20.
go back to reference Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)CrossRefMathSciNet Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)CrossRefMathSciNet
21.
go back to reference Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)CrossRef Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)CrossRef
22.
go back to reference Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B 42(2), 513–529 (2012)CrossRef Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B 42(2), 513–529 (2012)CrossRef
23.
go back to reference Huang, G.B., Ding, X.J., Zhou, H.M.: Optimization method based on extreme learning machine for classification. Neurocomputing 74(1–3), 155–163 (2010)CrossRef Huang, G.B., Ding, X.J., Zhou, H.M.: Optimization method based on extreme learning machine for classification. Neurocomputing 74(1–3), 155–163 (2010)CrossRef
25.
go back to reference Huang, G.B.: What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn. Comput. 7, 263–278 (2015)CrossRef Huang, G.B.: What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn. Comput. 7, 263–278 (2015)CrossRef
26.
go back to reference Kasun, L.L.C., Zhou, H., Huang, G.B., Vong, C.M.: Representational learning with extreme learning machine for big data. IEEE Intell. Syst. 28(6), 31–34 (2013) Kasun, L.L.C., Zhou, H., Huang, G.B., Vong, C.M.: Representational learning with extreme learning machine for big data. IEEE Intell. Syst. 28(6), 31–34 (2013)
27.
go back to reference Huang, G.-B., Bai, Z., Kasun, L.L.C., Vong, C.M.: Local receptive fields based extreme learning machine. IEEE Comput. Intell. Mag. 10(2), 18–29 (2015)CrossRef Huang, G.-B., Bai, Z., Kasun, L.L.C., Vong, C.M.: Local receptive fields based extreme learning machine. IEEE Comput. Intell. Mag. 10(2), 18–29 (2015)CrossRef
28.
go back to reference Zhang, L., Zhang, D.: Domain adaptation transfer extreme learning machines. Proceedings in Adaptation, Learning and Optimization 3, 103–119 (2015)CrossRef Zhang, L., Zhang, D.: Domain adaptation transfer extreme learning machines. Proceedings in Adaptation, Learning and Optimization 3, 103–119 (2015)CrossRef
29.
go back to reference Zhang, L., Zhang, D.: Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans. Instrum. Meas. 64(7), 1790–1801 (2015)CrossRef Zhang, L., Zhang, D.: Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans. Instrum. Meas. 64(7), 1790–1801 (2015)CrossRef
30.
go back to reference Huang, G., Song, S., Gupta, J.N.D., Wu, C.: Semi-supervised and unsupervised extreme learning machines. IEEE Trans. Cybern. 44(12), 2405–2417 (2014)CrossRef Huang, G., Song, S., Gupta, J.N.D., Wu, C.: Semi-supervised and unsupervised extreme learning machines. IEEE Trans. Cybern. 44(12), 2405–2417 (2014)CrossRef
31.
go back to reference Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. ECCV (2010) Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. ECCV (2010)
32.
go back to reference Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. CVPR, pp. 2066–2073 (2012) Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. CVPR, pp. 2066–2073 (2012)
Metadata
Title
SVM and ELM: Who Wins? Object Recognition with Deep Convolutional Features from ImageNet
Authors
Lei Zhang
David Zhang
Fengchun Tian
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-28397-5_20

Premium Partner