Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Symbiotic Simulation System (S3) for Industry 4.0

Author : Bhakti Stephan Onggo

Published in: Simulation for Industry 4.0

Publisher: Springer International Publishing

Abstract

This chapter discusses symbiotic simulation system, a simulation system that is designed to support online short-term operations management decision. The prevalence of real-time data and the advances in Industry 4.0 technologies have made the real-world implementation of the vision of using simulation to support real-time decision making a reality. The main contributions of this chapter are to provide a review of similar concepts in simulation, to provide the architecture of symbiotic simulation system at the conceptual level, to classify the types of symbiotic simulation applications, and to highlights research challenges in symbiotic simulation.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Rogers P, Gordon RJ (1993) Simulation for real-time decision making in manufacturing systems. In: Proceedings of the winter simulation conference, pp 866–874 Rogers P, Gordon RJ (1993) Simulation for real-time decision making in manufacturing systems. In: Proceedings of the winter simulation conference, pp 866–874
2.
go back to reference Davis W (1998) On-line simulation: Need and evolving research requirements. In: Banks J (ed) Handbook of simulation. Wiley, New York, pp 465–516 CrossRef Davis W (1998) On-line simulation: Need and evolving research requirements. In: Banks J (ed) Handbook of simulation. Wiley, New York, pp 465–516 CrossRef
3.
go back to reference Rowson JA (1994) Hardware/software co-simulation. In: Proceedings of the design automation conference, pp 439–440 Rowson JA (1994) Hardware/software co-simulation. In: Proceedings of the design automation conference, pp 439–440
4.
go back to reference Bohlmann S, Szczerbicka H, Klinger V (2010) Co-simulation in large scale environments using the HPNS framework. In: Proceedings of the 2010 conference on grand challenges in modeling & simulation, pp 211–218 Bohlmann S, Szczerbicka H, Klinger V (2010) Co-simulation in large scale environments using the HPNS framework. In: Proceedings of the 2010 conference on grand challenges in modeling & simulation, pp 211–218
5.
go back to reference Darema F (2004) Dynamic data driven applications systems: a new paradigm for application simulations and measurements. In: Bubak M, van Albada GD, Sloot PMA, Dongarra J (eds) Computational science—ICCS 2004. ICCS 2004. Lecture notes in computer science, vol 3038. Springer, Berlin, Heidelberg CrossRef Darema F (2004) Dynamic data driven applications systems: a new paradigm for application simulations and measurements. In: Bubak M, van Albada GD, Sloot PMA, Dongarra J (eds) Computational science—ICCS 2004. ICCS 2004. Lecture notes in computer science, vol 3038. Springer, Berlin, Heidelberg CrossRef
6.
go back to reference Fujimoto R, Lunceford D, Page E, Uhrmacher AM (2002) Grand challenges for modeling and simulation: Dagstuhl report. Technical report 350, Schloss Dagstuhl. Seminar No 02351 Fujimoto R, Lunceford D, Page E, Uhrmacher AM (2002) Grand challenges for modeling and simulation: Dagstuhl report. Technical report 350, Schloss Dagstuhl. Seminar No 02351
7.
go back to reference Aydt H, Turner SJ, Cai W, Low MYH (2008) Symbiotic simulation systems: an extended definition motivated by symbiosis in biology. In: Proceedings of the 22nd workshop on principles of advanced and distributed simulation, pp 109–116 Aydt H, Turner SJ, Cai W, Low MYH (2008) Symbiotic simulation systems: an extended definition motivated by symbiosis in biology. In: Proceedings of the 22nd workshop on principles of advanced and distributed simulation, pp 109–116
8.
go back to reference Szozda N (2017) Industry 4.0 and its impact on the functioning of supply chains. LogForum 13(4):401–414 Szozda N (2017) Industry 4.0 and its impact on the functioning of supply chains. LogForum 13(4):401–414
9.
go back to reference Xu LD, Xu EL, Li L (2018) Industry 4.0: state of the art and future trends. Int J Prod Res 56(8):2941–2962 Xu LD, Xu EL, Li L (2018) Industry 4.0: state of the art and future trends. Int J Prod Res 56(8):2941–2962
10.
go back to reference Yin Y, Stecke KE, Li D-n (2018) The evolution of production systems from Industry 2.0 through Industry 4.0. Int J Prod Res 56(1–2):848–861 CrossRef Yin Y, Stecke KE, Li D-n (2018) The evolution of production systems from Industry 2.0 through Industry 4.0. Int J Prod Res 56(1–2):848–861 CrossRef
11.
go back to reference Monostori L (2014) Cyber-physical production systems: roots, expectations and R&D challenges. Proc CIRP 17:9–13 CrossRef Monostori L (2014) Cyber-physical production systems: roots, expectations and R&D challenges. Proc CIRP 17:9–13 CrossRef
16.
go back to reference Onggo BS, Mustafee N, Juan AA, Molloy O, Smart A (2018) Symbiotic simulation system: hybrid systems model meets big data analytics. In: Proceedings of the 2018 winter simulation conference, pp 1358–1369 Onggo BS, Mustafee N, Juan AA, Molloy O, Smart A (2018) Symbiotic simulation system: hybrid systems model meets big data analytics. In: Proceedings of the 2018 winter simulation conference, pp 1358–1369
17.
go back to reference Fu MC (2015) Handbook of simulation optimization, 1st edn. Springer, New York, NY MATH Fu MC (2015) Handbook of simulation optimization, 1st edn. Springer, New York, NY MATH
18.
go back to reference Juan AA, Faulin J, Grasman SE, Rabe M, Figueira G (2015) A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems. Oper Res Perspect 2:62–72 MathSciNetCrossRef Juan AA, Faulin J, Grasman SE, Rabe M, Figueira G (2015) A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems. Oper Res Perspect 2:62–72 MathSciNetCrossRef
19.
go back to reference Rhodes-Leader L, Onggo BS, Worthington DJ, Nelson BL (2018b) Multi-fidelity simulation optimisation for airline disruption management. In: Proceedings of the 2018 simulation workshop, pp 2179–2190 Rhodes-Leader L, Onggo BS, Worthington DJ, Nelson BL (2018b) Multi-fidelity simulation optimisation for airline disruption management. In: Proceedings of the 2018 simulation workshop, pp 2179–2190
20.
go back to reference Panadero J, Juan AA, Mozos JM, Corlu CG, Onggo BS (2018) Agent-based simheuristics: extending simulation-optimization algorithms via distributed and parallel computing. In: Proceedings of the 2018 winter simulation conference, pp 869–880 Panadero J, Juan AA, Mozos JM, Corlu CG, Onggo BS (2018) Agent-based simheuristics: extending simulation-optimization algorithms via distributed and parallel computing. In: Proceedings of the 2018 winter simulation conference, pp 869–880
21.
go back to reference Onggo BS, Karatas M (2016) Test-Driven simulation modelling: a case study using agent-based maritime search-operation simulation. Eur J Oper Res 254(2):517–531 CrossRef Onggo BS, Karatas M (2016) Test-Driven simulation modelling: a case study using agent-based maritime search-operation simulation. Eur J Oper Res 254(2):517–531 CrossRef
22.
go back to reference Moeuf A, Pellerin R, Lamouri S, Tamayo-Giraldo S, Barbaray R (2017) The industrial management of SMEs in the era of industry 4.0. Int J Prod Res 56(3):1118–1136 CrossRef Moeuf A, Pellerin R, Lamouri S, Tamayo-Giraldo S, Barbaray R (2017) The industrial management of SMEs in the era of industry 4.0. Int J Prod Res 56(3):1118–1136 CrossRef
23.
go back to reference Katz D, Manivannan S (1993) Exception management on a shop floor using online simulation. In: Proceedings of the winter simulation conference, pp 888–896 Katz D, Manivannan S (1993) Exception management on a shop floor using online simulation. In: Proceedings of the winter simulation conference, pp 888–896
24.
go back to reference Oakley D, Onggo BSS, and Worthington DJ (2019) Symbiotic Simulation for the Operational Management of Inpatient Beds: Model Development and Validation using Δ-Method. Health Care Management Science. In press. Oakley D, Onggo BSS, and Worthington DJ (2019) Symbiotic Simulation for the Operational Management of Inpatient Beds: Model Development and Validation using Δ-Method. Health Care Management Science. In press.
26.
go back to reference Rhodes-Leader L, Onggo BS, Worthington DJ, Nelson BL (2018a). Airline disruption recovery using symbiotic simulation and multi-fidelity modelling. In: Proceedings of the 2018 simulation workshop, pp 146–155 Rhodes-Leader L, Onggo BS, Worthington DJ, Nelson BL (2018a). Airline disruption recovery using symbiotic simulation and multi-fidelity modelling. In: Proceedings of the 2018 simulation workshop, pp 146–155
27.
go back to reference Parashar M, Klie H, Ctalynrek U, Kurc T, Bangerth W, Matossian V, Saltz J, Wheeler MF (2004) Application of grid–enabled technologies for solving optimization problems in data-driven reservoir studies. Future Gener Comput Syst 21:19–26 CrossRef Parashar M, Klie H, Ctalynrek U, Kurc T, Bangerth W, Matossian V, Saltz J, Wheeler MF (2004) Application of grid–enabled technologies for solving optimization problems in data-driven reservoir studies. Future Gener Comput Syst 21:19–26 CrossRef
28.
go back to reference Kotiadis K (2016) Towards self-adaptive discrete event simulation (SADES). In: Proceedings of the operational research society simulation workshop, pp 181–191 Kotiadis K (2016) Towards self-adaptive discrete event simulation (SADES). In: Proceedings of the operational research society simulation workshop, pp 181–191
Metadata
Title
Symbiotic Simulation System (S3) for Industry 4.0
Author
Bhakti Stephan Onggo
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-04137-3_10

Premium Partners