Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

16-02-2021 | S.I. : SPIoT 2020 | Issue 9/2021

Neural Computing and Applications 9/2021

Synergy evaluation model of container multimodal transport based on BP neural network

Journal:
Neural Computing and Applications > Issue 9/2021
Authors:
Wenying Zhu, Haiwen Wang, Xiaheng Zhang
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

With the rapid development of economic globalization, the trade of various countries has become increasingly close and thus the rapid growth of container transportation business. The rational choice of transportation routes and intermodal transportation methods has become a hot topic in this field. In order to improve the efficiency of intermodal transportation and reduce the cost of intermodal transportation, this paper studies the evaluation of the synergy effect of container multimodal transportation based on the BP neural network algorithm. First, it is determined that the multi-attribute decision-making method is used to comprehensively evaluate the synergy effect of container multimodal transportation, and the data are normalized. Select the appropriate hidden layer nodes, use Matlab to determine the learning rate, select the logsig function for the network transfer function, select Traingdx as the training function, and establish a container multimodal transport synergy evaluation model based on BP neural network. Secondly, the model is solved, and the problem is transformed into finding the shortest route from Q to P without exceeding the cost and time constraints. Then carry on the simulation experiment, use Matlab to solve the transportation time and total cost between cities. Experimental data show that when the number of iterations is 800, the algorithm begins to converge; at the fifth training, the error between the actual output and the expected output is only 0.0004; in route B, the time of multimodal transportation is 48.18% less than that of single transportation, and the cost is saved by 50.02%. This shows that the container multimodal transport synergy evaluation model based on BP neural network can accurately evaluate the effects, and container multimodal transport can indeed improve transportation efficiency and save costs.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9/2021

Neural Computing and Applications 9/2021 Go to the issue

Premium Partner

    Image Credits