2021 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
In these lectures, I want to illustrate an application of symmetry ideas to integration of differential equations. Basically, we will consider only differential equations of finite type, i.e. equations with finite-dimensional space Sol of (local) solutions. Ordinary differential equations make up one of the main examples of such equations.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1.
go back to reference Alekseevskij, D.V., Vinogradov, A.M., Lychagin, V.V.: Basic ideas and concepts of differential geometry. Geometry I. Encyclopaedia Math. Sci., 28, Springer, Berlin (1991) Alekseevskij, D.V., Vinogradov, A.M., Lychagin, V.V.: Basic ideas and concepts of differential geometry. Geometry I. Encyclopaedia Math. Sci., 28, Springer, Berlin (1991)
2.
go back to reference Bluman, G.W., Anco, S.C.: Symmetry and integration methods for differential equations. Applied Mathematical Sciences, 154. Springer-Verlag, New York (2002) Bluman, G.W., Anco, S.C.: Symmetry and integration methods for differential equations. Applied Mathematical Sciences, 154. Springer-Verlag, New York (2002)
3.
go back to reference Bocharov, A.V., Chetverikov, V.N., Duzhin, S.V., Khor’kova, N.G., Krasil’shchik, I.S., Samokhin, A.V., Torkhov, Yu N., Verbovetsky, A.M., Vinogradov, A.M.: Symmetries and conservation laws for differential equations of mathematical physics. Translations of Mathematical Monographs, 182. American Mathematical Society, Providence, RI (1999) Bocharov, A.V., Chetverikov, V.N., Duzhin, S.V., Khor’kova, N.G., Krasil’shchik, I.S., Samokhin, A.V., Torkhov, Yu N., Verbovetsky, A.M., Vinogradov, A.M.: Symmetries and conservation laws for differential equations of mathematical physics. Translations of Mathematical Monographs, 182. American Mathematical Society, Providence, RI (1999)
4.
go back to reference Duzhin, S.V., Lychagin, V.V.: Symmetries of distributions and quadrature of ordinary differential equations. Acta Appl. Math. 24(1), 29–57 (1991) MathSciNetMATH Duzhin, S.V., Lychagin, V.V.: Symmetries of distributions and quadrature of ordinary differential equations. Acta Appl. Math.
24(1), 29–57 (1991)
MathSciNetMATH
5.
go back to reference Krasil’shchik, J., Verbovetsky, A.: Geometry of jet spaces and integrable systems. J. Geom. Phys. 61(9), 1633–1674 (2011) MathSciNetCrossRef Krasil’shchik, J., Verbovetsky, A.: Geometry of jet spaces and integrable systems. J. Geom. Phys.
61(9), 1633–1674 (2011)
MathSciNetCrossRef
6.
go back to reference Kushner, A., Lychagin, V., Rubtsov, V.: Contact geometry and non-linear differential equations. Encyclopedia of Mathematics and Its Applications, 101. Cambridge University Press, Cambridge (2007) Kushner, A., Lychagin, V., Rubtsov, V.: Contact geometry and non-linear differential equations. Encyclopedia of Mathematics and Its Applications, 101. Cambridge University Press, Cambridge (2007)
7.
go back to reference Kushner, A., Lychagin, V., Slovak, J.: Lectures on geometry of Monge-Ampere equations with Maple. In: Kycia, R., Ulan, M., Schneider, E. (eds.) Nonlinear PDEs, Their Geometry, and Applications., pp. 53–94. Birkhauser, Cham (2019) CrossRef Kushner, A., Lychagin, V., Slovak, J.: Lectures on geometry of Monge-Ampere equations with Maple. In: Kycia, R., Ulan, M., Schneider, E. (eds.) Nonlinear PDEs, Their Geometry, and Applications., pp. 53–94. Birkhauser, Cham (2019)
CrossRef
8.
go back to reference Lychagin, V., Lychagina, O.: Finite dimensional dynamics for evolutionary equations. Nonlinear Dyn. 48, 29–48 (2007) MathSciNetCrossRef Lychagin, V., Lychagina, O.: Finite dimensional dynamics for evolutionary equations. Nonlinear Dyn.
48, 29–48 (2007)
MathSciNetCrossRef
9.
go back to reference Olver, P.J.: Applications of Lie groups to differential equations. Springer-Verlag (1993) Olver, P.J.: Applications of Lie groups to differential equations. Springer-Verlag (1993)
10.
go back to reference Shnider, S., Winternitz, P.: Classification of systems of nonlinear ordinary differential equations with superposition principles. J. Math. Phys. 25(11), 3155–3165 (1984) MathSciNetCrossRef Shnider, S., Winternitz, P.: Classification of systems of nonlinear ordinary differential equations with superposition principles. J. Math. Phys.
25(11), 3155–3165 (1984)
MathSciNetCrossRef
11.
go back to reference Krasil’shchik, I.S., Lychagin, V.V., Vinogradov, A.M.: Geometry of jet spaces and nonlinear partial differential equations. Advanced Studies in Contemporary Mathematics, 1. Gordon and Breach Science Publishers, New York (1986) Krasil’shchik, I.S., Lychagin, V.V., Vinogradov, A.M.: Geometry of jet spaces and nonlinear partial differential equations. Advanced Studies in Contemporary Mathematics, 1. Gordon and Breach Science Publishers, New York (1986)
- Title
- Symmetries and Integrals
- DOI
- https://doi.org/10.1007/978-3-030-63253-3_3
- Author:
-
Valentin V. Lychagin
- Publisher
- Springer International Publishing
- Sequence number
- 3
- Chapter number
- Chapter 3