Skip to main content
Top
Published in: Polymer Bulletin 4/2017

26-07-2016 | Original Paper

Synergetic association of grafted PLA and functionalized graphene on the properties of the designed nanocomposites

Authors: Kahina Issaadi, Isabelle Pillin, Abderrahmane Habi, Yves Grohens

Published in: Polymer Bulletin | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The synergetic association of poly(lactic acid) grafted with maleic anhydride (MA-g-PLA) containing 0.44 wt% of maleic anhydride and epoxy-functionalized graphene (GFe) on the properties of the designed nanocomposites was studied. Rheological, mechanical and barrier properties of PLA nanocomposites were studied using different content of epoxy-functionalized graphene and MA-g-PLA compatibilizer. The PLA/MA-g-PLA/GFe nanocomposites prepared by melt blending, containing 5 wt% of MA-g-PLA, yield a maximum in storage modulus G′ and a rheological plateau at low frequencies, with a content of epoxy-functionalized graphene comprised between 4 and 7 wt%. This phenomenon was ascribed to a pseudo-solid behavior resulting from the high degree of epoxy-functionalized graphene exfoliation due to strong interfacial interactions with PLA and epoxy-functionalized graphene. The better mechanical and barrier performances were obtained with PLA/GFe containing 10 wt% of epoxy-functionalized graphene and 5 wt% of MA-g-PLA compatibilizer. The variation of the percentage of compatibilizer showed that 5 wt% of maleated PLA was sufficient to improve the thermal, rheological, mechanical and barrier properties of the PLA nanocomposite containing 7 wt% of epoxy-functionalized graphene.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276:1–24CrossRef Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276:1–24CrossRef
2.
go back to reference Pinto AM, Cabral J, David A, Tanaka DAP, Mendes AMM, Magalhaes FD (2013) Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polym Int 62:33–40CrossRef Pinto AM, Cabral J, David A, Tanaka DAP, Mendes AMM, Magalhaes FD (2013) Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polym Int 62:33–40CrossRef
3.
go back to reference Lasprilla AJR, Martinez GAR, Lunelli BH et al (2010) Synthesis and characterization of poly (lactic acid) for use in biomedical field. Chem Eng 24:985–990 Lasprilla AJR, Martinez GAR, Lunelli BH et al (2010) Synthesis and characterization of poly (lactic acid) for use in biomedical field. Chem Eng 24:985–990
4.
go back to reference Cabedo L, Luis FJ, Pilar VM, Lagarón JM et al (2006) Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromol Symp 233:191–197CrossRef Cabedo L, Luis FJ, Pilar VM, Lagarón JM et al (2006) Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromol Symp 233:191–197CrossRef
5.
go back to reference Li M-C, Cho UR (2013) Effectiveness of coupling agents in the poly (methylmethacrylate)-modified starch/styrene-butadiene rubber interfaces. Mater Lett 92:132–135CrossRef Li M-C, Cho UR (2013) Effectiveness of coupling agents in the poly (methylmethacrylate)-modified starch/styrene-butadiene rubber interfaces. Mater Lett 92:132–135CrossRef
6.
go back to reference Li M-C, Ge X, Cho UR (2013) Emulsion grafting vinyl monomers onto starch for reinforcement of styrene-butadiene rubber. Macromol Res 21:519–528CrossRef Li M-C, Ge X, Cho UR (2013) Emulsion grafting vinyl monomers onto starch for reinforcement of styrene-butadiene rubber. Macromol Res 21:519–528CrossRef
7.
go back to reference Li M-C, Ge X, Cho UR (2013) Mechanical performance, water absorption behavior and biodegradability of poly (methyl methacrylate)-modified starch/SBR biocomposites. Macromol Res 21:793–800CrossRef Li M-C, Ge X, Cho UR (2013) Mechanical performance, water absorption behavior and biodegradability of poly (methyl methacrylate)-modified starch/SBR biocomposites. Macromol Res 21:793–800CrossRef
8.
go back to reference Li M-C, Zhang Y, Cho UR (2014) Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: influence of particle size and loading. Mater Design 63:565–574CrossRef Li M-C, Zhang Y, Cho UR (2014) Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: influence of particle size and loading. Mater Design 63:565–574CrossRef
9.
go back to reference Ge X, Li M-C, Cho UR (2015) Novel one-step synthesis of acrylonitrile butadiene rubber/bentonite nanocomposites with (3-mercaptopropyl) trimethoxysilane as a compatibilizer. Polym Compos 36:1693–1702CrossRef Ge X, Li M-C, Cho UR (2015) Novel one-step synthesis of acrylonitrile butadiene rubber/bentonite nanocomposites with (3-mercaptopropyl) trimethoxysilane as a compatibilizer. Polym Compos 36:1693–1702CrossRef
10.
go back to reference Issaadi K, Habi A, Grohens Y, Pillin I (2016) Maleic anhydride-grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/graphene oxide nanocomposites. Polym Bull. doi:10.1007/s00289-015-1593-z Issaadi K, Habi A, Grohens Y, Pillin I (2016) Maleic anhydride-grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/graphene oxide nanocomposites. Polym Bull. doi:10.​1007/​s00289-015-1593-z
11.
go back to reference Kim SJ, Shin BS, Hong JL et al (2001) Reactive compatibilization of the PBT/EVA blend by maleic anhydride. Polymer 42:4073–4080CrossRef Kim SJ, Shin BS, Hong JL et al (2001) Reactive compatibilization of the PBT/EVA blend by maleic anhydride. Polymer 42:4073–4080CrossRef
12.
go back to reference Zhou K, Gu SY, Zhang YH et al (2012) Effect of dispersion on rheological and mechanical properties of polypropylene/carbon nanotubes nanocomposites. Polym Eng Sci 52:1485–1494CrossRef Zhou K, Gu SY, Zhang YH et al (2012) Effect of dispersion on rheological and mechanical properties of polypropylene/carbon nanotubes nanocomposites. Polym Eng Sci 52:1485–1494CrossRef
13.
go back to reference Zhang L, Li Y, Wang H et al (2014) Strong and ductile poly (lactic acid) nanocomposite films reinforced with alkylated graphene nanosheets. Chem Eng J 264:538–546CrossRef Zhang L, Li Y, Wang H et al (2014) Strong and ductile poly (lactic acid) nanocomposite films reinforced with alkylated graphene nanosheets. Chem Eng J 264:538–546CrossRef
14.
go back to reference Yuan X (2011) Enhanced interfacial interaction for effective reinforcement of poly (vinyl alcohol) nanocomposites at low loading of graphene. Polym Bull 67:1785–1797CrossRef Yuan X (2011) Enhanced interfacial interaction for effective reinforcement of poly (vinyl alcohol) nanocomposites at low loading of graphene. Polym Bull 67:1785–1797CrossRef
15.
go back to reference Wang X, Yang H, Song L et al (2011) Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos Sci Technol 72:1–6CrossRef Wang X, Yang H, Song L et al (2011) Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos Sci Technol 72:1–6CrossRef
16.
go back to reference Wang B, Wan T, Zeng W (2011) Dynamic rheology and morphology of polylactide/organic montmorillonite nanocomposites. Appl Polym Sci 121:1032–1039CrossRef Wang B, Wan T, Zeng W (2011) Dynamic rheology and morphology of polylactide/organic montmorillonite nanocomposites. Appl Polym Sci 121:1032–1039CrossRef
17.
go back to reference Kim H, Macosko CW (2009) Processing–property relationships of polycarbonate/graphene composites. Polymer 50:3797–3809CrossRef Kim H, Macosko CW (2009) Processing–property relationships of polycarbonate/graphene composites. Polymer 50:3797–3809CrossRef
18.
go back to reference Song P, Cao Z, Cai Y et al (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52:4001–4010CrossRef Song P, Cao Z, Cai Y et al (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52:4001–4010CrossRef
19.
go back to reference Zanetti M, Lomakin S, Camino G (2000) Polymer layered silicate nanocomposites. Macromol Mater Eng 279:1–9CrossRef Zanetti M, Lomakin S, Camino G (2000) Polymer layered silicate nanocomposites. Macromol Mater Eng 279:1–9CrossRef
20.
go back to reference Renard E, Walls M, Guérin P, Langlois V (2004) Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates. Polym Degrad Stab 85:779–787CrossRef Renard E, Walls M, Guérin P, Langlois V (2004) Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates. Polym Degrad Stab 85:779–787CrossRef
21.
go back to reference McNally T, Pötschke P, Halley P et al (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232CrossRef McNally T, Pötschke P, Halley P et al (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232CrossRef
22.
go back to reference Lee JI, Yang SB, Jung HT (2009) Carbon nanotubes–polypropylene nanocomposites for electrostatic discharge applications. Macromolecules 42:8328–8334CrossRef Lee JI, Yang SB, Jung HT (2009) Carbon nanotubes–polypropylene nanocomposites for electrostatic discharge applications. Macromolecules 42:8328–8334CrossRef
23.
go back to reference Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C (2012) Recent advances in fabrication and characterization of graphene–polymer nanocomposites. Graphene 1:30–49CrossRef Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C (2012) Recent advances in fabrication and characterization of graphene–polymer nanocomposites. Graphene 1:30–49CrossRef
24.
25.
go back to reference Kim H, Kobayashi S, AbdurRahim MA (2011) Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer 52:1837–1846CrossRef Kim H, Kobayashi S, AbdurRahim MA (2011) Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer 52:1837–1846CrossRef
26.
go back to reference Kuila T, Bose S, Khanra P et al (2011) Characterization and properties of in situ emulsion polymerized poly (methyl methacrylate)/graphene nanocomposites. Compos Part A Appl Sci Manuf 42:1856–1861CrossRef Kuila T, Bose S, Khanra P et al (2011) Characterization and properties of in situ emulsion polymerized poly (methyl methacrylate)/graphene nanocomposites. Compos Part A Appl Sci Manuf 42:1856–1861CrossRef
27.
go back to reference Zaman I, Phan TT, Kuan HC (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52:1603–1611CrossRef Zaman I, Phan TT, Kuan HC (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52:1603–1611CrossRef
28.
go back to reference Sridhar V, Lee I, Chun HH, Park H (2013) Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites. Express Polym Lett 7:20–328CrossRef Sridhar V, Lee I, Chun HH, Park H (2013) Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites. Express Polym Lett 7:20–328CrossRef
29.
go back to reference Domingues SH, Salvatierra RV, Oliveira MM (2011) Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chem Commun 47:2592–2594CrossRef Domingues SH, Salvatierra RV, Oliveira MM (2011) Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chem Commun 47:2592–2594CrossRef
30.
go back to reference El Achaby M, Arrakhiz FE, Vaudreuil S et al (2012) Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym Compos 33:733–744CrossRef El Achaby M, Arrakhiz FE, Vaudreuil S et al (2012) Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym Compos 33:733–744CrossRef
31.
go back to reference Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839CrossRef Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839CrossRef
32.
go back to reference Kuila T, Bose S, Khanra P, Kim NH, Rhee KY, Lee JH (2011) Characterization and properties of in situ emulsion polymerized poly (methyl methacrylate)/graphene nanocomposites. Compos Part A Appl Sci Manuf 42:1856–1861CrossRef Kuila T, Bose S, Khanra P, Kim NH, Rhee KY, Lee JH (2011) Characterization and properties of in situ emulsion polymerized poly (methyl methacrylate)/graphene nanocomposites. Compos Part A Appl Sci Manuf 42:1856–1861CrossRef
33.
go back to reference Li X, Xiao Y, Bergeret A, Longerey M, Che J (2014) Preparation of polylactide/graphene composites from liquid phase exfoliated graphite sheets. Polym Compos 35:396–403CrossRef Li X, Xiao Y, Bergeret A, Longerey M, Che J (2014) Preparation of polylactide/graphene composites from liquid phase exfoliated graphite sheets. Polym Compos 35:396–403CrossRef
34.
go back to reference Li X, Xiao Y, Bergeret A, Longerey M, Che J (2014) Preparation and characterization of maleated polylactide-functionalized graphite oxide nanocomposites. Polym Res 334:3–14 Li X, Xiao Y, Bergeret A, Longerey M, Che J (2014) Preparation and characterization of maleated polylactide-functionalized graphite oxide nanocomposites. Polym Res 334:3–14
35.
go back to reference Huang HD, Ren PG, Chen J, Zhang WQ, Ji X, Li ZM (2012) High barrier graphene oxide nanosheet/poly (vinyl alcohol) nanocomposite films. Membr Sci 410:156–163CrossRef Huang HD, Ren PG, Chen J, Zhang WQ, Ji X, Li ZM (2012) High barrier graphene oxide nanosheet/poly (vinyl alcohol) nanocomposite films. Membr Sci 410:156–163CrossRef
36.
go back to reference Kim HM, Lee HS (2014) Water and oxygen permeation through transparent ethylene vinyl alcohol/(graphene oxide) membranes. Carbon Lett 15:50–56CrossRef Kim HM, Lee HS (2014) Water and oxygen permeation through transparent ethylene vinyl alcohol/(graphene oxide) membranes. Carbon Lett 15:50–56CrossRef
37.
go back to reference Chang CH, Huang TC, Peng CW (2012) Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50:5044–5051CrossRef Chang CH, Huang TC, Peng CW (2012) Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50:5044–5051CrossRef
38.
go back to reference Compton OC, Kim S, Pierre C, Torkelson JM, Nguyen ST (2010) graphene nanosheets as highly effective barrier property enhancers. Adv Mater 22:4759–4763CrossRef Compton OC, Kim S, Pierre C, Torkelson JM, Nguyen ST (2010) graphene nanosheets as highly effective barrier property enhancers. Adv Mater 22:4759–4763CrossRef
39.
go back to reference Zhan Y, Lavorgna M, Buonocore G, Xia H (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. Mater Chem 22:10464–10468CrossRef Zhan Y, Lavorgna M, Buonocore G, Xia H (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. Mater Chem 22:10464–10468CrossRef
40.
go back to reference Ma T, Chang PR, Zheng P, Ma X (2013) The composites based on plasticized starch and graphene oxide/reduced graphene oxide. Carbohydr Polym 94:63–70CrossRef Ma T, Chang PR, Zheng P, Ma X (2013) The composites based on plasticized starch and graphene oxide/reduced graphene oxide. Carbohydr Polym 94:63–70CrossRef
41.
go back to reference Issaadi K, Habi A, Grohens Y, Pillin I (2015) Effect of the montmorillonite intercalant and anhydride maleic grafting on polylactic acid structure and properties. Appl Clay Sci 107:62–69CrossRef Issaadi K, Habi A, Grohens Y, Pillin I (2015) Effect of the montmorillonite intercalant and anhydride maleic grafting on polylactic acid structure and properties. Appl Clay Sci 107:62–69CrossRef
42.
go back to reference Nyambo C, Mohanty AK, Misra M (2011) Effect of maleated compatibilizer on performance of PLA/wheat straw-based green composites. Macromol Mater Eng 296:710–718CrossRef Nyambo C, Mohanty AK, Misra M (2011) Effect of maleated compatibilizer on performance of PLA/wheat straw-based green composites. Macromol Mater Eng 296:710–718CrossRef
43.
go back to reference Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196CrossRef Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196CrossRef
44.
go back to reference Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRef Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRef
45.
go back to reference Li Y, Zhu J, Wei S, Ryu J, Sun L, Guo Z (2011) Poly (propylene)/graphene nanoplatelet nanocomposites: melt rheological behavior and thermal, electrical, and electronic properties. Macromol Chem Phys 112:1951–1959CrossRef Li Y, Zhu J, Wei S, Ryu J, Sun L, Guo Z (2011) Poly (propylene)/graphene nanoplatelet nanocomposites: melt rheological behavior and thermal, electrical, and electronic properties. Macromol Chem Phys 112:1951–1959CrossRef
46.
go back to reference Li Y, Han C, Bian J, Han L, Dong L, Gao G (2012) Rheology and biodegradation of polylactide/silica nanocomposites. Polym Compos 33:1719–1727CrossRef Li Y, Han C, Bian J, Han L, Dong L, Gao G (2012) Rheology and biodegradation of polylactide/silica nanocomposites. Polym Compos 33:1719–1727CrossRef
47.
go back to reference Sabzi M, Jiang L, Liu F, Ghasemi I, Atai M (2013) Graphene nanoplatelets as polylactic acid modifier: linear rheological behavior and electrical conductivity. Mater Chem A 1:8253–8261CrossRef Sabzi M, Jiang L, Liu F, Ghasemi I, Atai M (2013) Graphene nanoplatelets as polylactic acid modifier: linear rheological behavior and electrical conductivity. Mater Chem A 1:8253–8261CrossRef
48.
go back to reference Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302CrossRef Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302CrossRef
49.
go back to reference Jiang L, Shen X-P, Wu J-L, Shen K-C (2010) Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites. Appl Polym Sci 118:275–279CrossRef Jiang L, Shen X-P, Wu J-L, Shen K-C (2010) Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites. Appl Polym Sci 118:275–279CrossRef
50.
go back to reference Liu D, Chang PR, Deng S (2011) Fabrication and characterization of zirconium hydroxide-carboxymethyl cellulose sodium/plasticized Trichosanthes kirilowii starch nanocomposites. Carbohydr Polym 86:1699–1704CrossRef Liu D, Chang PR, Deng S (2011) Fabrication and characterization of zirconium hydroxide-carboxymethyl cellulose sodium/plasticized Trichosanthes kirilowii starch nanocomposites. Carbohydr Polym 86:1699–1704CrossRef
51.
go back to reference Darie RN, Pâslaru E, Sdrobis A et al (2014) Effect of nanoclay hydrophilicity on the poly (lactic acid)/clay nanocomposites properties. Ind Eng Chem Res 53:7877–7890CrossRef Darie RN, Pâslaru E, Sdrobis A et al (2014) Effect of nanoclay hydrophilicity on the poly (lactic acid)/clay nanocomposites properties. Ind Eng Chem Res 53:7877–7890CrossRef
52.
go back to reference Filippone G, deLuna MS, Acierno D, Russo P (2012) Elasticity and structure of weak graphite nanoplatelet (GNP) networks in polymer matrices through viscoelastic analyses. Polymer 53:2699–2704CrossRef Filippone G, deLuna MS, Acierno D, Russo P (2012) Elasticity and structure of weak graphite nanoplatelet (GNP) networks in polymer matrices through viscoelastic analyses. Polymer 53:2699–2704CrossRef
53.
go back to reference Zaidi L, Bruzaud S, Bourmaud A (2010) Relationship between structure and rheological, mechanical and thermal properties of polylactide/cloisite 30B nanocomposites. Appl Polym Sci 116:1357–1365 Zaidi L, Bruzaud S, Bourmaud A (2010) Relationship between structure and rheological, mechanical and thermal properties of polylactide/cloisite 30B nanocomposites. Appl Polym Sci 116:1357–1365
54.
go back to reference Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRef Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRef
55.
go back to reference Żenkiewicz M, Richert J (2008) Permeability of polylactide nanocomposite films for water vapour, oxygen and carbon dioxide. Polym Test 27:835–840CrossRef Żenkiewicz M, Richert J (2008) Permeability of polylactide nanocomposite films for water vapour, oxygen and carbon dioxide. Polym Test 27:835–840CrossRef
Metadata
Title
Synergetic association of grafted PLA and functionalized graphene on the properties of the designed nanocomposites
Authors
Kahina Issaadi
Isabelle Pillin
Abderrahmane Habi
Yves Grohens
Publication date
26-07-2016
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 4/2017
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-016-1759-3

Other articles of this Issue 4/2017

Polymer Bulletin 4/2017 Go to the issue

Premium Partners