Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

Synthesis and Applications of Carbohydrate-Based Polyurethanes

Authors : Verónica E. Manzano, Adriana A. Kolender, Oscar Varela

Published in: Industrial Applications of Renewable Biomass Products

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polyurethanes are one of the most important and widespread type of polymers which display a wide range of industrial and biomedical applications. The recent approaches and advances in polyurethane research involve the replacement of petro-based polyols and isocyanates with biobased molecules. In this regard, carbohydrates offer a great promise due to their rich functionality, varied stereochemistry, and renewable production on an impressive scale. The carbohydrate-based polyurethanes are also prone to being biodegradable and biocompatible. These types of materials may be entirely derived from carbohydrates or contain carbohydrates as pendant groups or as constituents of the soft part of the polymer. Artificial polymers prepared by combination of polysaccharides with synthetic monomers or polymers are also included. The synthesis of these materials is described, and their actual or potential applications (mostly in biomedicine, as implants for tissue repair, as permanent or temporary prosthesis, or as drug delivery systems) are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abenhaïm D, Loupy A, Munnier L, Tamion R, Marsais F, Quéguiner G (1994) Selective alkylations of 1,4:3,6-dianhydro-D-glucitol (isosorbide). Carbohydr Res 261:255–266CrossRef Abenhaïm D, Loupy A, Munnier L, Tamion R, Marsais F, Quéguiner G (1994) Selective alkylations of 1,4:3,6-dianhydro-D-glucitol (isosorbide). Carbohydr Res 261:255–266CrossRef
go back to reference Abraham GA, Marcos-Fernández A, Román JS (2006) Bioresorbable poly(ester-ether urethane)s from L-lysine diisocyanate and triblock copolymers with different hydrophilic character. J Biomed Mater Res 76A:729–736CrossRef Abraham GA, Marcos-Fernández A, Román JS (2006) Bioresorbable poly(ester-ether urethane)s from L-lysine diisocyanate and triblock copolymers with different hydrophilic character. J Biomed Mater Res 76A:729–736CrossRef
go back to reference Alves P, Ferreira P, Gil MH (2012) Biomedical polyurethanes-based materials. In: Cavaco LI, Almeida Melo J (eds) Polyurethane: properties, structure and applications, Polymer science and technology. Nova Science Publishers, New York, pp 25–50 Alves P, Ferreira P, Gil MH (2012) Biomedical polyurethanes-based materials. In: Cavaco LI, Almeida Melo J (eds) Polyurethane: properties, structure and applications, Polymer science and technology. Nova Science Publishers, New York, pp 25–50
go back to reference Arce SM, Kolender AA, Varela O (2010) Synthesis of ω-amino-α-phenylcarbonate alkanes and their polymerization to [n]-polyurethanes. Polym Int 59:1212–1220CrossRef Arce SM, Kolender AA, Varela O (2010) Synthesis of ω-amino-α-phenylcarbonate alkanes and their polymerization to [n]-polyurethanes. Polym Int 59:1212–1220CrossRef
go back to reference Bachmann F, Reimer J, Ruppenstein M, Thiem J (1998) Synthesis of a novel starch-derived AB-type polyurethane. Macromol Rapid Commun 19:21–26CrossRef Bachmann F, Reimer J, Ruppenstein M, Thiem J (1998) Synthesis of a novel starch-derived AB-type polyurethane. Macromol Rapid Commun 19:21–26CrossRef
go back to reference Bachmann F, Reimer J, Ruppenstein M, Thiem J (2001) Synthesis of novel polyurethanes and polyureas by polyaddition reactions of dianhydrohexitol configurated diisocyanates. Macromol Chem Phys 202:3410–3419CrossRef Bachmann F, Reimer J, Ruppenstein M, Thiem J (2001) Synthesis of novel polyurethanes and polyureas by polyaddition reactions of dianhydrohexitol configurated diisocyanates. Macromol Chem Phys 202:3410–3419CrossRef
go back to reference Barikani M, Mohammadi M (2007) Synthesis and characterization of starch-modified polyurethane. Carbohydr Polym 68:773–780CrossRef Barikani M, Mohammadi M (2007) Synthesis and characterization of starch-modified polyurethane. Carbohydr Polym 68:773–780CrossRef
go back to reference Barikani M, Honarkar H, Barikani M (2009) Synthesis and characterization of polyurethane elastomers based on chitosan and poly(ε-caprolactone). J Appl Polym Sci 112:3157–3165CrossRef Barikani M, Honarkar H, Barikani M (2009) Synthesis and characterization of polyurethane elastomers based on chitosan and poly(ε-caprolactone). J Appl Polym Sci 112:3157–3165CrossRef
go back to reference Barikani M, Honarkar H, Barikani M (2010) Synthesis and characterization of chitosan-based polyurethane elastomer dispersions. Monatsh Chem 141:653–659CrossRef Barikani M, Honarkar H, Barikani M (2010) Synthesis and characterization of chitosan-based polyurethane elastomer dispersions. Monatsh Chem 141:653–659CrossRef
go back to reference Bayer CL, Pérez Herrero E, Peppas NA (2011) Alginate films as macromolecular imprinted matrices. J Biomater Sci Polym Ed 22:1523–1534CrossRef Bayer CL, Pérez Herrero E, Peppas NA (2011) Alginate films as macromolecular imprinted matrices. J Biomater Sci Polym Ed 22:1523–1534CrossRef
go back to reference Begines B, Zamora F, Roffé I, Mancera M, Galbis JA (2011) Sugar-based hydrophilic polyurethanes and polyureas. J Polym Sci Part A: Polym Chem 49:1953–1961CrossRef Begines B, Zamora F, Roffé I, Mancera M, Galbis JA (2011) Sugar-based hydrophilic polyurethanes and polyureas. J Polym Sci Part A: Polym Chem 49:1953–1961CrossRef
go back to reference Begines B, Zamora F, Benito E, García-Martín MDG, Galbis JA (2012) Conformationally restricted linear polyurethanes from acetalized sugar-based monomers. J Polym Sci Part A: Polym Chem 50:4638–4646CrossRef Begines B, Zamora F, Benito E, García-Martín MDG, Galbis JA (2012) Conformationally restricted linear polyurethanes from acetalized sugar-based monomers. J Polym Sci Part A: Polym Chem 50:4638–4646CrossRef
go back to reference Beldi M, Medimagh R, Chatti S, Marque S, Prim D, Loupy A, Delolme F (2007) Characterization of cyclic and non-cyclic poly-(ether-urethane)s bio-based sugar diols by a combination of MALDI-TOF and NMR. Eur Polym J 43:3415–3433CrossRef Beldi M, Medimagh R, Chatti S, Marque S, Prim D, Loupy A, Delolme F (2007) Characterization of cyclic and non-cyclic poly-(ether-urethane)s bio-based sugar diols by a combination of MALDI-TOF and NMR. Eur Polym J 43:3415–3433CrossRef
go back to reference Besse V, Auvergne R, Carlotti S, Boutevin G, Otazaghine B, Caillol S, Pascault JP, Boutevin B (2013) Synthesis of isosorbide based polyurethanes: an isocyanate free method. React Funct Polym 73:588–594CrossRef Besse V, Auvergne R, Carlotti S, Boutevin G, Otazaghine B, Caillol S, Pascault JP, Boutevin B (2013) Synthesis of isosorbide based polyurethanes: an isocyanate free method. React Funct Polym 73:588–594CrossRef
go back to reference Campiñez MD, Aguilar-de-Leyva A, Ferris C, de Paz MV, Galbis JA, Caraballo I (2013) Study of the properties of the new biodegradable polyurethane PU (TEG-HMDI) as matrix forming excipient for controlled drug delivery. Drug Dev Ind Pharm 39:1758–1764CrossRef Campiñez MD, Aguilar-de-Leyva A, Ferris C, de Paz MV, Galbis JA, Caraballo I (2013) Study of the properties of the new biodegradable polyurethane PU (TEG-HMDI) as matrix forming excipient for controlled drug delivery. Drug Dev Ind Pharm 39:1758–1764CrossRef
go back to reference Cascone MG (1997) Dynamic–mechanical properties of bioartificial polymeric materials. Polym Int 43:55–69CrossRef Cascone MG (1997) Dynamic–mechanical properties of bioartificial polymeric materials. Polym Int 43:55–69CrossRef
go back to reference Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L (2001) Bioartificial polymeric materials based on polysaccharides. J Biomater Sci Polym Ed 12:267–281CrossRef Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L (2001) Bioartificial polymeric materials based on polysaccharides. J Biomater Sci Polym Ed 12:267–281CrossRef
go back to reference Cherng JY, Hou TY, Shih MF, Talsma H, Hennink WE (2013) Polyurethane-based drug delivery systems. Int J Pharm 450:145–162CrossRef Cherng JY, Hou TY, Shih MF, Talsma H, Hennink WE (2013) Polyurethane-based drug delivery systems. Int J Pharm 450:145–162CrossRef
go back to reference Cognet-Georjon E, Mechin F, Pascault JP (1995) New polyurethanes based on diphenylmethane diisocyanate and 1,4:3,6-dianhydrosorbitol, 1. Model kinetic studies and characterization of the hard segment. Makromol Chem 196:3733–3751CrossRef Cognet-Georjon E, Mechin F, Pascault JP (1995) New polyurethanes based on diphenylmethane diisocyanate and 1,4:3,6-dianhydrosorbitol, 1. Model kinetic studies and characterization of the hard segment. Makromol Chem 196:3733–3751CrossRef
go back to reference Daemi H, Barikani M, Barmar M (2013) Highly stretchable nanoalginate based polyurethane elastomers. Carbohydr Polym 95:630–636CrossRef Daemi H, Barikani M, Barmar M (2013) Highly stretchable nanoalginate based polyurethane elastomers. Carbohydr Polym 95:630–636CrossRef
go back to reference Datta J, Włoch M (2016) Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di- or polyamines in the context of structure-properties relationship and from an environmental point of view. Polym Bull 73:1459–1496CrossRef Datta J, Włoch M (2016) Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di- or polyamines in the context of structure-properties relationship and from an environmental point of view. Polym Bull 73:1459–1496CrossRef
go back to reference Delebecq E, Pascault J-P, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 113:80–118CrossRef Delebecq E, Pascault J-P, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 113:80–118CrossRef
go back to reference Dieterich D (1981) Aqueous emulsions, dispersions and solutions of polyurethanes: synthesis and properties. Prog Org Coat 9:281–340CrossRef Dieterich D (1981) Aqueous emulsions, dispersions and solutions of polyurethanes: synthesis and properties. Prog Org Coat 9:281–340CrossRef
go back to reference Dirlikov SK, Schneider CJ (1984) Polyurethanes based on 1;4-3:6 dianhydrohexitols. US Patent 4,443,563 Dirlikov SK, Schneider CJ (1984) Polyurethanes based on 1;4-3:6 dianhydrohexitols. US Patent 4,443,563
go back to reference Donnelly MJ, Still RH, Stanford JL (1991) The conversion of polysaccharides into polyurethanes: a review. Carbohydr Polym 14:221–240CrossRef Donnelly MJ, Still RH, Stanford JL (1991) The conversion of polysaccharides into polyurethanes: a review. Carbohydr Polym 14:221–240CrossRef
go back to reference Donnelly MJ, Stanford JL, Still RH (1993) Polyurethanes from renewable resources –I: properties of polymers derived from glucose and xylose based polyols. Polym Int 32:197–203CrossRef Donnelly MJ, Stanford JL, Still RH (1993) Polyurethanes from renewable resources –I: properties of polymers derived from glucose and xylose based polyols. Polym Int 32:197–203CrossRef
go back to reference Draget KI (2009) Alginates. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead Publishing Limited, Elsevier, Cambridge, pp 807–828CrossRef Draget KI (2009) Alginates. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead Publishing Limited, Elsevier, Cambridge, pp 807–828CrossRef
go back to reference Drotleff S, Lungwitz U, Breunig M, Dennis A, Blunk T, Tessmar J, Göpferich A (2004) Biomimetic polymers in pharmaceutical and biomedical sciences. Eur J Pharm Biopharm 58:385–407CrossRef Drotleff S, Lungwitz U, Breunig M, Dennis A, Blunk T, Tessmar J, Göpferich A (2004) Biomimetic polymers in pharmaceutical and biomedical sciences. Eur J Pharm Biopharm 58:385–407CrossRef
go back to reference Efe-Sanden G, Toomey R (2014) Poly(N-isopropylacrylamide) networks conjugated with Gly–Gly–his via a Merrifield solid-phase peptide synthesis technique for metal-ion recognition. Macromol Chem Phys 215:1342–1349CrossRef Efe-Sanden G, Toomey R (2014) Poly(N-isopropylacrylamide) networks conjugated with Gly–Gly–his via a Merrifield solid-phase peptide synthesis technique for metal-ion recognition. Macromol Chem Phys 215:1342–1349CrossRef
go back to reference Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault J-P (2010) Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): a review. Prog Polym Sci 35:578–622CrossRef Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault J-P (2010) Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): a review. Prog Polym Sci 35:578–622CrossRef
go back to reference Fernández CE, Bermúdez M, Versteegen RM, Meijer EW, Vancso GJ, Muñoz-Guerra S (2010) An overview on 12-polyurethane: synthesis, structure and crystallization. Eur Polym J 46:2089–2098CrossRef Fernández CE, Bermúdez M, Versteegen RM, Meijer EW, Vancso GJ, Muñoz-Guerra S (2010) An overview on 12-polyurethane: synthesis, structure and crystallization. Eur Polym J 46:2089–2098CrossRef
go back to reference Ferris C, De Paz MV, Zamora F, Galbis JA (2010) Dithiothreitol-based polyurethanes. Synthesis and degradation studies. Polym Degrad Stab 95:1480–1487CrossRef Ferris C, De Paz MV, Zamora F, Galbis JA (2010) Dithiothreitol-based polyurethanes. Synthesis and degradation studies. Polym Degrad Stab 95:1480–1487CrossRef
go back to reference Ferris C, De Paz MV, Galbis JA (2011) L-arabinitol-based functional polyurethanes. J Polym Sci Part A: Polym Chem 49:1147–1154CrossRef Ferris C, De Paz MV, Galbis JA (2011) L-arabinitol-based functional polyurethanes. J Polym Sci Part A: Polym Chem 49:1147–1154CrossRef
go back to reference Ferris C, de Paz MV, Galbis JA (2012) Synthesis of functional sugar-based polyurethanes. Macromol Chem Phys 213:480–488CrossRef Ferris C, de Paz MV, Galbis JA (2012) Synthesis of functional sugar-based polyurethanes. Macromol Chem Phys 213:480–488CrossRef
go back to reference Ferris C, de Paz MV, Aguilar-de-Leyva A, Caraballo I, Galbis JA (2014) Reduction-sensitive functionalized copolyurethanes for biomedical applications. Polym Chem 5:2370–2381CrossRef Ferris C, de Paz MV, Aguilar-de-Leyva A, Caraballo I, Galbis JA (2014) Reduction-sensitive functionalized copolyurethanes for biomedical applications. Polym Chem 5:2370–2381CrossRef
go back to reference Fidalgo DM, Kolender AA, Varela O (2013) Stereoregular poly-O-methyl [m, n]-polyurethanes derived from D-mannitol. J Polym Sci Part A: Polym Chem 51:463–470CrossRef Fidalgo DM, Kolender AA, Varela O (2013) Stereoregular poly-O-methyl [m, n]-polyurethanes derived from D-mannitol. J Polym Sci Part A: Polym Chem 51:463–470CrossRef
go back to reference Flavin K, Resmini M (2009) Imprinted nanomaterials: a new class of synthetic receptors. Anal Bioanal Chem 393:437–444CrossRef Flavin K, Resmini M (2009) Imprinted nanomaterials: a new class of synthetic receptors. Anal Bioanal Chem 393:437–444CrossRef
go back to reference Fu G-Q, Yu H, Zhu J (2008) Rebinding and recognition properties of protein-macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres. Biomaterials 29:2138–2142CrossRef Fu G-Q, Yu H, Zhu J (2008) Rebinding and recognition properties of protein-macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres. Biomaterials 29:2138–2142CrossRef
go back to reference Furukawa M, Mitsui Y, Fukumaru T, Kojio K (2005) Microphase-separated structure and mechanical properties of novel polyurethane elastomers prepared with ether based diisocyanate. Polymer 46:10817–10822CrossRef Furukawa M, Mitsui Y, Fukumaru T, Kojio K (2005) Microphase-separated structure and mechanical properties of novel polyurethane elastomers prepared with ether based diisocyanate. Polymer 46:10817–10822CrossRef
go back to reference Galbis JA, García-Martín MG, de Paz MV, Galbis E (2016) Synthetic polymers from sugar-based monomers. Chem Rev 116:1600–1636CrossRef Galbis JA, García-Martín MG, de Paz MV, Galbis E (2016) Synthetic polymers from sugar-based monomers. Chem Rev 116:1600–1636CrossRef
go back to reference Gallagher JJ, Hillmyer MA, Reineke TM (2014) Degradable thermosets from sugar-derived dilactones. Macromolecules 47:498–505CrossRef Gallagher JJ, Hillmyer MA, Reineke TM (2014) Degradable thermosets from sugar-derived dilactones. Macromolecules 47:498–505CrossRef
go back to reference Gallego R, Arteaga JF, Valencia C, Franco JM (2015) Thickening properties of several NCO-functionalized cellulose derivatives in castor oil. Chem Eng Sci 134:260–268CrossRef Gallego R, Arteaga JF, Valencia C, Franco JM (2015) Thickening properties of several NCO-functionalized cellulose derivatives in castor oil. Chem Eng Sci 134:260–268CrossRef
go back to reference Gandini A, Lacerda TM, Carvalho AJF, Trovatti E (2016) Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem Rev 116:1637–1669CrossRef Gandini A, Lacerda TM, Carvalho AJF, Trovatti E (2016) Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem Rev 116:1637–1669CrossRef
go back to reference Garçon R, Clerk C, Gesson JP, Bordado J, Nunes T, Caroço S, Gomes PT, Minas da Piedade ME, Rauter AP (2001) Synthesis of novel polyurethanes from sugars and 1,6-hexamethylene diisocyanate. Carbohydr Polym 45:123–127CrossRef Garçon R, Clerk C, Gesson JP, Bordado J, Nunes T, Caroço S, Gomes PT, Minas da Piedade ME, Rauter AP (2001) Synthesis of novel polyurethanes from sugars and 1,6-hexamethylene diisocyanate. Carbohydr Polym 45:123–127CrossRef
go back to reference Ge Y, Turner APF (2008) Too large to fit? Recent developments in macromolecular imprinting. Trends Biotechnol 26:218–224CrossRef Ge Y, Turner APF (2008) Too large to fit? Recent developments in macromolecular imprinting. Trends Biotechnol 26:218–224CrossRef
go back to reference Giusti P, Lazzeri L, Petris S, Palla M, Cascone MG (1994) Collagen-based new bioartificial polymeric materials. Biomaterials 15:1229–1233CrossRef Giusti P, Lazzeri L, Petris S, Palla M, Cascone MG (1994) Collagen-based new bioartificial polymeric materials. Biomaterials 15:1229–1233CrossRef
go back to reference Gomez RV, Varela O (2009) Synthesis of polyhydroxy [n]-polyurethanes derived from a carbohydrate precursor. Macromolecules 42:8112–8117CrossRef Gomez RV, Varela O (2009) Synthesis of polyhydroxy [n]-polyurethanes derived from a carbohydrate precursor. Macromolecules 42:8112–8117CrossRef
go back to reference Hashimoto K, Okada M, Honjoh N (1990) Ring-opening polyaddition of D-glucaro-1,4:6,3-dilactone with p-xylylenediamine. Makromol Chem Rapid Commun 11:393–396CrossRef Hashimoto K, Okada M, Honjoh N (1990) Ring-opening polyaddition of D-glucaro-1,4:6,3-dilactone with p-xylylenediamine. Makromol Chem Rapid Commun 11:393–396CrossRef
go back to reference Hashimoto K, Mori K, Okada M (1992) Anionic ring-opening polymerization of a novel optically active bicyclic lactam synthesized from an acidic saccharide. Macromolecules 25:2592–2598CrossRef Hashimoto K, Mori K, Okada M (1992) Anionic ring-opening polymerization of a novel optically active bicyclic lactam synthesized from an acidic saccharide. Macromolecules 25:2592–2598CrossRef
go back to reference Hashimoto K, Wibullucksanakul S, Matsuera M, Okada M (1993a) Macromolecular synthesis from saccharic lactones. Ring-opening polyaddition of D-glucaro- and D-mannaro-1,4:6,3-dilactones with alkylenediamines. Polym Sci Part A: Polym Chem 31:3141–3149CrossRef Hashimoto K, Wibullucksanakul S, Matsuera M, Okada M (1993a) Macromolecular synthesis from saccharic lactones. Ring-opening polyaddition of D-glucaro- and D-mannaro-1,4:6,3-dilactones with alkylenediamines. Polym Sci Part A: Polym Chem 31:3141–3149CrossRef
go back to reference Hashimoto K, Wibullucksanakul S, Okada M (1993b) Polyaddition of saccharic dilactones with hexamethylene diisocyanate. Chem Rapid Commun 14:591–595CrossRef Hashimoto K, Wibullucksanakul S, Okada M (1993b) Polyaddition of saccharic dilactones with hexamethylene diisocyanate. Chem Rapid Commun 14:591–595CrossRef
go back to reference Hashimoto K, Hashimoto N, Kamaya T, Yoshioka J, Okawa H (2011) Synthesis and properties of bio-based polyurethanes bearing hydroxy groups derived from alditols. J Polym Sci Part A: Polym Chem 49:976–985CrossRef Hashimoto K, Hashimoto N, Kamaya T, Yoshioka J, Okawa H (2011) Synthesis and properties of bio-based polyurethanes bearing hydroxy groups derived from alditols. J Polym Sci Part A: Polym Chem 49:976–985CrossRef
go back to reference Haug A, Larsen B, Smidsrod O (1966) A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem Scand 20:183–190CrossRef Haug A, Larsen B, Smidsrod O (1966) A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem Scand 20:183–190CrossRef
go back to reference van Haveren J, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Biorefin 2:41–57CrossRef van Haveren J, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Biorefin 2:41–57CrossRef
go back to reference Hu S, Luo X, Li Y (2014) Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. ChemSusChem 7:66–72CrossRef Hu S, Luo X, Li Y (2014) Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. ChemSusChem 7:66–72CrossRef
go back to reference Huang WM, Yang B, An L, Li C, Chan YS (2005) Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett 86:114105CrossRef Huang WM, Yang B, An L, Li C, Chan YS (2005) Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett 86:114105CrossRef
go back to reference Kihara N, Endo T (1993) Synthesis and properties of poly(hydroxyurethane)s. J Polym Sci Part A: Polym Chem 31:2765–2773CrossRef Kihara N, Endo T (1993) Synthesis and properties of poly(hydroxyurethane)s. J Polym Sci Part A: Polym Chem 31:2765–2773CrossRef
go back to reference Kihara N, Cusida Y, Endo T (1996) Optically active poly(hydroxyurethane)s derived from cyclic carbonate and L-lysine derivatives. J Polym Sci Part A: Polym Chem 34:2173–2179CrossRef Kihara N, Cusida Y, Endo T (1996) Optically active poly(hydroxyurethane)s derived from cyclic carbonate and L-lysine derivatives. J Polym Sci Part A: Polym Chem 34:2173–2179CrossRef
go back to reference Kim H-J, Kang M-S, Knowles JC, Gong M-S (2014) Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties. J Biomater Appl 29:454–464CrossRef Kim H-J, Kang M-S, Knowles JC, Gong M-S (2014) Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties. J Biomater Appl 29:454–464CrossRef
go back to reference Kloosterboer JG (1988) Network formation by chain crosslinking photopolymerization and its applications in electronics. Adv Polym Sci 84:1–61CrossRef Kloosterboer JG (1988) Network formation by chain crosslinking photopolymerization and its applications in electronics. Adv Polym Sci 84:1–61CrossRef
go back to reference Kolender AA, Arce SM, Varela O (2011) Synthesis and characterization of poly-O-methyl-[n]-polyurethane from a D-glucamine-based monomer. Carbohydr Res 346:1398–1405CrossRef Kolender AA, Arce SM, Varela O (2011) Synthesis and characterization of poly-O-methyl-[n]-polyurethane from a D-glucamine-based monomer. Carbohydr Res 346:1398–1405CrossRef
go back to reference Kricheldorf HR (1997) Sugar diols as building blocks of polycondensates. J Macromol Sci Rev Macromol Chem Phys 37:599–631CrossRef Kricheldorf HR (1997) Sugar diols as building blocks of polycondensates. J Macromol Sci Rev Macromol Chem Phys 37:599–631CrossRef
go back to reference Król P (2009) Polyurethanes – a review of 60 years of their syntheses and applications. Polimery 54:489–500 Król P (2009) Polyurethanes – a review of 60 years of their syntheses and applications. Polimery 54:489–500
go back to reference Langer R, Cima LG, Tamada JA, Wintermantel E (1990) Future directions in biomaterials. Biomaterials 11:738–745CrossRef Langer R, Cima LG, Tamada JA, Wintermantel E (1990) Future directions in biomaterials. Biomaterials 11:738–745CrossRef
go back to reference Lee CH, Takagi H, Okamoto H, Kato M, Usuki A (2009) Synthesis, characterization, and properties of polyurethanes containing 1,4:3,6-dianhydro-D-sorbitol. J Polym Sci A Polym Chem 47:6025–6031CrossRef Lee CH, Takagi H, Okamoto H, Kato M, Usuki A (2009) Synthesis, characterization, and properties of polyurethanes containing 1,4:3,6-dianhydro-D-sorbitol. J Polym Sci A Polym Chem 47:6025–6031CrossRef
go back to reference Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676CrossRef Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676CrossRef
go back to reference Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882CrossRef Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882CrossRef
go back to reference Leonard M, Rastello de Boisseon M, Hubert P, Dellacherie E (2004) Production of microspheres based on hydrophobically associating alginate derivatives by dispersion/gelation in aqueous sodium chloride solutions. J Biomed Mater Res 68A:335–342CrossRef Leonard M, Rastello de Boisseon M, Hubert P, Dellacherie E (2004) Production of microspheres based on hydrophobically associating alginate derivatives by dispersion/gelation in aqueous sodium chloride solutions. J Biomed Mater Res 68A:335–342CrossRef
go back to reference Li Y, Noordover BAJ, van Benthem RATM, Koning CE (2014a) Reactivity and regio-selectivity of renewable building blocks for the synthesis of water-dispersible polyurethane prepolymers. ACS Sustain Chem Eng 2:788–797CrossRef Li Y, Noordover BAJ, van Benthem RATM, Koning CE (2014a) Reactivity and regio-selectivity of renewable building blocks for the synthesis of water-dispersible polyurethane prepolymers. ACS Sustain Chem Eng 2:788–797CrossRef
go back to reference Li Y, Noordover BAJ, van Benthem RATM, Koning CE (2014b) Property profile of poly(urethane urea) dispersions containing dimer fatty acid-, sugar- and amino acid-based building blocks. Eur Polym J 59:8–18CrossRef Li Y, Noordover BAJ, van Benthem RATM, Koning CE (2014b) Property profile of poly(urethane urea) dispersions containing dimer fatty acid-, sugar- and amino acid-based building blocks. Eur Polym J 59:8–18CrossRef
go back to reference Li L, Ying X, Liu J, Li X, Zhang W (2015) Molecularly imprinted polyurethane grafted calcium alginate hydrogel with specific recognition for proteins. Mater Lett 143:248–251CrossRef Li L, Ying X, Liu J, Li X, Zhang W (2015) Molecularly imprinted polyurethane grafted calcium alginate hydrogel with specific recognition for proteins. Mater Lett 143:248–251CrossRef
go back to reference Lim D-I, Park H-S, Park J-H, Knowles JC, Gong M-S (2013) Application of high-strength biodegradable polyurethanes containing different ratios of biobased isomannide and poly (ϵ-caprolactone) diol. J Bioact Compat Polym 28:274–288CrossRef Lim D-I, Park H-S, Park J-H, Knowles JC, Gong M-S (2013) Application of high-strength biodegradable polyurethanes containing different ratios of biobased isomannide and poly (ϵ-caprolactone) diol. J Bioact Compat Polym 28:274–288CrossRef
go back to reference Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558CrossRef Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558CrossRef
go back to reference Liu X, Xu K, Liu H, Cai H, Su J, Fu Z, Guo Y, Chen M (2011) Preparation and properties of waterborne polyurethanes with natural dimer fatty acids based polyester polyol as soft segment. Prog Org Coat 72:612–620CrossRef Liu X, Xu K, Liu H, Cai H, Su J, Fu Z, Guo Y, Chen M (2011) Preparation and properties of waterborne polyurethanes with natural dimer fatty acids based polyester polyol as soft segment. Prog Org Coat 72:612–620CrossRef
go back to reference Marín R, Muñoz-Guerra S (2008) Linear polyurethanes made from threitol: acetalized and hydroxylated polymers. J Polym Sci Part A: Polym Chem 46:7996–8012CrossRef Marín R, Muñoz-Guerra S (2008) Linear polyurethanes made from threitol: acetalized and hydroxylated polymers. J Polym Sci Part A: Polym Chem 46:7996–8012CrossRef
go back to reference Marín R, de Paz MV, Ittobane N, Galbis JA, Muñoz-Guerra S (2009) Hydroxylated linear polyurethanes derived from sugar alditols. Macromol Chem Phys 210:486–494CrossRef Marín R, de Paz MV, Ittobane N, Galbis JA, Muñoz-Guerra S (2009) Hydroxylated linear polyurethanes derived from sugar alditols. Macromol Chem Phys 210:486–494CrossRef
go back to reference Marín R, Alla A, Martínez de Ilarduya A, Muñoz-Guerra S (2012) Carbohydrate-based polyurethanes: a comparative study of polymers made from isosorbide and 1,4-butanediol. J Appl Polym Sci 123:986–994CrossRef Marín R, Alla A, Martínez de Ilarduya A, Muñoz-Guerra S (2012) Carbohydrate-based polyurethanes: a comparative study of polymers made from isosorbide and 1,4-butanediol. J Appl Polym Sci 123:986–994CrossRef
go back to reference Matsui M, Ono L, Akcelrud L (2012) Chitin/polyurethane networks and blends: evaluation of biological application. Polym Test 31:191–196CrossRef Matsui M, Ono L, Akcelrud L (2012) Chitin/polyurethane networks and blends: evaluation of biological application. Polym Test 31:191–196CrossRef
go back to reference Mendez J, Annamalai PK, Eichhorn SJ, Rusli R, Rowan SJ, Foster EJ, Weder C (2011) Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44:6827–6835CrossRef Mendez J, Annamalai PK, Eichhorn SJ, Rusli R, Rowan SJ, Foster EJ, Weder C (2011) Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44:6827–6835CrossRef
go back to reference Metcalfe A, Desfaits AC, Salazkin I, Yahia L, Sokolowski WM, Raymond J (2003) Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 24:491–497CrossRef Metcalfe A, Desfaits AC, Salazkin I, Yahia L, Sokolowski WM, Raymond J (2003) Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 24:491–497CrossRef
go back to reference Metzger MF, Wilson TS, Schumann D, Matthews DL, Maitland DJ (2002) Mechanical properties of mechanical actuator for treating ischemic stroke. Biomed Microdevices 4:89–96CrossRef Metzger MF, Wilson TS, Schumann D, Matthews DL, Maitland DJ (2002) Mechanical properties of mechanical actuator for treating ischemic stroke. Biomed Microdevices 4:89–96CrossRef
go back to reference Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci U S A 103:3540–3545CrossRef Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci U S A 103:3540–3545CrossRef
go back to reference Mørch YA, Holtan S, Donati I, Strand BL, Skjäk-Braek G (2007) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7:1471–1480CrossRef Mørch YA, Holtan S, Donati I, Strand BL, Skjäk-Braek G (2007) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7:1471–1480CrossRef
go back to reference de Mulder ELW, Hannink G, Koens MJW, Löwik DWPM, Verdonschot N, Buma P (2013) Characterization of polyurethane scaffold surface functionalization with diamines and heparin. J Biomed Mater Res Part A 101A:919–922CrossRef de Mulder ELW, Hannink G, Koens MJW, Löwik DWPM, Verdonschot N, Buma P (2013) Characterization of polyurethane scaffold surface functionalization with diamines and heparin. J Biomed Mater Res Part A 101A:919–922CrossRef
go back to reference Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y, Moulounguim Z (2013) From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 46:3771–3792CrossRef Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y, Moulounguim Z (2013) From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 46:3771–3792CrossRef
go back to reference Noreen A, Mahmood Zia K, Zuber M, Tabasum S, Fawad Zahoor A (2016) Bio-based polyurethane: an efficient and environment friendly coating systems. Prog Org Coat 91:25–32CrossRef Noreen A, Mahmood Zia K, Zuber M, Tabasum S, Fawad Zahoor A (2016) Bio-based polyurethane: an efficient and environment friendly coating systems. Prog Org Coat 91:25–32CrossRef
go back to reference Oh S-Y, Kang M-S, Knowles JC, Gong M-S (2015) Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties. J Biomater Appl 30:327–337CrossRef Oh S-Y, Kang M-S, Knowles JC, Gong M-S (2015) Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties. J Biomater Appl 30:327–337CrossRef
go back to reference Parisi M, Manzano VE, Flor S, Lissarrague MH, Ribba L, Lucangioli S, D’Accorso NB, Goyanes S (2015) Polymeric prosthetic systems for sitespecific drug administration: physical and chemical properties. In: Kumar Thakur V, Kumari Thakur M (eds) Handbook of polymers for pharmaceutical technologies, structure and chemistry, Structure and chemistry, vol 1. Scrivener Publishing/Wiley, Hoboken, pp 369–412 Parisi M, Manzano VE, Flor S, Lissarrague MH, Ribba L, Lucangioli S, D’Accorso NB, Goyanes S (2015) Polymeric prosthetic systems for sitespecific drug administration: physical and chemical properties. In: Kumar Thakur V, Kumari Thakur M (eds) Handbook of polymers for pharmaceutical technologies, structure and chemistry, Structure and chemistry, vol 1. Scrivener Publishing/Wiley, Hoboken, pp 369–412
go back to reference Park H-S, Gong M-S, Knowles JC (2013) Catalyst-free synthesis of high elongation degradable polyurethanes containing varying ratios of isosorbide and polycaprolactone: physical properties and biocompatibility. J Mater Sci Mater Med 24:281–294CrossRef Park H-S, Gong M-S, Knowles JC (2013) Catalyst-free synthesis of high elongation degradable polyurethanes containing varying ratios of isosorbide and polycaprolactone: physical properties and biocompatibility. J Mater Sci Mater Med 24:281–294CrossRef
go back to reference de Paz MV, Marín R, Zamora F, Hakkou K, Alla A, Galbis JA, Muñoz-Guerra S (2007) Linear polyurethanes derived from alditols and diisocyanates. J Polym Sci Part A: Polym Chem 45:4109–4117CrossRef de Paz MV, Marín R, Zamora F, Hakkou K, Alla A, Galbis JA, Muñoz-Guerra S (2007) Linear polyurethanes derived from alditols and diisocyanates. J Polym Sci Part A: Polym Chem 45:4109–4117CrossRef
go back to reference de Paz MV, Zamora F, Begines B, Ferris C, Galbis JA (2010) Glutathione-mediated biodegradable polyurethanes derived from L-arabinitol. Biomacromolecules 11:269–276CrossRef de Paz MV, Zamora F, Begines B, Ferris C, Galbis JA (2010) Glutathione-mediated biodegradable polyurethanes derived from L-arabinitol. Biomacromolecules 11:269–276CrossRef
go back to reference Prömpers G, Keul H, Höcker H (2005) Polyurethanes with pendant hydroxy groups: polycondensation of D-mannitol-1,2:5,6-dicarbonate with diamines. Des Monomers Polym 8:547–569CrossRef Prömpers G, Keul H, Höcker H (2005) Polyurethanes with pendant hydroxy groups: polycondensation of D-mannitol-1,2:5,6-dicarbonate with diamines. Des Monomers Polym 8:547–569CrossRef
go back to reference Prömpers G, Keul H, Höcker H (2006) Polyurethanes with pendant hydroxy groups: polycondensation of 1,6-bis-O-phenoxycarbonyl-2,3∶4,5-di-O-isopropylidenegalactitol and 1,6-di-O-phenoxycarbonylgalactitol with diamines. Green Chem 8:467–478CrossRef Prömpers G, Keul H, Höcker H (2006) Polyurethanes with pendant hydroxy groups: polycondensation of 1,6-bis-O-phenoxycarbonyl-2,3∶4,5-di-O-isopropylidenegalactitol and 1,6-di-O-phenoxycarbonylgalactitol with diamines. Green Chem 8:467–478CrossRef
go back to reference Rees DA, Samuel JWB (1967) The structure of alginic acid. Part VI Minor features and structural variations. J Chem Soc C:2295–2298 Rees DA, Samuel JWB (1967) The structure of alginic acid. Part VI Minor features and structural variations. J Chem Soc C:2295–2298
go back to reference Rokicki G, Piotrowska A (2002) A new route to polyurethanes from ethylene carbonate. Polymer 43:2927–2935CrossRef Rokicki G, Piotrowska A (2002) A new route to polyurethanes from ethylene carbonate. Polymer 43:2927–2935CrossRef
go back to reference Rokicki G, Parzuchowski, Mazurek M (2015) Non-isocyanate polyurethanes: synthesis, properties, and applications. Polym Adv Technol 26:707–761CrossRef Rokicki G, Parzuchowski, Mazurek M (2015) Non-isocyanate polyurethanes: synthesis, properties, and applications. Polym Adv Technol 26:707–761CrossRef
go back to reference Sanda F, Takata T, Endo T (1995) Synthesis of a novel optically active nylon-1 polymer: anionic polymerization of L-leucine methylester isocyanate. J Polym Sci A Polym Chem 33:2353–2358CrossRef Sanda F, Takata T, Endo T (1995) Synthesis of a novel optically active nylon-1 polymer: anionic polymerization of L-leucine methylester isocyanate. J Polym Sci A Polym Chem 33:2353–2358CrossRef
go back to reference Saralegi A, Fernandes SCM, Alonso-Varona A, Palomares T, Foster EJ, Weder C, Eceiza A, Corcuera MA (2013) Shape-memory bionanocomposites based on chitin nanocrystals and thermoplastic polyurethane with a highly crystalline soft segment. Biomacromolecules 14:4475–4482CrossRef Saralegi A, Fernandes SCM, Alonso-Varona A, Palomares T, Foster EJ, Weder C, Eceiza A, Corcuera MA (2013) Shape-memory bionanocomposites based on chitin nanocrystals and thermoplastic polyurethane with a highly crystalline soft segment. Biomacromolecules 14:4475–4482CrossRef
go back to reference Sardon H, Irusta L, Fernández-Berridi MJ (2009) Synthesis of isophorone diisocyanate (IPDI) based waterborne polyurethanes: comparison between zirconium and tin catalysts in the polymerization process. Prog Org Coat 66:291–295CrossRef Sardon H, Irusta L, Fernández-Berridi MJ (2009) Synthesis of isophorone diisocyanate (IPDI) based waterborne polyurethanes: comparison between zirconium and tin catalysts in the polymerization process. Prog Org Coat 66:291–295CrossRef
go back to reference Savelyev Y, Markovskaya L, Olga Savelyeva O, Akhranovich E, Parkhomenko N, Travinskaya T (2015) Degradable polyurethane foams based on disaccharides. J Appl Polym Sci 132:42131CrossRef Savelyev Y, Markovskaya L, Olga Savelyeva O, Akhranovich E, Parkhomenko N, Travinskaya T (2015) Degradable polyurethane foams based on disaccharides. J Appl Polym Sci 132:42131CrossRef
go back to reference Sideridou ID, Achilias DS, Karava O (2006) Reactivity of benzoyl peroxide/amine system as an initiator for the free radical polymerization of dental and orthopaedic dimethacrylate monomers: effect of the amine and monomer chemical structure. Macromolecules 39:2072–2080CrossRef Sideridou ID, Achilias DS, Karava O (2006) Reactivity of benzoyl peroxide/amine system as an initiator for the free radical polymerization of dental and orthopaedic dimethacrylate monomers: effect of the amine and monomer chemical structure. Macromolecules 39:2072–2080CrossRef
go back to reference Sionkowska A (2013) Natural polymers as components of blends for biomedical applications. In: Dumitriu S, Popa V (eds) Polymeric biomaterials, Structure and Function, vol 1. CRC Press, Boca Raton, pp 309–342CrossRef Sionkowska A (2013) Natural polymers as components of blends for biomedical applications. In: Dumitriu S, Popa V (eds) Polymeric biomaterials, Structure and Function, vol 1. CRC Press, Boca Raton, pp 309–342CrossRef
go back to reference Small W, Wilson TS, Benett WJ, Loge J, Maitland D (2005) Laser-activated shape memory polymer intravascular thrombectomy device. Opt Express 13:8204–8213CrossRef Small W, Wilson TS, Benett WJ, Loge J, Maitland D (2005) Laser-activated shape memory polymer intravascular thrombectomy device. Opt Express 13:8204–8213CrossRef
go back to reference Solanki A, Mehta J, Thakore S (2014) Structure–property relationships and biocompatibility of carbohydrate crosslinked polyurethanes. Carbohydr Polym 110:338–344CrossRef Solanki A, Mehta J, Thakore S (2014) Structure–property relationships and biocompatibility of carbohydrate crosslinked polyurethanes. Carbohydr Polym 110:338–344CrossRef
go back to reference Solanki AR, Kamath BV, Thakore S (2015) Carbohydrate crosslinked biocompatible polyurethanes: synthesis, characterization, and drug delivery studies. J Appl Polym Sci 132:42223CrossRef Solanki AR, Kamath BV, Thakore S (2015) Carbohydrate crosslinked biocompatible polyurethanes: synthesis, characterization, and drug delivery studies. J Appl Polym Sci 132:42223CrossRef
go back to reference Strand BL, Mørch YA, Syvertsen KR, Espevik T, Skjåk-Braek G (2003) Visualization of alginate–poly-L-lysine–alginate microcapsules by confocal laser scanning microscopy. Biotechnol Bioeng 82:386–394CrossRef Strand BL, Mørch YA, Syvertsen KR, Espevik T, Skjåk-Braek G (2003) Visualization of alginate–poly-L-lysine–alginate microcapsules by confocal laser scanning microscopy. Biotechnol Bioeng 82:386–394CrossRef
go back to reference Sun X, Gao H, Wu G, Wang Y, Fan Y, Ma J (2011) Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. Int J Pharm 412:52–58CrossRef Sun X, Gao H, Wu G, Wang Y, Fan Y, Ma J (2011) Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. Int J Pharm 412:52–58CrossRef
go back to reference Sun C, Niu Y, Tong F, Mao C, Huang X, Zhao B, Shen J (2013) Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles. Electrochim Acta 97:349–356CrossRef Sun C, Niu Y, Tong F, Mao C, Huang X, Zhao B, Shen J (2013) Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles. Electrochim Acta 97:349–356CrossRef
go back to reference Szycher M (2013) Waterborne polyurethanes. In: Szycher M (ed) Szycher’s handbook of polyurethanes, 2nd edn. CRC Press, Boca Raton, pp 417–448 Szycher M (2013) Waterborne polyurethanes. In: Szycher M (ed) Szycher’s handbook of polyurethanes, 2nd edn. CRC Press, Boca Raton, pp 417–448
go back to reference Thiem J, Lüders H (1986) Synthesis and properties of polyurethanes derived from diaminodianhydroalditols. Makromol Chem 187:2775–2785CrossRef Thiem J, Lüders H (1986) Synthesis and properties of polyurethanes derived from diaminodianhydroalditols. Makromol Chem 187:2775–2785CrossRef
go back to reference Tomita H, Sand F, Endo T (2001) Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction. J Polym Sci Part A: Polym Chem 39:851–859CrossRef Tomita H, Sand F, Endo T (2001) Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction. J Polym Sci Part A: Polym Chem 39:851–859CrossRef
go back to reference Travinskaya T, Savelyev Y, Mishchuk E (2014) Waterborne polyurethane based starch containing materials: preparation, properties and study of degradability. Polym Degrad Stab J 101:102–108CrossRef Travinskaya T, Savelyev Y, Mishchuk E (2014) Waterborne polyurethane based starch containing materials: preparation, properties and study of degradability. Polym Degrad Stab J 101:102–108CrossRef
go back to reference Varma AJ, Kennedy JF, Galgali P (2004) Synthetic polymers functionalized by carbohydrates: a review. Carbohydr Polym 56:429–445CrossRef Varma AJ, Kennedy JF, Galgali P (2004) Synthetic polymers functionalized by carbohydrates: a review. Carbohydr Polym 56:429–445CrossRef
go back to reference Velankar S, Cooper SL (1998) Microphase separation and rheological properties of polyurethane melts. 1. Effect of block length. Macromolecules 31:9181–9192CrossRef Velankar S, Cooper SL (1998) Microphase separation and rheological properties of polyurethane melts. 1. Effect of block length. Macromolecules 31:9181–9192CrossRef
go back to reference Velankar S, Cooper SL (2000a) Microphase separation and rheological properties of polyurethane melts. 2. Effect of block incompatibility on the microstructure. Macromolecules 33:382–394CrossRef Velankar S, Cooper SL (2000a) Microphase separation and rheological properties of polyurethane melts. 2. Effect of block incompatibility on the microstructure. Macromolecules 33:382–394CrossRef
go back to reference Velankar S, Cooper SL (2000b) Microphase separation and rheological properties of polyurethane melts. 3. Effect of block incompatibility on the viscoelastic properties. Macromolecules 33:395–403CrossRef Velankar S, Cooper SL (2000b) Microphase separation and rheological properties of polyurethane melts. 3. Effect of block incompatibility on the viscoelastic properties. Macromolecules 33:395–403CrossRef
go back to reference Venkatesan J, Bhatnagar I, Manivasagan P, Kang K, Kim S (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281CrossRef Venkatesan J, Bhatnagar I, Manivasagan P, Kang K, Kim S (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281CrossRef
go back to reference Verheyen E, Schillemans JP, van Wijk M, Demeniex M-A, Hennink WE, van Nostrum CF (2011) Challenges for the effective molecular imprinting of proteins. Biomaterials 32:3008–3020CrossRef Verheyen E, Schillemans JP, van Wijk M, Demeniex M-A, Hennink WE, van Nostrum CF (2011) Challenges for the effective molecular imprinting of proteins. Biomaterials 32:3008–3020CrossRef
go back to reference Versteegen RM, Sijbesma RP, Meijer EW (1999) [n]-polyurethanes: synthesis and characterization. Angew Chem Int Ed 38:2917–2919CrossRef Versteegen RM, Sijbesma RP, Meijer EW (1999) [n]-polyurethanes: synthesis and characterization. Angew Chem Int Ed 38:2917–2919CrossRef
go back to reference Vlakh EG, Tennikova TB (2009) Applications of polymethacrylate-based monoliths in high-performance liquid chromatography. J Chromatogr A 1216:2637–2650CrossRef Vlakh EG, Tennikova TB (2009) Applications of polymethacrylate-based monoliths in high-performance liquid chromatography. J Chromatogr A 1216:2637–2650CrossRef
go back to reference Wang Y, Zhang Z, Jain V, Yi J, Mueller S, Sokolov J, Liu Z, Levon K, Rigas B, Rafailovich MH (2010) Potentiometric sensors based on surface molecular imprinting: detection of cancer biomarkers and viruses. Sensors Actuators B Chem 146:381–387CrossRef Wang Y, Zhang Z, Jain V, Yi J, Mueller S, Sokolov J, Liu Z, Levon K, Rigas B, Rafailovich MH (2010) Potentiometric sensors based on surface molecular imprinting: detection of cancer biomarkers and viruses. Sensors Actuators B Chem 146:381–387CrossRef
go back to reference Wang J, Ying X, Li X, Zhang W (2014) Preparation, characterization and swelling behaviors of polyurethane-grafted calcium alginate hydrogels. Mater Lett 126:263–266CrossRef Wang J, Ying X, Li X, Zhang W (2014) Preparation, characterization and swelling behaviors of polyurethane-grafted calcium alginate hydrogels. Mater Lett 126:263–266CrossRef
go back to reference Whelan Jr JM, Hill M, Cotter RJ (1963) Multiple cyclic carbonate polymers. US Patent 3072613 Whelan Jr JM, Hill M, Cotter RJ (1963) Multiple cyclic carbonate polymers. US Patent 3072613
go back to reference Wibullucksanakul S, Hashimoto K, Okada M (1996a) Synthesis of polyurethanes from saccharide-derived diols and diisocyanates and their hydrolyzability. Macromol Chem Phys 197:135–146CrossRef Wibullucksanakul S, Hashimoto K, Okada M (1996a) Synthesis of polyurethanes from saccharide-derived diols and diisocyanates and their hydrolyzability. Macromol Chem Phys 197:135–146CrossRef
go back to reference Wibullucksanakul S, Hashimoto K, Okada M (1996b) Swelling behavior and controlled release of new hydrolyzable poly(ether urethane) gels derived from saccharide and L-lysine derivatives and poly(ethylene glycol). Macromol Chem Phys 197:1865–1876CrossRef Wibullucksanakul S, Hashimoto K, Okada M (1996b) Swelling behavior and controlled release of new hydrolyzable poly(ether urethane) gels derived from saccharide and L-lysine derivatives and poly(ethylene glycol). Macromol Chem Phys 197:1865–1876CrossRef
go back to reference Wibullucksanakul S, Hashimoto K, Okada M (1997) Hydrolysis and release behavior of hydrolyzable poly(etherurethane) gels derived from saccharide-, L-lysine-derivatives, and poly(propylene glycol). Macromol Chem Phys 198:305–319CrossRef Wibullucksanakul S, Hashimoto K, Okada M (1997) Hydrolysis and release behavior of hydrolyzable poly(etherurethane) gels derived from saccharide-, L-lysine-derivatives, and poly(propylene glycol). Macromol Chem Phys 198:305–319CrossRef
go back to reference Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Muller RJ (2001) Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44:289–299CrossRef Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Muller RJ (2001) Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44:289–299CrossRef
go back to reference Xu M, Shi XH, Chen HJ, Xiao T (2010) Synthesis and enrichment of a macromolecular surface modifier PP-b-PVP for polypropylene. Appl Surf Sci 256:3240–3244CrossRef Xu M, Shi XH, Chen HJ, Xiao T (2010) Synthesis and enrichment of a macromolecular surface modifier PP-b-PVP for polypropylene. Appl Surf Sci 256:3240–3244CrossRef
go back to reference Yakacki CM, Shandas R, Lanning C, Rech B, Eckstein A, Gall K (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28:2255–2263CrossRef Yakacki CM, Shandas R, Lanning C, Rech B, Eckstein A, Gall K (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28:2255–2263CrossRef
go back to reference Yamanaka C, Hasimoto K (2002) Synthesis of new hydrolyzable polyurethanes from L-gulonic acid-derived diols and diisocyanates. J Polym Sci Part A: Polym Chem 40:4158–4166CrossRef Yamanaka C, Hasimoto K (2002) Synthesis of new hydrolyzable polyurethanes from L-gulonic acid-derived diols and diisocyanates. J Polym Sci Part A: Polym Chem 40:4158–4166CrossRef
go back to reference Ying X, Qi L, Li X, Zhang W, Cheng G (2013) Stimuli-responsive recognition of BSA-imprinted poly vinyl acetate grafted calcium alginate core-shell hydrogel microspheres. J Appl Polym Sci 127:3898–3909CrossRef Ying X, Qi L, Li X, Zhang W, Cheng G (2013) Stimuli-responsive recognition of BSA-imprinted poly vinyl acetate grafted calcium alginate core-shell hydrogel microspheres. J Appl Polym Sci 127:3898–3909CrossRef
go back to reference Zdrahala RJ, Zdrahala IJ (1999) Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl 14:67–90CrossRef Zdrahala RJ, Zdrahala IJ (1999) Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl 14:67–90CrossRef
go back to reference Zenner MD, Xia Y, Chen JS, Kessler MR (2013) Polyurethanes from isosorbide-based diisocyanates. ChemSusChem 6:1182–1185CrossRef Zenner MD, Xia Y, Chen JS, Kessler MR (2013) Polyurethanes from isosorbide-based diisocyanates. ChemSusChem 6:1182–1185CrossRef
go back to reference Zenner MD, Madbouly SA, Chen JS, Kessler MR (2015) Unexpected tackifiers from isosorbide. ChemSusChem 8:448–451CrossRef Zenner MD, Madbouly SA, Chen JS, Kessler MR (2015) Unexpected tackifiers from isosorbide. ChemSusChem 8:448–451CrossRef
go back to reference Zhang F, Cheng G, Ying X (2006) Emulsion and macromolecules templated alginate based polymer microspheres. React Funct Polym 66:712–719CrossRef Zhang F, Cheng G, Ying X (2006) Emulsion and macromolecules templated alginate based polymer microspheres. React Funct Polym 66:712–719CrossRef
go back to reference Zhang Q, Liao J-F, Shi X-H, Qiu Y-G, Chen H-J (2015) Surface biocompatible construction of polyurethane by heparinization. J Polym Res 22:68CrossRef Zhang Q, Liao J-F, Shi X-H, Qiu Y-G, Chen H-J (2015) Surface biocompatible construction of polyurethane by heparinization. J Polym Res 22:68CrossRef
go back to reference Zhao K, Cheng G, Huang J, Ying X (2008) Rebinding and recognition properties of protein-macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres. React Funct Polym 68:732–741CrossRef Zhao K, Cheng G, Huang J, Ying X (2008) Rebinding and recognition properties of protein-macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres. React Funct Polym 68:732–741CrossRef
go back to reference Zhu Y, Molinier V, Durand M, Lavergne A, Aubry JM (2009) Amphiphilic properties of hydrotropes derived from isosorbide: Endo/exo isomeric effects and temperature dependence. Langmuir 25:13419–13425CrossRef Zhu Y, Molinier V, Durand M, Lavergne A, Aubry JM (2009) Amphiphilic properties of hydrotropes derived from isosorbide: Endo/exo isomeric effects and temperature dependence. Langmuir 25:13419–13425CrossRef
go back to reference Zia KM, Barikani M, Bhatti IA, Zuber M, Bhatti HN (2008a) Synthesis and characterization of novel, biodegradable, thermally stable chitin-based polyurethane elastomers. J Appl Polym Sci 110:769–776CrossRef Zia KM, Barikani M, Bhatti IA, Zuber M, Bhatti HN (2008a) Synthesis and characterization of novel, biodegradable, thermally stable chitin-based polyurethane elastomers. J Appl Polym Sci 110:769–776CrossRef
go back to reference Zia KM, Bhatti IA, Barikani M, Zuber M, Sheikh MA (2008b) XRD studies of chitin-based polyurethane elastomers. Int J Biol Macromol 43:136–141CrossRef Zia KM, Bhatti IA, Barikani M, Zuber M, Sheikh MA (2008b) XRD studies of chitin-based polyurethane elastomers. Int J Biol Macromol 43:136–141CrossRef
go back to reference Zia KM, Zia F, Zuber M, Rehman S, Ahmad MN (2015) Alginate based polyurethanes: a review of recent advances and perspective. Int J Biol Macromol 79:377–387CrossRef Zia KM, Zia F, Zuber M, Rehman S, Ahmad MN (2015) Alginate based polyurethanes: a review of recent advances and perspective. Int J Biol Macromol 79:377–387CrossRef
Metadata
Title
Synthesis and Applications of Carbohydrate-Based Polyurethanes
Authors
Verónica E. Manzano
Adriana A. Kolender
Oscar Varela
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-61288-1_1

Premium Partners