Skip to main content
Top

2018 | OriginalPaper | Chapter

Synchronization Transition in a Thermoacoustic System: Temporal and Spatiotemporal Analyses

Authors : Sirshendu Mondal, Samadhan A. Pawar, R. I. Sujith

Published in: Energy for Propulsion

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The occurrence of thermoacoustic instability has been a major concern in the combustors used in power plants and propulsive systems such as gas turbine engines, rocket motors. A positive feedback between the inherent processes such as the acoustic field and the unsteady heat release rate of the combustor can result in the occurrence of large-amplitude, self-sustained pressure oscillations. Prior to the state of thermoacoustic instability, intermittent oscillations are observed in turbulent combustors. Such intermittent oscillations are characterized by an apparently random appearance of bursts of large-amplitude periodic oscillations interspersed between epochs of low-amplitude aperiodic oscillations. In most of the earlier studies, the pressure oscillations alone have been analyzed to explore the dynamical transition to thermoacoustic instability. The present chapter focuses on the instantaneous interaction between the acoustic field and the unsteady heat release rate observed during such a transition in a bluff-body-stabilized turbulent combustor. The instantaneous interaction of these oscillations will be discussed using the concepts of synchronization theory. First, we give a brief introduction to the synchronization theory so as to summarize the concepts of locking of phase and frequency of the oscillations. Then, the temporal and spatiotemporal aspects of the interaction will be presented in detail. We find that, during stable operation, aperiodic oscillations of the pressure and the heat release rate remain desynchronized, whereas synchronized periodic oscillations are noticed during the occurrence of thermoacoustic instability. Such a transition happens through intermittent phase-synchronized oscillations, wherein synchronization and desynchronization of the oscillators are observed during the periodic and the aperiodic epochs of the intermittent oscillations, respectively. Further, the spatiotemporal analysis reveals a very interesting pattern in the reaction zone. Phase asynchrony among the local heat release rate oscillators is observed during the stable operation, while they become phase-synchronized during the onset of thermoacoustic instability. Interestingly, the state of intermittent oscillations corresponds to a simultaneous existence of synchronized periodic and desynchronized aperiodic patterns in the reaction zone. Such a coexistence of synchrony and asynchrony in the reactive flow field mimics a chimera state.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101(8), 084–103 (2008) D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101(8), 084–103 (2008)
2.
go back to reference S. Ahn, C. Park, L.L. Rubchinsky, Detecting the temporal structure of intermittent phase locking. Phys. Rev. E 84(1), 016–201 (2011) S. Ahn, C. Park, L.L. Rubchinsky, Detecting the temporal structure of intermittent phase locking. Phys. Rev. E 84(1), 016–201 (2011)
3.
go back to reference N. Ananthkrishnan, S. Deo, F.E. Culick, Reduced-order modeling and dynamics of nonlinear acoustic waves in a combustion chamber. Combust. Sci. Technol. 177(2), 221–248 (2005)CrossRef N. Ananthkrishnan, S. Deo, F.E. Culick, Reduced-order modeling and dynamics of nonlinear acoustic waves in a combustion chamber. Combust. Sci. Technol. 177(2), 221–248 (2005)CrossRef
4.
go back to reference S. Candel, Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29(1), 1–28 (2002)CrossRef S. Candel, Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29(1), 1–28 (2002)CrossRef
5.
go back to reference S.R. Chakravarthy, O.J. Shreenivasan, B. Boehm, A. Dreizler, J. Janicka, Experimental characterization of onset of acoustic instability in a nonpremixed half-dump combustor. J. Acoust. Soc. Am 122(1) 120–127 (2007)CrossRef S.R. Chakravarthy, O.J. Shreenivasan, B. Boehm, A. Dreizler, J. Janicka, Experimental characterization of onset of acoustic instability in a nonpremixed half-dump combustor. J. Acoust. Soc. Am 122(1) 120–127 (2007)CrossRef
6.
go back to reference H. Chaté, P. Manneville, Transition to turbulence via spatio-temporal intermittency. Phys. Rev. Lett. 58(2), 112 (1987)CrossRef H. Chaté, P. Manneville, Transition to turbulence via spatio-temporal intermittency. Phys. Rev. Lett. 58(2), 112 (1987)CrossRef
7.
go back to reference L. Crocco, S.I. Cheng, Theory of combustion instability in liquid propellant rocket motors, Technical report. Princeton Univ, NJ, 1956 L. Crocco, S.I. Cheng, Theory of combustion instability in liquid propellant rocket motors, Technical report. Princeton Univ, NJ, 1956
8.
go back to reference F. Culick, Nonlinear behavior of acoustic waves in combustion chambersi. Acta Astronaut. 3(9–10), 715–734 (1976)MATHCrossRef F. Culick, Nonlinear behavior of acoustic waves in combustion chambersi. Acta Astronaut. 3(9–10), 715–734 (1976)MATHCrossRef
9.
go back to reference F. Culick, Some recent results for nonlinear acoustics in combustion chambers. AIAA J. 32(1), 146–169 (1994)MATHCrossRef F. Culick, Some recent results for nonlinear acoustics in combustion chambers. AIAA J. 32(1), 146–169 (1994)MATHCrossRef
10.
go back to reference F. Culick, P. Kuentzmann, Unsteady motions in combustion chambers for propulsion systems, Technical report. Nato Research and Technology Organization Neuilly-Sur-Seine (France), 2006 F. Culick, P. Kuentzmann, Unsteady motions in combustion chambers for propulsion systems, Technical report. Nato Research and Technology Organization Neuilly-Sur-Seine (France), 2006
11.
go back to reference S. Datta, S. Mondal, A. Mukhopadhyay, D. Sanyal, S. Sen, An investigation of nonlinear dynamics of a thermal pulse combustor. Combust. Theory Model. 13(1), 17–38 (2009)MATHCrossRef S. Datta, S. Mondal, A. Mukhopadhyay, D. Sanyal, S. Sen, An investigation of nonlinear dynamics of a thermal pulse combustor. Combust. Theory Model. 13(1), 17–38 (2009)MATHCrossRef
12.
go back to reference S. Domen, H. Gotoda, T. Kuriyama, Y. Okuno, S. Tachibana, Detection and prevention of blowout in a lean premixed gas-turbine model combustor using the concept of dynamical system theory. Proc. Combust. Inst. 35(3), 3245–3253 (2015)CrossRef S. Domen, H. Gotoda, T. Kuriyama, Y. Okuno, S. Tachibana, Detection and prevention of blowout in a lean premixed gas-turbine model combustor using the concept of dynamical system theory. Proc. Combust. Inst. 35(3), 3245–3253 (2015)CrossRef
14.
go back to reference J.P. Eckmann, S.O. Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. EPL (Europhysics Letters) 4(9), 973 (1987)CrossRef J.P. Eckmann, S.O. Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. EPL (Europhysics Letters) 4(9), 973 (1987)CrossRef
15.
go back to reference E.M. Essaki Arumugam, M.L. Spano, A chimeric path to neuronal synchronization. Chaos: Interdiscip. J. Nonlinear Sci. 25(1), 013–107 (2015)MathSciNetMATHCrossRef E.M. Essaki Arumugam, M.L. Spano, A chimeric path to neuronal synchronization. Chaos: Interdiscip. J. Nonlinear Sci. 25(1), 013–107 (2015)MathSciNetMATHCrossRef
16.
go back to reference H. Fujisaka, T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69(1), 32–47 (1983)MathSciNetMATHCrossRef H. Fujisaka, T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69(1), 32–47 (1983)MathSciNetMATHCrossRef
17.
go back to reference J. Gleick, Chaos: Making a New Science, Enhanced edn. (Open Road Media, 2011) J. Gleick, Chaos: Making a New Science, Enhanced edn. (Open Road Media, 2011)
18.
go back to reference H. Gotoda, H. Nikimoto, T. Miyano, S. Tachibana, Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos: Interdiscip. J. Nonlinear Sci. 21(1), 013–124 (2011)CrossRef H. Gotoda, H. Nikimoto, T. Miyano, S. Tachibana, Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos: Interdiscip. J. Nonlinear Sci. 21(1), 013–124 (2011)CrossRef
19.
go back to reference H. Gotoda, Y. Shinoda, M. Kobayashi, Y. Okuno, S. Tachibana, Detection and control of combustion instability based on the concept of dynamical system theory. Phys. Rev. E 89(2), 022–910 (2014) H. Gotoda, Y. Shinoda, M. Kobayashi, Y. Okuno, S. Tachibana, Detection and control of combustion instability based on the concept of dynamical system theory. Phys. Rev. E 89(2), 022–910 (2014)
20.
go back to reference F. Guethe, D. Guyot, G. Singla, N. Noiray, B. Schuermans, Chemiluminescence as diagnostic tool in the development of gas turbines. Appl. Phys. B 107(3), 619–636 (2012)CrossRef F. Guethe, D. Guyot, G. Singla, N. Noiray, B. Schuermans, Chemiluminescence as diagnostic tool in the development of gas turbines. Appl. Phys. B 107(3), 619–636 (2012)CrossRef
21.
go back to reference U. Hegde, D. Reuter, B. Daniel, B. Zinn, Flame driving of longitudinal instabilities in dump type ramjet combustors. Combust. Sci. Technol. 55(4–6), 125–138 (1987)CrossRef U. Hegde, D. Reuter, B. Daniel, B. Zinn, Flame driving of longitudinal instabilities in dump type ramjet combustors. Combust. Sci. Technol. 55(4–6), 125–138 (1987)CrossRef
22.
go back to reference N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis, in Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, vol. 454 (The Royal Society, 1998), pp. 903–995MathSciNetMATHCrossRef N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis, in Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, vol. 454 (The Royal Society, 1998), pp. 903–995MathSciNetMATHCrossRef
23.
go back to reference Y. Ikeda, J. Kojima, H. Hashimoto, Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame. Proc. Combust. Inst. 29(2), 1495–1501 (2002)CrossRef Y. Ikeda, J. Kojima, H. Hashimoto, Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame. Proc. Combust. Inst. 29(2), 1495–1501 (2002)CrossRef
24.
go back to reference C.C. Jahnke, F.E. Culick, Application of dynamical systems theory to nonlinear combustion instabilities. J. Propuls. Power 10(4), 508–517 (1994)CrossRef C.C. Jahnke, F.E. Culick, Application of dynamical systems theory to nonlinear combustion instabilities. J. Propuls. Power 10(4), 508–517 (1994)CrossRef
25.
26.
go back to reference L. Kabiraj, R. Sujith, Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376–397 (2012)MathSciNetMATHCrossRef L. Kabiraj, R. Sujith, Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376–397 (2012)MathSciNetMATHCrossRef
27.
go back to reference L. Kabiraj, A. Saurabh, P. Wahi, R. Sujith, Route to chaos for combustion instability in ducted laminar premixed flames. Chaos: Interdiscip. J. Nonlinear Sci. 22(2), 023–129 (2012)CrossRef L. Kabiraj, A. Saurabh, P. Wahi, R. Sujith, Route to chaos for combustion instability in ducted laminar premixed flames. Chaos: Interdiscip. J. Nonlinear Sci. 22(2), 023–129 (2012)CrossRef
28.
go back to reference L, Kabiraj, R. Sujith, P. Wahi, Investigating the dynamics of combustion-driven oscillations leading to lean blowout. Fluid Dyn. Res. 44(3), 031–408 (2012)MATHCrossRef L, Kabiraj, R. Sujith, P. Wahi, Investigating the dynamics of combustion-driven oscillations leading to lean blowout. Fluid Dyn. Res. 44(3), 031–408 (2012)MATHCrossRef
29.
go back to reference K. Kashinath, I.C. Waugh, M.P. Juniper, Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos. J. Fluid Mech. 761, 399–430 (2014)CrossRef K. Kashinath, I.C. Waugh, M.P. Juniper, Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos. J. Fluid Mech. 761, 399–430 (2014)CrossRef
30.
go back to reference J.O. Keller, L. Vaneveld, D. Korschelt, G. Hubbard, A. Ghoniem, J. Daily, A. Oppenheim, Mechanism of instabilities in turbulent combustion leading to flashback. AIAA J. 20(2), 254–262 (1982)CrossRef J.O. Keller, L. Vaneveld, D. Korschelt, G. Hubbard, A. Ghoniem, J. Daily, A. Oppenheim, Mechanism of instabilities in turbulent combustion leading to flashback. AIAA J. 20(2), 254–262 (1982)CrossRef
31.
go back to reference D.W. Kendrick, T.J. Anderson, W.A. Sowa, T.S. Snyder, Acoustic sensitivities of lean-premixed fuel injectors in a single nozzle rig, in ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition (American Society of Mechanical Engineers, 1998) D.W. Kendrick, T.J. Anderson, W.A. Sowa, T.S. Snyder, Acoustic sensitivities of lean-premixed fuel injectors in a single nozzle rig, in ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition (American Society of Mechanical Engineers, 1998)
32.
go back to reference Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, vol. 19 (Springer Science & Business Media, 2012) Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, vol. 19 (Springer Science & Business Media, 2012)
33.
go back to reference M. Lakshmanan, D.V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems (Springer Science & Business Media, 2011) M. Lakshmanan, D.V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems (Springer Science & Business Media, 2011)
34.
go back to reference S. Lei, A. Turan, Nonlinear/chaotic behaviour in thermo-acoustic instability. Combust. Theory Model. 13(3), 541–557 (2009)MATHCrossRef S. Lei, A. Turan, Nonlinear/chaotic behaviour in thermo-acoustic instability. Combust. Theory Model. 13(3), 541–557 (2009)MATHCrossRef
35.
go back to reference T. Lieuwen, Modeling premixed combustion-acoustic wave interactions: a review. J. Propuls. power 19(5), 765–781 (2003)CrossRef T. Lieuwen, Modeling premixed combustion-acoustic wave interactions: a review. J. Propuls. power 19(5), 765–781 (2003)CrossRef
36.
go back to reference T. Lieuwen, Online combustor stability margin assessment using dynamic pressure data. Trans. ASME-A-Eng. Gas Turbines Power 127(3), 478–482 (2005)CrossRef T. Lieuwen, Online combustor stability margin assessment using dynamic pressure data. Trans. ASME-A-Eng. Gas Turbines Power 127(3), 478–482 (2005)CrossRef
37.
go back to reference T. Lieuwen, B.T. Zinn, Application of multipole expansions to sound generation from ducted unsteady combustion processes. J. Sound Vib. 235(3), 405–414 (2000)CrossRef T. Lieuwen, B.T. Zinn, Application of multipole expansions to sound generation from ducted unsteady combustion processes. J. Sound Vib. 235(3), 405–414 (2000)CrossRef
38.
go back to reference T. Lieuwen, H. Torres, C. Johnson, B.T. Zinn, A mechanism of combustion instability in lean premixed gas turbine combustors. Trans.-Am. Soc. Mech. Eng.-J. Eng. Gas Turbines Power 123(1), 182–189 (2001)CrossRef T. Lieuwen, H. Torres, C. Johnson, B.T. Zinn, A mechanism of combustion instability in lean premixed gas turbine combustors. Trans.-Am. Soc. Mech. Eng.-J. Eng. Gas Turbines Power 123(1), 182–189 (2001)CrossRef
39.
go back to reference T.C. Lieuwen, Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor. J. Propuls. Power 18(1), 61–67 (2002)CrossRef T.C. Lieuwen, Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor. J. Propuls. Power 18(1), 61–67 (2002)CrossRef
40.
go back to reference T.C. Lieuwen, V. Yang, in Combustion Instabilities in Gas Turbine Engines(operational experience, fundamental mechanisms and modeling). Progress in Astronautics and Aeronautics, 2005 T.C. Lieuwen, V. Yang, in Combustion Instabilities in Gas Turbine Engines(operational experience, fundamental mechanisms and modeling). Progress in Astronautics and Aeronautics, 2005
41.
42.
go back to reference N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5), 237–329 (2007)MathSciNetCrossRef N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5), 237–329 (2007)MathSciNetCrossRef
43.
go back to reference K. McManus, T. Poinsot, S. Candel, A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 19(1), 1–29 (1993)CrossRef K. McManus, T. Poinsot, S. Candel, A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 19(1), 1–29 (1993)CrossRef
44.
go back to reference S. Mondal, A. Mukhopadhyay, S. Sen, Effects of inlet conditions on dynamics of a thermal pulse combustor. Combust. Theory Model. 16(1), 59–74 (2012)MATHCrossRef S. Mondal, A. Mukhopadhyay, S. Sen, Effects of inlet conditions on dynamics of a thermal pulse combustor. Combust. Theory Model. 16(1), 59–74 (2012)MATHCrossRef
45.
go back to reference S. Mondal, A. Mukhopadhyay, S. Sen, Dynamic characterization of a laboratory-scale pulse combustor. Combust. Sci. Technol. 186(2), 139–152 (2014)CrossRef S. Mondal, A. Mukhopadhyay, S. Sen, Dynamic characterization of a laboratory-scale pulse combustor. Combust. Sci. Technol. 186(2), 139–152 (2014)CrossRef
46.
go back to reference S. Mondal, V.R. Unni, R. Sujith, Chimera-like states observed during the transition to thermoacoustic instability in turbulent combustor, in Conference on Nonlinear Systems & Dynamics IISER Kolkata, vol. 16, p. 18, 2016 S. Mondal, V.R. Unni, R. Sujith, Chimera-like states observed during the transition to thermoacoustic instability in turbulent combustor, in Conference on Nonlinear Systems & Dynamics IISER Kolkata, vol. 16, p. 18, 2016
47.
go back to reference S. Mondal, A. Mukhopadhyay, S. Sen, Bifurcation analysis of steady states and limit cycles in a thermal pulse combustor model. Combust. Theory Model. 21(3), 487–502 (2017)MathSciNetCrossRef S. Mondal, A. Mukhopadhyay, S. Sen, Bifurcation analysis of steady states and limit cycles in a thermal pulse combustor model. Combust. Theory Model. 21(3), 487–502 (2017)MathSciNetCrossRef
48.
go back to reference S. Mondal, S. Pawar, R. Sujith, Synchronous behaviour of two interacting oscillatory systems undergoing quasiperiodic route to chaos. Chaos: Interdiscip. J. Nonlinear Sci. 27(10), 103–119 (2017)MathSciNetCrossRef S. Mondal, S. Pawar, R. Sujith, Synchronous behaviour of two interacting oscillatory systems undergoing quasiperiodic route to chaos. Chaos: Interdiscip. J. Nonlinear Sci. 27(10), 103–119 (2017)MathSciNetCrossRef
49.
go back to reference S. Mondal, V.R. Unni, R. Sujith, Onset of thermoacoustic instability in turbulent combustors: an emergence of synchronized periodicity through formation of chimera-like states. J. Fluid Mech. 811, 659–681 (2017)MathSciNetMATHCrossRef S. Mondal, V.R. Unni, R. Sujith, Onset of thermoacoustic instability in turbulent combustors: an emergence of synchronized periodicity through formation of chimera-like states. J. Fluid Mech. 811, 659–681 (2017)MathSciNetMATHCrossRef
50.
go back to reference S. Mondal, A. Mukhopadhyay, S. Sen, Characterization of turbulent combustion systems using dynamical systems theory, in Modeling and Simulation of Turbulent Combustion (Springer, 2018), pp. 543–567 S. Mondal, A. Mukhopadhyay, S. Sen, Characterization of turbulent combustion systems using dynamical systems theory, in Modeling and Simulation of Turbulent Combustion (Springer, 2018), pp. 543–567
51.
go back to reference V. Nair, R. Sujith, Multifractality in combustion noise: predicting an impending combustion instability. J. Fluid Mech. 747, 635–655 (2014)CrossRef V. Nair, R. Sujith, Multifractality in combustion noise: predicting an impending combustion instability. J. Fluid Mech. 747, 635–655 (2014)CrossRef
52.
go back to reference V. Nair, G. Thampi, S. Karuppusamy, S. Gopalan, R. Sujith, Loss of chaos in combustion noise as a precursor of impending combustion instability. Int. J. Spray Combust. Dyn. 5(4), 273–290 (2013)CrossRef V. Nair, G. Thampi, S. Karuppusamy, S. Gopalan, R. Sujith, Loss of chaos in combustion noise as a precursor of impending combustion instability. Int. J. Spray Combust. Dyn. 5(4), 273–290 (2013)CrossRef
53.
go back to reference V. Nair, G. Thampi, R. Sujith, Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech. 756, 470–487 (2014)CrossRef V. Nair, G. Thampi, R. Sujith, Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech. 756, 470–487 (2014)CrossRef
54.
go back to reference G.V. Osipov, B. Hu, C. Zhou, M.V. Ivanchenko, J. Kurths, Three types of transitions to phase synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 91(2), 024–101 (2003) G.V. Osipov, B. Hu, C. Zhou, M.V. Ivanchenko, J. Kurths, Three types of transitions to phase synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 91(2), 024–101 (2003)
55.
go back to reference S.A. Pawar, R. Vishnu, M. Vadivukkarasan, M. Panchagnula, R. Sujith, Intermittency route to combustion instability in a laboratory spray combustor. J. Eng. Gas Turbines Power 138(4), 041–505 (2016)CrossRef S.A. Pawar, R. Vishnu, M. Vadivukkarasan, M. Panchagnula, R. Sujith, Intermittency route to combustion instability in a laboratory spray combustor. J. Eng. Gas Turbines Power 138(4), 041–505 (2016)CrossRef
57.
go back to reference S.A. Pawar, S. Mondal, N.B. George, R. Sujith, Synchronization behaviour during the dynamical transition in swirl-stabilized combustor: temporal and spatiotemporal analysis, in 2018 AIAA Aerospace Sciences Meeting, p. 0394, 2018 S.A. Pawar, S. Mondal, N.B. George, R. Sujith, Synchronization behaviour during the dynamical transition in swirl-stabilized combustor: temporal and spatiotemporal analysis, in 2018 AIAA Aerospace Sciences Meeting, p. 0394, 2018
58.
go back to reference A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12 (Cambridge University Press, 2003) A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12 (Cambridge University Press, 2003)
59.
go back to reference T.J. Poinsot, A.C. Trouve, D.P. Veynante, S.M. Candel, E.J. Esposito, Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265–292 (1987)CrossRef T.J. Poinsot, A.C. Trouve, D.P. Veynante, S.M. Candel, E.J. Esposito, Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265–292 (1987)CrossRef
60.
go back to reference A.A. Putnam, Combustion Driven Oscillations in Industry (Elsevier Publishing Company, 1971) A.A. Putnam, Combustion Driven Oscillations in Industry (Elsevier Publishing Company, 1971)
61.
go back to reference J.W.S. Rayleigh, The explanation of certain acoustical phenomena. Nature 18(455), 319–321 (1878)CrossRef J.W.S. Rayleigh, The explanation of certain acoustical phenomena. Nature 18(455), 319–321 (1878)CrossRef
62.
go back to reference M.C. Romano, M. Thiel, J. Kurths, I.Z. Kiss, J. Hudson, Detection of synchronization for non-phase-coherent and non-stationary data. EPL (Europhysics Letters) 71(3), 466 (2005)CrossRef M.C. Romano, M. Thiel, J. Kurths, I.Z. Kiss, J. Hudson, Detection of synchronization for non-phase-coherent and non-stationary data. EPL (Europhysics Letters) 71(3), 466 (2005)CrossRef
63.
go back to reference M. Rosenblum, A. Pikovsky, Synchronization: from pendulum clocks to chaotic lasers and chemical oscillators. Contemp. Phys. 44(5), 401–416 (2003)CrossRef M. Rosenblum, A. Pikovsky, Synchronization: from pendulum clocks to chaotic lasers and chemical oscillators. Contemp. Phys. 44(5), 401–416 (2003)CrossRef
64.
go back to reference M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76(11), 1804 (1996)MATHCrossRef M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76(11), 1804 (1996)MATHCrossRef
65.
go back to reference M.G. Rosenblum, A.S. Pikovsky, J. Kurths, From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78(22), 4193 (1997)MATHCrossRef M.G. Rosenblum, A.S. Pikovsky, J. Kurths, From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78(22), 4193 (1997)MATHCrossRef
66.
go back to reference N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51(2), 980 (1995)CrossRef N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51(2), 980 (1995)CrossRef
67.
go back to reference K. Schadow, E. Gutmark, Combustion instability related to vortex shedding in dump combustors and their passive control. Prog. Energy Combust. Sci. 18(2), 117–132 (1992)CrossRef K. Schadow, E. Gutmark, Combustion instability related to vortex shedding in dump combustors and their passive control. Prog. Energy Combust. Sci. 18(2), 117–132 (1992)CrossRef
68.
go back to reference S. Sen, S. Mondal, A. Mukhopadhyay, Dynamics of thermal pulse combustor, in Energy Combustion and Propulsion (New Perspectives, Athena Academic, 2015), pp. 269–312 S. Sen, S. Mondal, A. Mukhopadhyay, Dynamics of thermal pulse combustor, in Energy Combustion and Propulsion (New Perspectives, Athena Academic, 2015), pp. 269–312
70.
go back to reference D.A. Smith, E.E. Zukoski, Combustion instability sustained by unsteady vortex combustion, in AIAA Joint Propulsion Conference (1985) D.A. Smith, E.E. Zukoski, Combustion instability sustained by unsteady vortex combustion, in AIAA Joint Propulsion Conference (1985)
71.
go back to reference J.D. Sterling, Nonlinear analysis and modelling of combustion instabilities in a laboratory combustor. Combust. Sci. Technol. 89(1–4), 167–179 (1993)CrossRef J.D. Sterling, Nonlinear analysis and modelling of combustion instabilities in a laboratory combustor. Combust. Sci. Technol. 89(1–4), 167–179 (1993)CrossRef
72.
go back to reference W.C. Strahle, Combustion noise. Prog. Energy Combust. Sci. 4(3), 157–176 (1978)CrossRef W.C. Strahle, Combustion noise. Prog. Energy Combust. Sci. 4(3), 157–176 (1978)CrossRef
73.
go back to reference P. Subramanian, Dynamical Systems Approach to the Investigation of Thermoacoustic Instabilities, 2011 P. Subramanian, Dynamical Systems Approach to the Investigation of Thermoacoustic Instabilities, 2011
74.
go back to reference P. Subramanian, S. Mariappan, R. Sujith, P. Wahi, Bifurcation analysis of thermoacoustic instability in a horizontal rijke tube. Int. J. Spray Combust. Dyn. 2(4), 325–355 (2010)CrossRef P. Subramanian, S. Mariappan, R. Sujith, P. Wahi, Bifurcation analysis of thermoacoustic instability in a horizontal rijke tube. Int. J. Spray Combust. Dyn. 2(4), 325–355 (2010)CrossRef
75.
go back to reference R. Sujith, M. Juniper, P. Schmid, Non-normality and nonlinearity in thermoacoustic instabilities. Int. J. Spray Combust. Dyn. 8(2), 119–146 (2016)CrossRef R. Sujith, M. Juniper, P. Schmid, Non-normality and nonlinearity in thermoacoustic instabilities. Int. J. Spray Combust. Dyn. 8(2), 119–146 (2016)CrossRef
77.
go back to reference J. Tony, E. Gopalakrishnan, E. Sreelekha, R. Sujith, Detecting deterministic nature of pressure measurements from a turbulent combustor. Phys. Rev. E 92(6), 062–902 (2015) J. Tony, E. Gopalakrishnan, E. Sreelekha, R. Sujith, Detecting deterministic nature of pressure measurements from a turbulent combustor. Phys. Rev. E 92(6), 062–902 (2015)
78.
go back to reference V.R. Unni, R. Sujith, Multifractal characteristics of combustor dynamics close to lean blowout. J. Fluid Mech. 784, 30–50 (2015)CrossRef V.R. Unni, R. Sujith, Multifractal characteristics of combustor dynamics close to lean blowout. J. Fluid Mech. 784, 30–50 (2015)CrossRef
79.
go back to reference J.M. Wilhite, B.J. Dolan, L. Kabiraj, R.V. Gomez, E.J. Gutmark, C.O. Paschereit, Analysis of combustion oscillations in a staged mldi burner using decomposition methods and recurrence analysis, in 54th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2016-1156) (American Institute of Aeronautics and Astronautics, 2016), pp. 1–17 J.M. Wilhite, B.J. Dolan, L. Kabiraj, R.V. Gomez, E.J. Gutmark, C.O. Paschereit, Analysis of combustion oscillations in a staged mldi burner using decomposition methods and recurrence analysis, in 54th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2016-1156) (American Institute of Aeronautics and Astronautics, 2016), pp. 1–17
80.
go back to reference T. Yalçınkaya, Y.C. Lai, Phase characterization of chaos. Phys. Rev. Lett. 79(20), 3885 (1997)CrossRef T. Yalçınkaya, Y.C. Lai, Phase characterization of chaos. Phys. Rev. Lett. 79(20), 3885 (1997)CrossRef
Metadata
Title
Synchronization Transition in a Thermoacoustic System: Temporal and Spatiotemporal Analyses
Authors
Sirshendu Mondal
Samadhan A. Pawar
R. I. Sujith
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7473-8_6