Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

1. Synthesis and Photocatalytic Properties of 2D Transition Metal Dichalcogenides

Authors : Mohd. Parvaz, Hasan Abbas, Zishan H. Khan

Published in: Emerging Trends in Nanotechnology

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanotechnology is the emerging technology of the twenty-first century. It deals with the synthesis and investigation of ultrafine materials and their use in technology for numerous applications. It is an interdisciplinary field that combines the principles of physics, chemistry, and engineering, such as structural analysis, electrical engineering, mechanical design, computer science and systems engineering. Two-dimensional (2D) materials are crystalline materials consisting of layered arranged atoms or molecules. In the last few years, 2D materials have been extensively explored for their unique 2D geometry, high surface-to-volume ratio, and nanoscale thickness. Two-dimensional transition metal dichalcogenide (2D-TMDCs) materials have the common formula MX2, where X = sulfur (S), selenium (Se) or tellurium (Te), and M belongs to the elements of group of 4, 5, and 6 of the periodic table. MX2 layers are covalently bound by the van der Waals force between the layers. The weak van der Waals bonds between the layers facilitate separation of the layers to form 2D materials. Many synthesis methods, like as CVD, hydrothermal, and CVT method, have been used to synthesize the 2D-TMDCs materials. Titanium disulfide (TiS2) is an important layered material among the TMDCs family. It crystallizes in the hexagonal structure similar to CdI2. It is a multi-layered compound with repeating subunits formed from a layer of Ti atoms and a layer of S. TiS2 has a band gap varying between 0.05 and 2.5 eV; the Bohr’s radius of approximately 6.43 nm and the lattice parameter constants a (a = b) and c of TiS2 are 3.40 A°, 5.96 A° respectively. The present chapter deals with the review of research work reported on 2D metal dichalcogenides with a special emphasis of TiS2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Kannan PK, Late DJ, Morgan H, Rout CS (2015) Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7:13293–13312CrossRef Kannan PK, Late DJ, Morgan H, Rout CS (2015) Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7:13293–13312CrossRef
3.
go back to reference Yang Wei, Gan L, Li H, Zhai T (2016) Two-dimensional layered nanomaterials for gas-sensing applications. Inorg Chem Front 3:433–451CrossRef Yang Wei, Gan L, Li H, Zhai T (2016) Two-dimensional layered nanomaterials for gas-sensing applications. Inorg Chem Front 3:433–451CrossRef
4.
go back to reference Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nature Mater 6:652CrossRef Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nature Mater 6:652CrossRef
5.
go back to reference Varghese SS, Varghese SH, Swaminathan S, Singh KK, Mittal V (2015) Two-dimensional materials for sensing: graphene and beyond. Electronics 4(3):651–687CrossRef Varghese SS, Varghese SH, Swaminathan S, Singh KK, Mittal V (2015) Two-dimensional materials for sensing: graphene and beyond. Electronics 4(3):651–687CrossRef
6.
go back to reference Li BL, Wang J, Zou HL, Garaj S, Lim CT, Xie J, Li NB, Leong DT (2016) Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv Funct Mater 26(39):7034–7056CrossRef Li BL, Wang J, Zou HL, Garaj S, Lim CT, Xie J, Li NB, Leong DT (2016) Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv Funct Mater 26(39):7034–7056CrossRef
7.
go back to reference Yang S, Jiang C, Wei SH (2017) Gas sensing in 2D materials. Appl Phys Rev 4(2):021304CrossRef Yang S, Jiang C, Wei SH (2017) Gas sensing in 2D materials. Appl Phys Rev 4(2):021304CrossRef
8.
go back to reference Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40:2644–2672CrossRef Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40:2644–2672CrossRef
9.
go back to reference Lu Q, Yu Y, Ma Q, Chen B, Zhang H (2016) 2D transition-metal-dichalcogenide nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv Mater 28:1917–1933CrossRef Lu Q, Yu Y, Ma Q, Chen B, Zhang H (2016) 2D transition-metal-dichalcogenide nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv Mater 28:1917–1933CrossRef
10.
go back to reference Cao X, Tan C, Zhang X, Zhao W, Zhang H (2016) Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv Mater 28:6167–6196CrossRef Cao X, Tan C, Zhang X, Zhao W, Zhang H (2016) Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv Mater 28:6167–6196CrossRef
11.
go back to reference Dai Liming (2012) Functionalization of graphene for efficient energy conversion and storage. Acc Chem Res 46:31–42CrossRef Dai Liming (2012) Functionalization of graphene for efficient energy conversion and storage. Acc Chem Res 46:31–42CrossRef
12.
go back to reference Wang X, Chen Y, Schmidt OG, Yan C (2016) Engineered nanomembranes for smart energy storage devices. Chem Soc Rev 45(5):1308–1330CrossRef Wang X, Chen Y, Schmidt OG, Yan C (2016) Engineered nanomembranes for smart energy storage devices. Chem Soc Rev 45(5):1308–1330CrossRef
13.
go back to reference Mendoza-Sánchez B, Gogotsi Y (2016) Synthesis of two-dimensional materials for capacitive energy storage. Adv Mater 28:6104–6135CrossRef Mendoza-Sánchez B, Gogotsi Y (2016) Synthesis of two-dimensional materials for capacitive energy storage. Adv Mater 28:6104–6135CrossRef
14.
go back to reference Rogers JA, Lagally MG, Nuzzo RG (2011) Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477:45CrossRef Rogers JA, Lagally MG, Nuzzo RG (2011) Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477:45CrossRef
15.
go back to reference Li X, Tao L, Chen Z, Fang H, Li X, Wang X, Xu J-B, Zhu Hongwei (2017) Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl Phys Rev 4:021306CrossRef Li X, Tao L, Chen Z, Fang H, Li X, Wang X, Xu J-B, Zhu Hongwei (2017) Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl Phys Rev 4:021306CrossRef
16.
go back to reference Chen Y, Tan C, Zhang H, Wang L (2015) Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev 44(9):2681–2701CrossRef Chen Y, Tan C, Zhang H, Wang L (2015) Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev 44(9):2681–2701CrossRef
17.
go back to reference Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4):2898–2926CrossRef Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4):2898–2926CrossRef
18.
go back to reference Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee SK, Colombo L (2014) Electronics based on two-dimensional materials. Nat Nanotechnol 9:768CrossRef Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee SK, Colombo L (2014) Electronics based on two-dimensional materials. Nat Nanotechnol 9:768CrossRef
19.
go back to reference Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A (2014) Two-dimensional material nanophotonics. Nat Photon 8:899CrossRef Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A (2014) Two-dimensional material nanophotonics. Nat Photon 8:899CrossRef
20.
go back to reference Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126CrossRef Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126CrossRef
21.
go back to reference Niu T, Li A (2015) From two-dimensional materials to heterostructures. Prog Surf Sci 90:21–45CrossRef Niu T, Li A (2015) From two-dimensional materials to heterostructures. Prog Surf Sci 90:21–45CrossRef
22.
go back to reference Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109CrossRef Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109CrossRef
23.
go back to reference Lin Y-M, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P (2008) Operation of graphene transistors at gigahertz frequencies. Nano Lett 9:422–426CrossRef Lin Y-M, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P (2008) Operation of graphene transistors at gigahertz frequencies. Nano Lett 9:422–426CrossRef
24.
go back to reference Lin Y-M, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu H-Y, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662CrossRef Lin Y-M, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu H-Y, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662CrossRef
25.
go back to reference Palacios T, Hsu A, Wang H (2010) Applications of graphene devices in RF communications. IEEE Commun Mag 48:122–128CrossRef Palacios T, Hsu A, Wang H (2010) Applications of graphene devices in RF communications. IEEE Commun Mag 48:122–128CrossRef
26.
go back to reference Wang H, Hsu A, Wu J, Kong J, Palacios T (2010) Graphene-based ambipolar RF mixers. IEEE Electr Dev Lett 31:906–908CrossRef Wang H, Hsu A, Wu J, Kong J, Palacios T (2010) Graphene-based ambipolar RF mixers. IEEE Electr Dev Lett 31:906–908CrossRef
27.
go back to reference Happy H, Meng N, Fleurier R, Pichonat E, Vignaud D, Dambrine G (2011) Graphene nano ribbon field effect transistor for high frequency applications. In: 2011 41st European microwave conference, IEEE, pp 1138–1141 Happy H, Meng N, Fleurier R, Pichonat E, Vignaud D, Dambrine G (2011) Graphene nano ribbon field effect transistor for high frequency applications. In: 2011 41st European microwave conference, IEEE, pp 1138–1141
28.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
29.
go back to reference Zhang Y, Tan Y-W, Horst L (2005) Stormer, and Philip Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204CrossRef Zhang Y, Tan Y-W, Horst L (2005) Stormer, and Philip Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204CrossRef
30.
go back to reference Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech 5:574CrossRef Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech 5:574CrossRef
31.
go back to reference Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef
32.
go back to reference Xiao D, Liu G-B, Feng W, Xiaodong X, Yao W (2012) Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett 108:196802CrossRef Xiao D, Liu G-B, Feng W, Xiaodong X, Yao W (2012) Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett 108:196802CrossRef
33.
go back to reference Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206CrossRef Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206CrossRef
35.
go back to reference Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2012) ACS Nano 6:74CrossRef Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2012) ACS Nano 6:74CrossRef
36.
go back to reference Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2016) Graphene photonics and optoelectronics. Nature Photon 4:611 Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2016) Graphene photonics and optoelectronics. Nature Photon 4:611
37.
go back to reference Baby TT, Aravind SSJ, Arockiadoss T, Rakhi RB, Ramaprabhu S (2010) Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens Actuat B: Chem 145:71–77CrossRef Baby TT, Aravind SSJ, Arockiadoss T, Rakhi RB, Ramaprabhu S (2010) Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens Actuat B: Chem 145:71–77CrossRef
38.
go back to reference Lew Yan Voon LC, Sandberg E, Aga RS, Farajian AA (2010) Hydrogen compounds of group-IV nanosheets. Appl Phys Lett 97:163114CrossRef Lew Yan Voon LC, Sandberg E, Aga RS, Farajian AA (2010) Hydrogen compounds of group-IV nanosheets. Appl Phys Lett 97:163114CrossRef
39.
go back to reference Pulci O, Gori P, Marsili M, Garbuio V, Del Sole R, Bechstedt F (2012) Strong excitons in novel two-dimensional crystals: silicane and germanane. EPL (Europhys Lett) 98:37004CrossRef Pulci O, Gori P, Marsili M, Garbuio V, Del Sole R, Bechstedt F (2012) Strong excitons in novel two-dimensional crystals: silicane and germanane. EPL (Europhys Lett) 98:37004CrossRef
40.
go back to reference Lassner E, Schubert W-D (1999) Properties, chemistry, technology of the element, alloys, and chemical compounds. Vienna University of Technology, Vienna, Austria, Kluwer, pp 124–125 Lassner E, Schubert W-D (1999) Properties, chemistry, technology of the element, alloys, and chemical compounds. Vienna University of Technology, Vienna, Austria, Kluwer, pp 124–125
41.
go back to reference Liang, Tao, Yu Cai, Hongzheng Chen, and Mingsheng Xu, Two-Dimensional Transition Metal Dichalcogenides: An Overview, In Two Dimensional Transition Metal Dichalcogenides, Springer. (2019) 1-27 Liang, Tao, Yu Cai, Hongzheng Chen, and Mingsheng Xu, Two-Dimensional Transition Metal Dichalcogenides: An Overview, In Two Dimensional Transition Metal Dichalcogenides, Springer. (2019) 1-27
42.
go back to reference Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech 7:699CrossRef Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech 7:699CrossRef
43.
go back to reference Kumar A, Ahluwalia PK (2012) Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur Phys J B 85:186CrossRef Kumar A, Ahluwalia PK (2012) Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur Phys J B 85:186CrossRef
44.
go back to reference Chia X, Ambrosi A, Sofer Z, Luxa J, Pumera M (2015) Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano 9:5164–5179CrossRef Chia X, Ambrosi A, Sofer Z, Luxa J, Pumera M (2015) Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano 9:5164–5179CrossRef
45.
go back to reference Das S, Prakash A, Salazar R, Appenzeller J (2014) Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. ACS Nano 8:1681–1689CrossRef Das S, Prakash A, Salazar R, Appenzeller J (2014) Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. ACS Nano 8:1681–1689CrossRef
46.
go back to reference Lv R, Robinson JA, Schaak RE, Sun D, Sun Y, Mallouk TE, Terrones M (2014) Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Acc Chem Res 48:56–64CrossRef Lv R, Robinson JA, Schaak RE, Sun D, Sun Y, Mallouk TE, Terrones M (2014) Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Acc Chem Res 48:56–64CrossRef
47.
go back to reference Pospischil Andreas, Furchi Marco M, Mueller Thomas (2014) Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat Nanotechnol 9:257CrossRef Pospischil Andreas, Furchi Marco M, Mueller Thomas (2014) Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat Nanotechnol 9:257CrossRef
48.
go back to reference Rao CNR, Ramakrishna Matte HSS, Subrahmanyam KS, Maitra U (2012) Unusual magnetic properties of graphene and related materials. Chem Sci 3:45–52CrossRef Rao CNR, Ramakrishna Matte HSS, Subrahmanyam KS, Maitra U (2012) Unusual magnetic properties of graphene and related materials. Chem Sci 3:45–52CrossRef
49.
go back to reference Ogawa S (1979) Magnetic properties of 3d transition-metal dichalcogenides with the pyrite structure. J Appl Phys 50:2308–2311CrossRef Ogawa S (1979) Magnetic properties of 3d transition-metal dichalcogenides with the pyrite structure. J Appl Phys 50:2308–2311CrossRef
50.
go back to reference Zhou Y, Yang C, Xiang X, Zu X (2013) Remarkable magnetism and ferromagnetic coupling in semi-sulfuretted transition-metal dichalcogenides. Phys Chem Chem Phys 15:14202–14209CrossRef Zhou Y, Yang C, Xiang X, Zu X (2013) Remarkable magnetism and ferromagnetic coupling in semi-sulfuretted transition-metal dichalcogenides. Phys Chem Chem Phys 15:14202–14209CrossRef
51.
go back to reference Pumera M, Sofer Z, Ambrosi A (2014) Layered transition metal dichalcogenides for electrochemical energy generation and storage. J Mater Chem A 2:8981–8987CrossRef Pumera M, Sofer Z, Ambrosi A (2014) Layered transition metal dichalcogenides for electrochemical energy generation and storage. J Mater Chem A 2:8981–8987CrossRef
52.
go back to reference Tributsch Helmut (1980) Photoelectrochemical behaviour of layer-type transition metal dichalcogenides. Faraday Disc Chem Soc 70:189–205CrossRef Tributsch Helmut (1980) Photoelectrochemical behaviour of layer-type transition metal dichalcogenides. Faraday Disc Chem Soc 70:189–205CrossRef
53.
go back to reference Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem 5:263CrossRef Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem 5:263CrossRef
54.
go back to reference Wang H, Feng H, Li J (2014) Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small 10:2165–2181CrossRef Wang H, Feng H, Li J (2014) Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small 10:2165–2181CrossRef
55.
go back to reference Huang K-J, Liu Y-J, Wang H-B, Liu Y-M, Wang L-L (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim Acta 109:587–594CrossRef Huang K-J, Liu Y-J, Wang H-B, Liu Y-M, Wang L-L (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim Acta 109:587–594CrossRef
56.
go back to reference Muller GA, Cook JB, Kim H-S, Tolbert SH, Dunn B (2015) High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett 15:1911–1917CrossRef Muller GA, Cook JB, Kim H-S, Tolbert SH, Dunn B (2015) High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett 15:1911–1917CrossRef
57.
go back to reference Ellmer K (2008) Preparation routes based on magnetron sputtering for tungsten disulfide (WS2) films for thin-film solar cells. Phys Status Solidi 245:1745–1760CrossRef Ellmer K (2008) Preparation routes based on magnetron sputtering for tungsten disulfide (WS2) films for thin-film solar cells. Phys Status Solidi 245:1745–1760CrossRef
58.
go back to reference Tributsch Helmut (1978) The MoSe2 electrochemical solar cell: anodic coupling of electron transfer to d→d photo-transitions in layer crystals. Berichte der Bunsengesellschaft fur physikalische Chemie 82:169–174CrossRef Tributsch Helmut (1978) The MoSe2 electrochemical solar cell: anodic coupling of electron transfer to d→d photo-transitions in layer crystals. Berichte der Bunsengesellschaft fur physikalische Chemie 82:169–174CrossRef
59.
go back to reference Shanmugam M, Bansal T, Durcan CA, Bin Y (2012) Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Appl Phys Lett 100:153901CrossRef Shanmugam M, Bansal T, Durcan CA, Bin Y (2012) Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Appl Phys Lett 100:153901CrossRef
60.
go back to reference Bhandavat R, David L, Singh G (2012) Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J Phys Chem Lett 3:1523–1530CrossRef Bhandavat R, David L, Singh G (2012) Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J Phys Chem Lett 3:1523–1530CrossRef
61.
go back to reference Xiao J, Choi D, Cosimbescu L, Koech P, Liu J, Lemmon JP (2010) Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem Mater 22:4522–4524CrossRef Xiao J, Choi D, Cosimbescu L, Koech P, Liu J, Lemmon JP (2010) Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem Mater 22:4522–4524CrossRef
62.
go back to reference Kong D, Cha JJ, Wang H, Lee HR, Cui Y (2013) First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci 6(12):3553–3558CrossRef Kong D, Cha JJ, Wang H, Lee HR, Cui Y (2013) First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci 6(12):3553–3558CrossRef
63.
go back to reference Chen TY, Chang YH, Hsu CL, Wei KH, Chiang CY, Li LJ (2013) Comparative study on MoS2 and WS2 for electrocatalytic water splitting. Int J Hydr Energy 38(28):12302–12309CrossRef Chen TY, Chang YH, Hsu CL, Wei KH, Chiang CY, Li LJ (2013) Comparative study on MoS2 and WS2 for electrocatalytic water splitting. Int J Hydr Energy 38(28):12302–12309CrossRef
64.
go back to reference Han SW, Hwang YH, Kim SH, Yun WS, Lee JD, Park MG, Ryu S, Park JS, Yoo DH, Yoon SP, Hong SC (2013) Controlling ferromagnetic easy axis in a layered MoS2 single crystal. Phys Rev Lett 110:247201CrossRef Han SW, Hwang YH, Kim SH, Yun WS, Lee JD, Park MG, Ryu S, Park JS, Yoo DH, Yoon SP, Hong SC (2013) Controlling ferromagnetic easy axis in a layered MoS2 single crystal. Phys Rev Lett 110:247201CrossRef
65.
go back to reference Schweiger H, Raybaud P, Kresse G, Toulhoat H (2002) Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: a theoretical study. J Catal 207:76–87CrossRef Schweiger H, Raybaud P, Kresse G, Toulhoat H (2002) Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: a theoretical study. J Catal 207:76–87CrossRef
66.
go back to reference Sun M, Adjaye J, Nelson AE (2004) Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts. Appl Catal A: Gen 263:131–143CrossRef Sun M, Adjaye J, Nelson AE (2004) Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts. Appl Catal A: Gen 263:131–143CrossRef
67.
go back to reference Fontana Marcio, Deppe Tristan, Boyd Anthony K, Rinzan Mohamed, Liu Amy Y, Paranjape Makarand, Barbara Paola (2013) Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Scientific reports. 3:1634CrossRef Fontana Marcio, Deppe Tristan, Boyd Anthony K, Rinzan Mohamed, Liu Amy Y, Paranjape Makarand, Barbara Paola (2013) Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Scientific reports. 3:1634CrossRef
68.
go back to reference Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873CrossRef Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873CrossRef
69.
go back to reference Zhou W, Yin Z, Du Y, Huang X, Zeng Z, Fan Z, Liu H, Wang J, Zhang H (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–147CrossRef Zhou W, Yin Z, Du Y, Huang X, Zeng Z, Fan Z, Liu H, Wang J, Zhang H (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–147CrossRef
70.
go back to reference Yang L, Wang S, Mao J, Deng J, Gao Q, Tang Y, Schmidt OG (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184CrossRef Yang L, Wang S, Mao J, Deng J, Gao Q, Tang Y, Schmidt OG (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184CrossRef
71.
go back to reference Cho MH, Ju J, Kim SJ, Jang H (2006) Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials. Wear 260:855–860CrossRef Cho MH, Ju J, Kim SJ, Jang H (2006) Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials. Wear 260:855–860CrossRef
72.
go back to reference Kam KK, Parkinson BA (1982) Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J Phys Chem 86:463–467CrossRef Kam KK, Parkinson BA (1982) Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J Phys Chem 86:463–467CrossRef
73.
go back to reference Ho W, Yu JC, Lin J, Jiaguo Y, Li Puishan (2004) Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 20:5865–5869CrossRef Ho W, Yu JC, Lin J, Jiaguo Y, Li Puishan (2004) Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 20:5865–5869CrossRef
74.
go back to reference Gourmelon E, Lignier O, Hadouda H, Couturier G, Bernede JC, Tedd J, Pouzet J, Salardenne J (1997) MS2 (M= W, Mo) photosensitive thin films for solar cells. Sol Energy Mater Sol Cells 46:115–121CrossRef Gourmelon E, Lignier O, Hadouda H, Couturier G, Bernede JC, Tedd J, Pouzet J, Salardenne J (1997) MS2 (M= W, Mo) photosensitive thin films for solar cells. Sol Energy Mater Sol Cells 46:115–121CrossRef
75.
go back to reference Mak KF, Shan J, Heinz TF (2010) Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys Rev Lett 104:176404CrossRef Mak KF, Shan J, Heinz TF (2010) Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys Rev Lett 104:176404CrossRef
76.
go back to reference Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano letters. 10:1271–1275CrossRef Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano letters. 10:1271–1275CrossRef
77.
go back to reference Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805CrossRef Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805CrossRef
78.
go back to reference Harper PG, Edmodson DR (1971) Electronic band structure of the layer-type crystal MoS2 (atomic model). Phys Status Solidi 44:59–69CrossRef Harper PG, Edmodson DR (1971) Electronic band structure of the layer-type crystal MoS2 (atomic model). Phys Status Solidi 44:59–69CrossRef
79.
go back to reference Sandoval SJ, Yang D, Frindt RF, Irwin JC (1991) Raman study and lattice dynamics of single molecular layers of MoS2. Phys Rev B 44:3955CrossRef Sandoval SJ, Yang D, Frindt RF, Irwin JC (1991) Raman study and lattice dynamics of single molecular layers of MoS2. Phys Rev B 44:3955CrossRef
80.
go back to reference Radisavljevic Branimir, Radenovic Aleksandra, Brivio Jacopo, Giacometti Valentina, Kis Andras (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147CrossRef Radisavljevic Branimir, Radenovic Aleksandra, Brivio Jacopo, Giacometti Valentina, Kis Andras (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147CrossRef
81.
go back to reference Cheng R, SJ Y, Chen YL, Weiss N, Cheng H-C, Hao W, Huang Y, Duan X (2014) Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nature Commun 5:5143CrossRef Cheng R, SJ Y, Chen YL, Weiss N, Cheng H-C, Hao W, Huang Y, Duan X (2014) Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nature Commun 5:5143CrossRef
82.
go back to reference Krasnozhon D, Lembke D, Nyffeler C, Leblebici Y, Kis A (2014) MoS2 transistors operating at gigahertz frequencies. Nano Lett 14:5905–5911CrossRef Krasnozhon D, Lembke D, Nyffeler C, Leblebici Y, Kis A (2014) MoS2 transistors operating at gigahertz frequencies. Nano Lett 14:5905–5911CrossRef
83.
go back to reference Liu L, Kumar SB, Ouyang Y, Guo J (2011) Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans Electr Dev 58:3042–3047CrossRef Liu L, Kumar SB, Ouyang Y, Guo J (2011) Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans Electr Dev 58:3042–3047CrossRef
84.
go back to reference Perkins FK, Friedman AL, Cobas E, Campbell PM, Jernigan GG, Jonker BT (2013) Chemical vapor sensing with monolayer MoS2. Nano letters 13:668–673CrossRef Perkins FK, Friedman AL, Cobas E, Campbell PM, Jernigan GG, Jonker BT (2013) Chemical vapor sensing with monolayer MoS2. Nano letters 13:668–673CrossRef
85.
go back to reference Lin J, Li H, Zhang H, Chen W (2013) Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl Phys Lett 102:203109CrossRef Lin J, Li H, Zhang H, Chen W (2013) Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl Phys Lett 102:203109CrossRef
86.
go back to reference Wang H, Lili Y, Lee Y-H, Shi Y, Hsu A, Chin ML, Li L-J, Dubey M, Kong J, Palacios T (2012) Integrated circuits based on bilayer MoS2 transistors. Nano Lett 12:4674–4680CrossRef Wang H, Lili Y, Lee Y-H, Shi Y, Hsu A, Chin ML, Li L-J, Dubey M, Kong J, Palacios T (2012) Integrated circuits based on bilayer MoS2 transistors. Nano Lett 12:4674–4680CrossRef
87.
go back to reference Radisavljevic B, Whitwick MB, Kis A (2011) Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5:9934–9938CrossRef Radisavljevic B, Whitwick MB, Kis A (2011) Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5:9934–9938CrossRef
88.
go back to reference Song I, Park C, Choi HC (2015) Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Adv 5:7495–7514CrossRef Song I, Park C, Choi HC (2015) Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Adv 5:7495–7514CrossRef
89.
go back to reference Wieting TK Schluter. Phys Chem Mater Layered Struct Wieting TK Schluter. Phys Chem Mater Layered Struct
90.
go back to reference Wang H, Yuan H, Hong SS, Li Y, Cui Y (2015) Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem Soc Rev 44:2664–2680CrossRef Wang H, Yuan H, Hong SS, Li Y, Cui Y (2015) Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem Soc Rev 44:2664–2680CrossRef
91.
go back to reference Rao CNR, Maitra U, Waghmare UV (2014) Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chem Phys Lett 609(2014):172–183CrossRef Rao CNR, Maitra U, Waghmare UV (2014) Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chem Phys Lett 609(2014):172–183CrossRef
92.
go back to reference Terrones H, López-Urías F, Terrones M (2013) Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci Rep 3:1–7CrossRef Terrones H, López-Urías F, Terrones M (2013) Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci Rep 3:1–7CrossRef
93.
go back to reference Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193–335CrossRef Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193–335CrossRef
94.
go back to reference Imai H, Shimakawa Y, Kubo Y (2001) Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition. Phys Rev B. 64:241104CrossRef Imai H, Shimakawa Y, Kubo Y (2001) Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition. Phys Rev B. 64:241104CrossRef
95.
go back to reference Beaumale M, Barbier T, Bréard Y, Guelou G, Powell AV, Vaqueiro P, Guilmeau E (2014) Electron doping and phonon scattering in Ti1+xS2 thermoelectric compounds. Acta Mater 78:86–92CrossRef Beaumale M, Barbier T, Bréard Y, Guelou G, Powell AV, Vaqueiro P, Guilmeau E (2014) Electron doping and phonon scattering in Ti1+xS2 thermoelectric compounds. Acta Mater 78:86–92CrossRef
96.
go back to reference Gatensby R, McEvoy N, Lee K, Hallam T, Berner NC, Rezvani E, Winters S, O’Brien M, Duesberg GS (2014) Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl Surf Sci 297:139–146CrossRef Gatensby R, McEvoy N, Lee K, Hallam T, Berner NC, Rezvani E, Winters S, O’Brien M, Duesberg GS (2014) Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl Surf Sci 297:139–146CrossRef
97.
go back to reference Zhu Z, Cheng Y, Schwingenschlogl U (2013) Topological phase diagrams of bulk and monolayer TiS2−xTex. Phys Rev Lett 110:077202CrossRef Zhu Z, Cheng Y, Schwingenschlogl U (2013) Topological phase diagrams of bulk and monolayer TiS2−xTex. Phys Rev Lett 110:077202CrossRef
98.
go back to reference Zhang Y, Li Z, Jia H, Luo X, Xu J, Zhang X, Yu D (2006) TiS2 whisker growth by a simple vapor-deposition method. J Crystal Growth 293:124–127CrossRef Zhang Y, Li Z, Jia H, Luo X, Xu J, Zhang X, Yu D (2006) TiS2 whisker growth by a simple vapor-deposition method. J Crystal Growth 293:124–127CrossRef
99.
go back to reference Laua KT, Edwards S, Diamond D (2004) nanostructured semiconductor oxides for the next generation of electronics and functional devices. Sens Actuat B 98:12–17 Laua KT, Edwards S, Diamond D (2004) nanostructured semiconductor oxides for the next generation of electronics and functional devices. Sens Actuat B 98:12–17
100.
go back to reference Chen J, Li SL, Tao ZL, Shen YT, Cui CX (2003) Titanium disulfide nanotubes as hydrogen-storage materials. J Am Chem Soc 125:5284–5285CrossRef Chen J, Li SL, Tao ZL, Shen YT, Cui CX (2003) Titanium disulfide nanotubes as hydrogen-storage materials. J Am Chem Soc 125:5284–5285CrossRef
101.
go back to reference Let AL, Mainwaring DE, Rix CJ, Murugaraj P (2007) Thio sol–gel synthesis of titanium disulfide thin films and nanoparticles using titanium (IV) alkoxide precursors. J Phys Chem Solids 68:1428–1435CrossRef Let AL, Mainwaring DE, Rix CJ, Murugaraj P (2007) Thio sol–gel synthesis of titanium disulfide thin films and nanoparticles using titanium (IV) alkoxide precursors. J Phys Chem Solids 68:1428–1435CrossRef
102.
go back to reference Tao Z-L, Xu L-N, Gou X-L, Chen J, Yuan H-T (2004) TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem Commun 18:2080–2081CrossRef Tao Z-L, Xu L-N, Gou X-L, Chen J, Yuan H-T (2004) TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem Commun 18:2080–2081CrossRef
103.
go back to reference Park KH, Choi J, Kim HJ, Oh D-H, Ahn JR, Son SU (2008) Unstable single-layered colloidal TiS2 nanodisks. Small 4:945–950CrossRef Park KH, Choi J, Kim HJ, Oh D-H, Ahn JR, Son SU (2008) Unstable single-layered colloidal TiS2 nanodisks. Small 4:945–950CrossRef
104.
go back to reference Margolin A, Popovitz-Biro R, Albu-Yaron A, Rapoport L, Tenne R (2005) Inorganic fullerene-like nanoparticles of TiS2. Chem Phys Lett 411(1–3):162–166CrossRef Margolin A, Popovitz-Biro R, Albu-Yaron A, Rapoport L, Tenne R (2005) Inorganic fullerene-like nanoparticles of TiS2. Chem Phys Lett 411(1–3):162–166CrossRef
105.
go back to reference Soltani N, Saion E, Hussein MZ, Erfani M, Abedini A, Bahmanrokh G, Navasery M, Vaziri P (2012) Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int J Molec Sci 13(10):12242–12258CrossRef Soltani N, Saion E, Hussein MZ, Erfani M, Abedini A, Bahmanrokh G, Navasery M, Vaziri P (2012) Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int J Molec Sci 13(10):12242–12258CrossRef
106.
go back to reference Qin YL, Zhao WW, Sun Z, Liu XY, Shi GL, Liu ZY, Ni DR, Ma ZY (2018) Photocatalytic and adsorption property of ZnS–TiO2/RGO ternary composites for methylene blue degradation. Adsorpt Sci Technol 0263617418810932 Qin YL, Zhao WW, Sun Z, Liu XY, Shi GL, Liu ZY, Ni DR, Ma ZY (2018) Photocatalytic and adsorption property of ZnS–TiO2/RGO ternary composites for methylene blue degradation. Adsorpt Sci Technol 0263617418810932
107.
go back to reference Chaudhary D, Khare N, Vankar VD (2016) MWCNT/CdS hybrid nanocomposite for enhanced photocatalytic activity. In: AIP conference proceedings vol 173, pp 050106 Chaudhary D, Khare N, Vankar VD (2016) MWCNT/CdS hybrid nanocomposite for enhanced photocatalytic activity. In: AIP conference proceedings vol 173, pp 050106
108.
go back to reference Ashraf W, Fatima T, Srivastava K, Khanuja M (2019) Superior photocatalytic activity of tungsten disulfide nanostructures: role of morphology and defects. Appl Nanosci 1–15 Ashraf W, Fatima T, Srivastava K, Khanuja M (2019) Superior photocatalytic activity of tungsten disulfide nanostructures: role of morphology and defects. Appl Nanosci 1–15
109.
go back to reference Han S, Liu K, Linfeng H, Teng F, Pingping Y, Zhu Y (2017) Superior adsorption and regenerable dye adsorbent based on flower-like molybdenum disulfide nanostructure. Scientif Rep 7:43599CrossRef Han S, Liu K, Linfeng H, Teng F, Pingping Y, Zhu Y (2017) Superior adsorption and regenerable dye adsorbent based on flower-like molybdenum disulfide nanostructure. Scientif Rep 7:43599CrossRef
110.
go back to reference Raghu S, Ahmed Basha C (2007) Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater. J Hazard Mater 149:324–330CrossRef Raghu S, Ahmed Basha C (2007) Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater. J Hazard Mater 149:324–330CrossRef
111.
go back to reference Kim TH, Lee Y, Yang J, Lee B, Park C, Kim S (2004) Decolorization of dye solutions by a membrane bioreactor (MBR) using white-rot fungi. Desalination 15(168):287–293CrossRef Kim TH, Lee Y, Yang J, Lee B, Park C, Kim S (2004) Decolorization of dye solutions by a membrane bioreactor (MBR) using white-rot fungi. Desalination 15(168):287–293CrossRef
112.
go back to reference Daneshvar N, Oladegaragoze A, Djafarzadeh N (2006) Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters. J Hazard Mater 129:116–122CrossRef Daneshvar N, Oladegaragoze A, Djafarzadeh N (2006) Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters. J Hazard Mater 129:116–122CrossRef
113.
go back to reference Sharma R, Singh S, Verma A, Khanuja M (2016) Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals. J Photochem Photobiol, B 162:266–272CrossRef Sharma R, Singh S, Verma A, Khanuja M (2016) Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals. J Photochem Photobiol, B 162:266–272CrossRef
114.
go back to reference Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61CrossRef Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61CrossRef
115.
go back to reference Sharma R, Khanuja M, Islam SS, Singhal U, Varma A (2017) Aspect-ratio-dependent photoinduced antimicrobial and photocatalytic organic pollutant degradation efficiency of ZnO nanorods. Res Chem Intermed 43(10):5345–5364CrossRef Sharma R, Khanuja M, Islam SS, Singhal U, Varma A (2017) Aspect-ratio-dependent photoinduced antimicrobial and photocatalytic organic pollutant degradation efficiency of ZnO nanorods. Res Chem Intermed 43(10):5345–5364CrossRef
116.
go back to reference Singh S, Pendurthi R, Khanuja M, Islam SS, Rajput S, Shivaprasad SM (2017) Copper-doped modified ZnO nanorods to tailor its light assisted charge transfer reactions exploited for photo-electrochemical and photo-catalytic application in environmental remediation. Appl Phys A 123:184CrossRef Singh S, Pendurthi R, Khanuja M, Islam SS, Rajput S, Shivaprasad SM (2017) Copper-doped modified ZnO nanorods to tailor its light assisted charge transfer reactions exploited for photo-electrochemical and photo-catalytic application in environmental remediation. Appl Phys A 123:184CrossRef
117.
go back to reference Singh S, Sharma R, Khanuja M (2018) A review and recent developments on strategies to improve the photocatalytic elimination of organic dye pollutants by BiOX (X= Cl, Br, I, F) nanostructures. Korean J Chem Eng 35:1955–1968CrossRef Singh S, Sharma R, Khanuja M (2018) A review and recent developments on strategies to improve the photocatalytic elimination of organic dye pollutants by BiOX (X= Cl, Br, I, F) nanostructures. Korean J Chem Eng 35:1955–1968CrossRef
118.
go back to reference Bhuyan T, Khanuja M, Sharma R, Patel S, Reddy MR, Anand S, Varma A (2015) A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action. J Nanopart Res 17:288CrossRef Bhuyan T, Khanuja M, Sharma R, Patel S, Reddy MR, Anand S, Varma A (2015) A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action. J Nanopart Res 17:288CrossRef
119.
go back to reference Singh Sonal (2018) Aakansha Ruhela, Sanju Rani, Manika Khanuja, and Rishabh Sharma, Concentration specific and tunable photoresponse of bismuth vanadate functionalized hexagonal ZnO nanocrystals based photoanodes for photoelectrochemical application. Solid State Sci 76:48–56CrossRef Singh Sonal (2018) Aakansha Ruhela, Sanju Rani, Manika Khanuja, and Rishabh Sharma, Concentration specific and tunable photoresponse of bismuth vanadate functionalized hexagonal ZnO nanocrystals based photoanodes for photoelectrochemical application. Solid State Sci 76:48–56CrossRef
120.
go back to reference Sherine OO, Gerald JM (2004) Nanostructured materials for environmental remediation of organic contaminants in water. J Environ Sci Health, Part A—Toxic/Hazardous Subst Environ Eng 39: 2549–2582 Sherine OO, Gerald JM (2004) Nanostructured materials for environmental remediation of organic contaminants in water. J Environ Sci Health, Part A—Toxic/Hazardous Subst Environ Eng 39: 2549–2582
121.
go back to reference Khin MM, Nair AS, Babu VJ (2012) A review on nanomaterials for environmental remediation. Energy & Environmental Science, Science for Environment PolicyCrossRef Khin MM, Nair AS, Babu VJ (2012) A review on nanomaterials for environmental remediation. Energy & Environmental Science, Science for Environment PolicyCrossRef
122.
go back to reference Grover R, Cessna AJ (eds) (1991) Environmental chemistry of herbicides, vol II. CRC Press, Boca Raton, Florida Grover R, Cessna AJ (eds) (1991) Environmental chemistry of herbicides, vol II. CRC Press, Boca Raton, Florida
123.
go back to reference Umar A, Rahman MM, Kim SH, Hahn YB (2008) Zinc oxide nanonail based chemical sensor for hydrazine detection. Chem Commun (Camb): 166–168 Umar A, Rahman MM, Kim SH, Hahn YB (2008) Zinc oxide nanonail based chemical sensor for hydrazine detection. Chem Commun (Camb): 166–168
124.
go back to reference Fox MA (1991) Photoinduced electron transfer in arranged media. Topic in current chemistry 159:67–101CrossRef Fox MA (1991) Photoinduced electron transfer in arranged media. Topic in current chemistry 159:67–101CrossRef
125.
go back to reference Rothenberger G, Moser J, Gratzel M, Serpone N, Sharma DK (1985) Charge carrier trapping and recombination dynamics in small semiconductor particles. J Am Chem Soc 107:8054–8059CrossRef Rothenberger G, Moser J, Gratzel M, Serpone N, Sharma DK (1985) Charge carrier trapping and recombination dynamics in small semiconductor particles. J Am Chem Soc 107:8054–8059CrossRef
126.
go back to reference Tian R, Wan C, Wang Y, Wei Q, Ishida T, Yamamoto A, Tsuruta A, Shin W, Li S (2017) A solution-processed TiS2/organic hybrid superlattice film towards flexible thermoelectric devices. J Mater Chem A 5:564–570CrossRef Tian R, Wan C, Wang Y, Wei Q, Ishida T, Yamamoto A, Tsuruta A, Shin W, Li S (2017) A solution-processed TiS2/organic hybrid superlattice film towards flexible thermoelectric devices. J Mater Chem A 5:564–570CrossRef
127.
go back to reference Okamoto K, Anno H (2018) In-plane thermoelectric properties of nano-TiS2/CNT/PEDOT–PSS Hybrid films. J Phys: Conf Ser 1052:012130 Okamoto K, Anno H (2018) In-plane thermoelectric properties of nano-TiS2/CNT/PEDOT–PSS Hybrid films. J Phys: Conf Ser 1052:012130
128.
go back to reference Zhang J, Ye Y, Li C, Yang J, Zhao H, Xu X, Huang R, Pan L, Lu C (2017) Wang Y Thermoelectric properties of TiS2 xPbSnS3 nanocomposites. J Alloys Comp 696:1342–1348CrossRef Zhang J, Ye Y, Li C, Yang J, Zhao H, Xu X, Huang R, Pan L, Lu C (2017) Wang Y Thermoelectric properties of TiS2 xPbSnS3 nanocomposites. J Alloys Comp 696:1342–1348CrossRef
129.
go back to reference Huckaba AJ, Saba G, Maryline R, Cristina R-C, Mohammadian N, Grancini G, Lee Y et al (2017) Low-cost TiS2 as hole-transport material for perovskite solar cells. Small Methods 1:1700250 Huckaba AJ, Saba G, Maryline R, Cristina R-C, Mohammadian N, Grancini G, Lee Y et al (2017) Low-cost TiS2 as hole-transport material for perovskite solar cells. Small Methods 1:1700250
130.
go back to reference Zhou Y, Wan J, Li Q, Chen L, Zhou J, Wang H, He D, Li X, Yang Y, Huang H (2017) Chemical welding on semimetallic TiS2 nanosheets for high-performance flexible n-type thermoelectric films. ACS Appl Mater Interf 9(49):42430–42437CrossRef Zhou Y, Wan J, Li Q, Chen L, Zhou J, Wang H, He D, Li X, Yang Y, Huang H (2017) Chemical welding on semimetallic TiS2 nanosheets for high-performance flexible n-type thermoelectric films. ACS Appl Mater Interf 9(49):42430–42437CrossRef
131.
go back to reference Ramakrishnan A, Raman S, Chen LC, Chen KH (2018) Enhancement in thermoelectric properties of TiS2 by Sn addition. J Electr Mater 47(6):3091–3098CrossRef Ramakrishnan A, Raman S, Chen LC, Chen KH (2018) Enhancement in thermoelectric properties of TiS2 by Sn addition. J Electr Mater 47(6):3091–3098CrossRef
132.
go back to reference Wang L, Zhang Z, Geng L, Yuan T, Liu Y, Guo J, Fang L, Qiu J, Wang S (2018) Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energy Environ Sci 11(5):1307–1317CrossRef Wang L, Zhang Z, Geng L, Yuan T, Liu Y, Guo J, Fang L, Qiu J, Wang S (2018) Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energy Environ Sci 11(5):1307–1317CrossRef
133.
go back to reference Ye Y, Wang Y, Shen Y, Wang Y, Pan L, Tu R, Lu C, Huang R, Koumoto K (2016) Enhanced thermoelectric performance of xMoS2–TiS2 nanocomposites. J Alloys Comp 5(666):346–351CrossRef Ye Y, Wang Y, Shen Y, Wang Y, Pan L, Tu R, Lu C, Huang R, Koumoto K (2016) Enhanced thermoelectric performance of xMoS2–TiS2 nanocomposites. J Alloys Comp 5(666):346–351CrossRef
134.
go back to reference Sun X, Bonnick P, Nazar LF (2016) Layered TiS2 positive electrode for Mg batteries. ACS Energy Lett 1:297–301CrossRef Sun X, Bonnick P, Nazar LF (2016) Layered TiS2 positive electrode for Mg batteries. ACS Energy Lett 1:297–301CrossRef
135.
go back to reference Li R, Dui J, Yunlong F, Yanling X, Zhou S (2016) Ultrahigh power factor and enhanced thermoelectric performance of individual Te/TiS2 nanocables. Nanotechnology 27:415704CrossRef Li R, Dui J, Yunlong F, Yanling X, Zhou S (2016) Ultrahigh power factor and enhanced thermoelectric performance of individual Te/TiS2 nanocables. Nanotechnology 27:415704CrossRef
136.
go back to reference Oh DY, Choi YE, Kim DH, Lee YG, Kim BS, Park J, Sohn H, Jung YS (2016) All-solid-state lithium-ion batteries with TiS 2 nanosheets and sulphide solid electrolytes. Journal of Materials Chemistry A. 4(26):10329–10335CrossRef Oh DY, Choi YE, Kim DH, Lee YG, Kim BS, Park J, Sohn H, Jung YS (2016) All-solid-state lithium-ion batteries with TiS 2 nanosheets and sulphide solid electrolytes. Journal of Materials Chemistry A. 4(26):10329–10335CrossRef
137.
go back to reference Hazarika SJ, Mohanta D, Tripathi A, Kanjilal D (2016) Effect of ion irradiation on nanoscale TiS2 systems with suppressed Titania phase. J Phys Conf Ser 765:012007CrossRef Hazarika SJ, Mohanta D, Tripathi A, Kanjilal D (2016) Effect of ion irradiation on nanoscale TiS2 systems with suppressed Titania phase. J Phys Conf Ser 765:012007CrossRef
138.
go back to reference Wang Y, Wen J, Fan Z, Bao N, Huang R, Rong T, Wang Y (2015) Energy-filtering-induced high power factor in PbS-nanoparticles-embedded TiS2. AIP Adv 5:047126CrossRef Wang Y, Wen J, Fan Z, Bao N, Huang R, Rong T, Wang Y (2015) Energy-filtering-induced high power factor in PbS-nanoparticles-embedded TiS2. AIP Adv 5:047126CrossRef
139.
go back to reference Tan M, Wang Z, Peng J, Jin X (2015) Facile synthesis of large and thin TiS2 sheets via a gas/molten salt interface reaction. Journal of the American Ceramic Society. 98(5):1423–1428CrossRef Tan M, Wang Z, Peng J, Jin X (2015) Facile synthesis of large and thin TiS2 sheets via a gas/molten salt interface reaction. Journal of the American Ceramic Society. 98(5):1423–1428CrossRef
140.
go back to reference Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder GJ, Yang R (2015) Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nature Mater 14(6):622–627CrossRef Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder GJ, Yang R (2015) Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nature Mater 14(6):622–627CrossRef
141.
go back to reference Barawi M, Flores E, Ponthieu M, Ares JR, Cuevas F, Leardini F, Ferrer I, Sánchez C (2015) Hydrogen storage by titanium based sulfides: nanoribbons (TiS3) and nanoplates (TiS2). J. Electr. Eng. 3:24–29 Barawi M, Flores E, Ponthieu M, Ares JR, Cuevas F, Leardini F, Ferrer I, Sánchez C (2015) Hydrogen storage by titanium based sulfides: nanoribbons (TiS3) and nanoplates (TiS2). J. Electr. Eng. 3:24–29
142.
go back to reference Daou R, Takahashi H, Hébert S, Beaumale M, Guilmeau E, Maignan A (2015) Intrinsic effects of substitution and intercalation on thermal transport in two-dimensional TiS2 single crystals. J Appl Phys 117:165101CrossRef Daou R, Takahashi H, Hébert S, Beaumale M, Guilmeau E, Maignan A (2015) Intrinsic effects of substitution and intercalation on thermal transport in two-dimensional TiS2 single crystals. J Appl Phys 117:165101CrossRef
143.
go back to reference Bourges C, Barbier T, Guélou G, Vaqueiro P, Powell AV, Lebedev OI, Barrier N, Kinemuchi Y, Guilmeau E (2016) Thermoelectric properties of TiS2 mechanically alloyed compounds. J Eur Ceram Soc 36:1183–1189CrossRef Bourges C, Barbier T, Guélou G, Vaqueiro P, Powell AV, Lebedev OI, Barrier N, Kinemuchi Y, Guilmeau E (2016) Thermoelectric properties of TiS2 mechanically alloyed compounds. J Eur Ceram Soc 36:1183–1189CrossRef
144.
go back to reference Beaumale M, Barbier T, Bréard Y, Raveau B, Kinemuchi Y, Funahashi R, Guilmeau E (2014) Mass fluctuation effect in Ti1−xNbxS2 bulk compounds. J Electr Mater 43:1590–1596CrossRef Beaumale M, Barbier T, Bréard Y, Raveau B, Kinemuchi Y, Funahashi R, Guilmeau E (2014) Mass fluctuation effect in Ti1−xNbxS2 bulk compounds. J Electr Mater 43:1590–1596CrossRef
145.
go back to reference Gupta U, Rao BG, Maitra U, Prasad BE, Rao CN (2014) Visible-light-induced generation of H2 by nanocomposites of few-layer TiS2 and TaS2 with CdS nanoparticles. Chem Asian J 9(5):1311–1315CrossRef Gupta U, Rao BG, Maitra U, Prasad BE, Rao CN (2014) Visible-light-induced generation of H2 by nanocomposites of few-layer TiS2 and TaS2 with CdS nanoparticles. Chem Asian J 9(5):1311–1315CrossRef
146.
go back to reference Yin G, Zhao H, Feng J, Sun J, Yan J, Liu Z, Lin S, Liu SF (2018) Low-temperature and facile solution-processed two-dimensional TiS2 as an effective electron transport layer for UV-stable planar perovskite solar cells. J Mater Chem A 6(19):9132–9138CrossRef Yin G, Zhao H, Feng J, Sun J, Yan J, Liu Z, Lin S, Liu SF (2018) Low-temperature and facile solution-processed two-dimensional TiS2 as an effective electron transport layer for UV-stable planar perovskite solar cells. J Mater Chem A 6(19):9132–9138CrossRef
147.
go back to reference Kartick B, Srivastava SK, Mahanty S (2013) TiS2–MWCNT hybrid as high performance anode in lithium-ion battery. J Nanopart Res 15:1950CrossRef Kartick B, Srivastava SK, Mahanty S (2013) TiS2–MWCNT hybrid as high performance anode in lithium-ion battery. J Nanopart Res 15:1950CrossRef
148.
go back to reference Lin C, Zhu X, Feng J, Wu C, Hu S, Peng J, Guo Y, Peng L, Zhao J, Huang J, Yang J (2013) Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J Am Chem Soc 135(13):5144–5151CrossRef Lin C, Zhu X, Feng J, Wu C, Hu S, Peng J, Guo Y, Peng L, Zhao J, Huang J, Yang J (2013) Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J Am Chem Soc 135(13):5144–5151CrossRef
149.
go back to reference Ryu H-S, Kim J-S, Park J-S, Park J-W, Kim K-W, Ahn J-H, Nam T-H, Wang G, Ahn H-J (2012) Electrochemical properties and discharge mechanism of Na/TiS2 cells with liquid electrolyte at room temperature. J Electrochem Soc 160:338CrossRef Ryu H-S, Kim J-S, Park J-S, Park J-W, Kim K-W, Ahn J-H, Nam T-H, Wang G, Ahn H-J (2012) Electrochemical properties and discharge mechanism of Na/TiS2 cells with liquid electrolyte at room temperature. J Electrochem Soc 160:338CrossRef
150.
go back to reference Plashnitsa VV, Vietmeyer F, Petchsang N, Tongying P, Kosel TH, Kuno M (2012) Synthetic strategy and structural and optical characterization of thin highly crystalline titanium disulfide nanosheets. J Phys Chem Lett 3(11):1554–1558CrossRef Plashnitsa VV, Vietmeyer F, Petchsang N, Tongying P, Kosel TH, Kuno M (2012) Synthetic strategy and structural and optical characterization of thin highly crystalline titanium disulfide nanosheets. J Phys Chem Lett 3(11):1554–1558CrossRef
151.
go back to reference Guilmeau E, Breard Y, Maignan A (2011) Transport and thermoelectric properties in copper intercalated TiS2 chalcogenide. Appl Phys Lett 99:052107CrossRef Guilmeau E, Breard Y, Maignan A (2011) Transport and thermoelectric properties in copper intercalated TiS2 chalcogenide. Appl Phys Lett 99:052107CrossRef
152.
go back to reference Prabakar S, Collins S, Northover B, Tilley RD (2011) Colloidal synthesis of inorganic fullerene nanoparticles and hollow spheres of titanium disulfide. Chem Commun 47(1):439–441CrossRef Prabakar S, Collins S, Northover B, Tilley RD (2011) Colloidal synthesis of inorganic fullerene nanoparticles and hollow spheres of titanium disulfide. Chem Commun 47(1):439–441CrossRef
153.
go back to reference He HY (2010) Solvothermal synthesis and photocatalytic activity of S-doped TiO2 and TiS2 powders. Res Chem Intermed 36:155–161CrossRef He HY (2010) Solvothermal synthesis and photocatalytic activity of S-doped TiO2 and TiS2 powders. Res Chem Intermed 36:155–161CrossRef
154.
go back to reference Zhang J, Qin XY, Xin HX, Li D, Song CJ (2011) Thermoelectric properties of Co-doped TiS2. J Electron Mater 40:980–986CrossRef Zhang J, Qin XY, Xin HX, Li D, Song CJ (2011) Thermoelectric properties of Co-doped TiS2. J Electron Mater 40:980–986CrossRef
155.
go back to reference Ma J, Jin H, Liu X, Fleet ME, Li J, Cao X, Feng S (2008) Selective synthesis and formation mechanism of TiS2 dendritic crystals. Cryst Growth Des 8:4460–4464CrossRef Ma J, Jin H, Liu X, Fleet ME, Li J, Cao X, Feng S (2008) Selective synthesis and formation mechanism of TiS2 dendritic crystals. Cryst Growth Des 8:4460–4464CrossRef
156.
go back to reference Alexandru L, David M, Colin RIX, Pandiyan M (2007) Synthesis and optical properties of TiS2 nanoclusters. Rev Roum Chim 52:235–241 Alexandru L, David M, Colin RIX, Pandiyan M (2007) Synthesis and optical properties of TiS2 nanoclusters. Rev Roum Chim 52:235–241
157.
go back to reference Li D, Qin XY, Gu YJ (2006) The effects of bismuth intercalation on structure and thermal conductivity of TiS2. Mater Res Bull 41:282–290CrossRef Li D, Qin XY, Gu YJ (2006) The effects of bismuth intercalation on structure and thermal conductivity of TiS2. Mater Res Bull 41:282–290CrossRef
158.
go back to reference Li D, Qin XY, Zhang J, Li HJ (2006) Enhanced thermoelectric properties of neodymium intercalated compounds NdxTiS2. Phys Lett A 348:379–385CrossRef Li D, Qin XY, Zhang J, Li HJ (2006) Enhanced thermoelectric properties of neodymium intercalated compounds NdxTiS2. Phys Lett A 348:379–385CrossRef
159.
go back to reference Liu J, Yang HS, Gao HX, Li D, Sun CH, Chai YS, Chen XD, Qin XY, Cao LZ (2006) Study on the thermopower of Bi intercalated TiS2: evidence of thin, lens-shaped Fermi pockets. Phys Lett A 360(2):344–347CrossRef Liu J, Yang HS, Gao HX, Li D, Sun CH, Chai YS, Chen XD, Qin XY, Cao LZ (2006) Study on the thermopower of Bi intercalated TiS2: evidence of thin, lens-shaped Fermi pockets. Phys Lett A 360(2):344–347CrossRef
160.
go back to reference Li D, Qin XY, Zhang J, Wang L, Li HJ (2005) Enhanced thermoelectric properties of bismuth intercalated compounds BixTiS2. Solid State Commun 135:237–240CrossRef Li D, Qin XY, Zhang J, Wang L, Li HJ (2005) Enhanced thermoelectric properties of bismuth intercalated compounds BixTiS2. Solid State Commun 135:237–240CrossRef
161.
go back to reference Li D, Qin XY, Zhang J (2006) Improved thermoelectric properties of gadolinium intercalated compounds GdxTiS2 at the temperatures from 5 to 310 K. J Mater Res 21:480–483CrossRef Li D, Qin XY, Zhang J (2006) Improved thermoelectric properties of gadolinium intercalated compounds GdxTiS2 at the temperatures from 5 to 310 K. J Mater Res 21:480–483CrossRef
162.
go back to reference Li D, Qin XY, Liu J, Yang HS (2004) Electrical resistivity and thermopower of intercalation compounds BixTiS2. Phys Lett A 328:493–499CrossRef Li D, Qin XY, Liu J, Yang HS (2004) Electrical resistivity and thermopower of intercalation compounds BixTiS2. Phys Lett A 328:493–499CrossRef
163.
go back to reference Abbott EE, Kolis JW, Lowhorn ND, Sams W, Tritt TM (2003) Thermoelectric properties of TiS2 type materials. In: MRS online proceedings library archive, p 793 Abbott EE, Kolis JW, Lowhorn ND, Sams W, Tritt TM (2003) Thermoelectric properties of TiS2 type materials. In: MRS online proceedings library archive, p 793
164.
go back to reference Carmalt CJ, Parkin IP, Peters ES (2003) Atmospheric pressure chemical vapor deposition of TiS2 thin films on glass. Polyhedron 22:1263–1269CrossRef Carmalt CJ, Parkin IP, Peters ES (2003) Atmospheric pressure chemical vapor deposition of TiS2 thin films on glass. Polyhedron 22:1263–1269CrossRef
165.
go back to reference Wang M, Peng Z, Qian J, Li H, Zhao Z, Fu X (2018) Highly efficient solar-driven photocatalytic degradation on environmental pollutants over a novel C fibers@ MoSe2 nanoplates core-shell composite. J Hazard Mater 347:403–411CrossRef Wang M, Peng Z, Qian J, Li H, Zhao Z, Fu X (2018) Highly efficient solar-driven photocatalytic degradation on environmental pollutants over a novel C fibers@ MoSe2 nanoplates core-shell composite. J Hazard Mater 347:403–411CrossRef
166.
go back to reference Feldman Y, Frey GL, Homyonfer M, Lyakhovitskaya V, Margulis L, Cohen H, Hodes G, Hutchison JL, Tenne R (1996) Bulk synthesis of inorganic fullerene-like MS2 (M= Mo, W) from the respective trioxides and the reaction mechanism. J Am Chem Soc 118:5362–5367CrossRef Feldman Y, Frey GL, Homyonfer M, Lyakhovitskaya V, Margulis L, Cohen H, Hodes G, Hutchison JL, Tenne R (1996) Bulk synthesis of inorganic fullerene-like MS2 (M= Mo, W) from the respective trioxides and the reaction mechanism. J Am Chem Soc 118:5362–5367CrossRef
167.
go back to reference Sekine T, Nakashizu T, Toyoda K, Uchinokura K, Matsuura E (1980) Raman scattering in layered compound 2H-WS2. Solid State Commun 35:371–373CrossRef Sekine T, Nakashizu T, Toyoda K, Uchinokura K, Matsuura E (1980) Raman scattering in layered compound 2H-WS2. Solid State Commun 35:371–373CrossRef
168.
go back to reference Wu Y-C, Liu Z-M, Chen J-T, Cai X-J, Na P (2017) Hydrothermal fabrication of hyacinth flower-like WS2 nanorods and their photocatalytic properties. Mater Lett 189:282–285CrossRef Wu Y-C, Liu Z-M, Chen J-T, Cai X-J, Na P (2017) Hydrothermal fabrication of hyacinth flower-like WS2 nanorods and their photocatalytic properties. Mater Lett 189:282–285CrossRef
169.
go back to reference Man X, Lixin Y, Sun J, Li Songchu (2016) The synthesis and the photocatalytic degradation property of the nano-MoS2. Funct Mater Lett 9:1650065CrossRef Man X, Lixin Y, Sun J, Li Songchu (2016) The synthesis and the photocatalytic degradation property of the nano-MoS2. Funct Mater Lett 9:1650065CrossRef
170.
go back to reference Yang F, Zhang Z, Wang Y, Xu M, Zhao W, Yan J, Chen C (2017) Facile synthesis of nano-MoS2 and its visible light photocatalytic property. Mater Res Bull 87:119–122CrossRef Yang F, Zhang Z, Wang Y, Xu M, Zhao W, Yan J, Chen C (2017) Facile synthesis of nano-MoS2 and its visible light photocatalytic property. Mater Res Bull 87:119–122CrossRef
171.
go back to reference Wang H, Wen F, Li X, Gan X, Yang Y, Chen P, Zhang Y (2016) Cerium-doped MoS2 nanostructures: efficient visible photocatalysis for Cr (VI) removal. Separ Purific Technol 170:190–198CrossRef Wang H, Wen F, Li X, Gan X, Yang Y, Chen P, Zhang Y (2016) Cerium-doped MoS2 nanostructures: efficient visible photocatalysis for Cr (VI) removal. Separ Purific Technol 170:190–198CrossRef
172.
go back to reference Liu P, Liu Y, Ye W, Ma J, Gao D (2016) Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 27:225403CrossRef Liu P, Liu Y, Ye W, Ma J, Gao D (2016) Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 27:225403CrossRef
173.
go back to reference Vattikuti SP, Byon C, Reddy CV (2016) Preparation and improved photocatalytic activity of mesoporous WS2 using combined hydrothermal-evaporation induced self-assembly method. Mater Res Bull 75:193–203CrossRef Vattikuti SP, Byon C, Reddy CV (2016) Preparation and improved photocatalytic activity of mesoporous WS2 using combined hydrothermal-evaporation induced self-assembly method. Mater Res Bull 75:193–203CrossRef
174.
go back to reference Tahir MB, Sohaib M, Rafique M, Sagir M, Rehman NU, Muhammad S Visible light responsive photocatalytic hydrogen evolution using MoS2 incorporated ZnO Tahir MB, Sohaib M, Rafique M, Sagir M, Rehman NU, Muhammad S Visible light responsive photocatalytic hydrogen evolution using MoS2 incorporated ZnO
175.
go back to reference Xu A, Tu W, Shen S, Lin Z, Gao N, Zhong W (2020) BiVO4@ MoS2 core-shell heterojunction with improved photocatalytic activity for discoloration of rhodamine B. Appl Surf Sci 13:146949CrossRef Xu A, Tu W, Shen S, Lin Z, Gao N, Zhong W (2020) BiVO4@ MoS2 core-shell heterojunction with improved photocatalytic activity for discoloration of rhodamine B. Appl Surf Sci 13:146949CrossRef
176.
go back to reference Jiang N, Yi D, Ji P, Liu S, He B, Junnan Q, Wang J, Sun X, Liu Y, Li H (2020) Enhanced photocatalytic activity of novel TiO2/Ag/MoS2/Ag nanocomposites for water-treatment. Ceram Int 46(4):4889–4896CrossRef Jiang N, Yi D, Ji P, Liu S, He B, Junnan Q, Wang J, Sun X, Liu Y, Li H (2020) Enhanced photocatalytic activity of novel TiO2/Ag/MoS2/Ag nanocomposites for water-treatment. Ceram Int 46(4):4889–4896CrossRef
177.
go back to reference Yin S, Chen R, Ji M, Jiang Q, Li K, Chen Z, Xia J, Li H (2020) Construction of ultrathin MoS2/Bi5O7I composites: effective charge separation and increased photocatalytic activity. J Colloid Interf Sci 560:475–484CrossRef Yin S, Chen R, Ji M, Jiang Q, Li K, Chen Z, Xia J, Li H (2020) Construction of ultrathin MoS2/Bi5O7I composites: effective charge separation and increased photocatalytic activity. J Colloid Interf Sci 560:475–484CrossRef
178.
go back to reference Ashraf W, Bansal S, Singh V, Barman S, Khanuja M (2020) BiOCl/WS2 hybrid nanosheet (2D/2D) heterojunctions for visible-light-driven photocatalytic degradation of organic/inorganic water pollutants. RSC Adv 10(42):25073–25088CrossRef Ashraf W, Bansal S, Singh V, Barman S, Khanuja M (2020) BiOCl/WS2 hybrid nanosheet (2D/2D) heterojunctions for visible-light-driven photocatalytic degradation of organic/inorganic water pollutants. RSC Adv 10(42):25073–25088CrossRef
179.
go back to reference Bai X, Yanyan D, Xiaoyun H, He Y, He C, Liu E, Fan J (2018) Synergy removal of Cr (VI) and organic pollutants over RP-MoS2/rGO photocatalyst. Appl Catal B 239:204–213CrossRef Bai X, Yanyan D, Xiaoyun H, He Y, He C, Liu E, Fan J (2018) Synergy removal of Cr (VI) and organic pollutants over RP-MoS2/rGO photocatalyst. Appl Catal B 239:204–213CrossRef
180.
go back to reference Lejbini MB, Sangpour P (2019) Hydrothermal synthesis of α-Fe2O3-decorated MoS2 nanosheets with enhanced photocatalytic activity. Optik 177:112–117CrossRef Lejbini MB, Sangpour P (2019) Hydrothermal synthesis of α-Fe2O3-decorated MoS2 nanosheets with enhanced photocatalytic activity. Optik 177:112–117CrossRef
181.
go back to reference Chai B, Mengqiu X, Yan J, Ren Z (2018) Remarkably enhanced photocatalytic hydrogen evolution over MoS2 nanosheets loaded on uniform CdS nanospheres. Appl Surf Sci 430:523–530CrossRef Chai B, Mengqiu X, Yan J, Ren Z (2018) Remarkably enhanced photocatalytic hydrogen evolution over MoS2 nanosheets loaded on uniform CdS nanospheres. Appl Surf Sci 430:523–530CrossRef
182.
go back to reference Huang S, Chen C, Tsai H, Shaya J, Chungshin L (2018) Photocatalytic degradation of thiobencarb by a visible light-driven MoS2 photocatalyst. Sep Purif Technol 197:147–155CrossRef Huang S, Chen C, Tsai H, Shaya J, Chungshin L (2018) Photocatalytic degradation of thiobencarb by a visible light-driven MoS2 photocatalyst. Sep Purif Technol 197:147–155CrossRef
183.
go back to reference Khan MI, Hasan MS, Bhatti KA, Rizvi H, Wahab A, Rehman SU, Afzal MJ, Nazneen A, Nazir A, Iqbal M (2020) Effect of Ni doping on the structural, optical and photocatalytic activity of MoS2, prepared by hydrothermal method. Mater Res Expr 7(1):015061CrossRef Khan MI, Hasan MS, Bhatti KA, Rizvi H, Wahab A, Rehman SU, Afzal MJ, Nazneen A, Nazir A, Iqbal M (2020) Effect of Ni doping on the structural, optical and photocatalytic activity of MoS2, prepared by hydrothermal method. Mater Res Expr 7(1):015061CrossRef
184.
go back to reference Rahimi K, Moradi M, Dehghan R, Yazdani Ahmad (2019) Enhancement of sunlight-induced photocatalytic activity of ZnO nanorods by few-layer MoS2 nanosheets. Mater Lett 234:134–137CrossRef Rahimi K, Moradi M, Dehghan R, Yazdani Ahmad (2019) Enhancement of sunlight-induced photocatalytic activity of ZnO nanorods by few-layer MoS2 nanosheets. Mater Lett 234:134–137CrossRef
185.
go back to reference Saha S, Chaudhary N, Mittal H, Gupta G, Khanuja M (2019) Inorganic–organic nanohybrid of MoS 2-PANI for advanced photocatalytic application. Int Nano Lett 9(2):127–139CrossRef Saha S, Chaudhary N, Mittal H, Gupta G, Khanuja M (2019) Inorganic–organic nanohybrid of MoS 2-PANI for advanced photocatalytic application. Int Nano Lett 9(2):127–139CrossRef
186.
go back to reference Siddiqui I, Mittal H, Kohli VK, Gautam P, Ali M, Khanuja M (2018) Hydrothermally synthesized micron sized, broom-shaped MoSe2 nanostructures for superior photocatalytic water purification. Mater Res Expr 5(12):125020CrossRef Siddiqui I, Mittal H, Kohli VK, Gautam P, Ali M, Khanuja M (2018) Hydrothermally synthesized micron sized, broom-shaped MoSe2 nanostructures for superior photocatalytic water purification. Mater Res Expr 5(12):125020CrossRef
187.
go back to reference Elangovan E, Sivakumar T, Brindha A, Thamaraiselvi K, Sakthivel K, Kathiravan K, Aishwarya S (2019) Visible active N-doped TiO2/WS2 heterojunction nano rods: synthesis, characterization and photocatalytic activity. J Nanosci Nanotechnol 19(8):4429–4437CrossRef Elangovan E, Sivakumar T, Brindha A, Thamaraiselvi K, Sakthivel K, Kathiravan K, Aishwarya S (2019) Visible active N-doped TiO2/WS2 heterojunction nano rods: synthesis, characterization and photocatalytic activity. J Nanosci Nanotechnol 19(8):4429–4437CrossRef
188.
go back to reference Koyyada G, Vattikuti SVP, Shome S, Shim J, Chitturi V, Jung JH (2019) Enhanced solar light-driven photocatalytic degradation of pollutants and hydrogen evolution over exfoliated hexagonal WS2 platelets. Mater Res Bull 109:246–254CrossRef Koyyada G, Vattikuti SVP, Shome S, Shim J, Chitturi V, Jung JH (2019) Enhanced solar light-driven photocatalytic degradation of pollutants and hydrogen evolution over exfoliated hexagonal WS2 platelets. Mater Res Bull 109:246–254CrossRef
189.
go back to reference Sharma M, Mohapatra PK, Bahadur D (2017) Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite. Front Mater Sci 11(4):366–374CrossRef Sharma M, Mohapatra PK, Bahadur D (2017) Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite. Front Mater Sci 11(4):366–374CrossRef
190.
go back to reference Zhang X, Qiu F, Rong X, Jicheng X, Rong J, Zhang T (2018) Zinc oxide/graphene-like tungsten disulphide nanosheet photocatalysts: Synthesis and enhanced photocatalytic activity under visible-light irradiation. Can J Chem Eng 96(5):1053–1061CrossRef Zhang X, Qiu F, Rong X, Jicheng X, Rong J, Zhang T (2018) Zinc oxide/graphene-like tungsten disulphide nanosheet photocatalysts: Synthesis and enhanced photocatalytic activity under visible-light irradiation. Can J Chem Eng 96(5):1053–1061CrossRef
191.
go back to reference Vincent T, Guibal E (2003) Chitosan-supported palladium catalyst 3. Influence of experimental parameters on nitrophenol degradation. Langmuir 19:8475–8483CrossRef Vincent T, Guibal E (2003) Chitosan-supported palladium catalyst 3. Influence of experimental parameters on nitrophenol degradation. Langmuir 19:8475–8483CrossRef
192.
go back to reference Parvaz M, Salah NA, Khan ZH (2018) Effect of ZnO nanoparticles doping on the optical properties of TiS2 discs. Optik 171:183–189CrossRef Parvaz M, Salah NA, Khan ZH (2018) Effect of ZnO nanoparticles doping on the optical properties of TiS2 discs. Optik 171:183–189CrossRef
193.
go back to reference Ethiraj AS, Kang DJ (2012) Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res Lett 7:70CrossRef Ethiraj AS, Kang DJ (2012) Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res Lett 7:70CrossRef
194.
go back to reference Luo W, Lorger S, Wang B, Bommier C, Ji X (2014) Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures. Chem Commun 50:5435–5437CrossRef Luo W, Lorger S, Wang B, Bommier C, Ji X (2014) Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures. Chem Commun 50:5435–5437CrossRef
195.
go back to reference Jeong S, Yoo D, Jang J-t, Kim M, Cheon J (2012) Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J Am Chem Soc 134:18233–18236CrossRef Jeong S, Yoo D, Jang J-t, Kim M, Cheon J (2012) Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J Am Chem Soc 134:18233–18236CrossRef
196.
go back to reference Let AL, Mainwaring DE, Rix C, Murugaraj P (2008) Thio sol–gel synthesis of titanium disulfide thin films and powders using titanium alkoxide precursors. J Non-Cryst Solids 354:1801–1807CrossRef Let AL, Mainwaring DE, Rix C, Murugaraj P (2008) Thio sol–gel synthesis of titanium disulfide thin films and powders using titanium alkoxide precursors. J Non-Cryst Solids 354:1801–1807CrossRef
197.
go back to reference Yu J-G, Yu H-, Cheng B, Zhao X-J, Yu JC, Ho W-K (2003) The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B 107:13871–13879CrossRef Yu J-G, Yu H-, Cheng B, Zhao X-J, Yu JC, Ho W-K (2003) The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B 107:13871–13879CrossRef
198.
go back to reference Wei C, Chen Xi, Li D, Huimin S, He H, Dai J-F (2016) Bound exciton and free exciton states in GaSe thin slab. Scient Rep 6:33890CrossRef Wei C, Chen Xi, Li D, Huimin S, He H, Dai J-F (2016) Bound exciton and free exciton states in GaSe thin slab. Scient Rep 6:33890CrossRef
199.
go back to reference Xie J, Lü X, Chen M, Zhao G, Song Y, Lu S (2008) The synthesis, characterization and photocatalytic activity of V (V), Pb (II), Ag (I) and Co (II)-doped Bi2O3. Dyes Pigm 77:43–47CrossRef Xie J, Lü X, Chen M, Zhao G, Song Y, Lu S (2008) The synthesis, characterization and photocatalytic activity of V (V), Pb (II), Ag (I) and Co (II)-doped Bi2O3. Dyes Pigm 77:43–47CrossRef
200.
go back to reference Mittal H, Kumar A, Khanuja M (2019) In-situ oxidative polymerization of aniline on hydrothermally synthesized MoSe2 for enhanced photocatalytic degradation of organic dyes. J Saudi Chem Soc Mittal H, Kumar A, Khanuja M (2019) In-situ oxidative polymerization of aniline on hydrothermally synthesized MoSe2 for enhanced photocatalytic degradation of organic dyes. J Saudi Chem Soc
201.
go back to reference Zhang J, Kang W, Jiang M, You Y, Cao Y, Ng T-W, Denis YW, Lee C-S, Xu J (2017) Conversion of 1T-MoSe2 to 2H-MoS2xSe2−2x mesoporous nanospheres for superior sodium storage performance. Nanoscale 9:1484–1490CrossRef Zhang J, Kang W, Jiang M, You Y, Cao Y, Ng T-W, Denis YW, Lee C-S, Xu J (2017) Conversion of 1T-MoSe2 to 2H-MoS2xSe2−2x mesoporous nanospheres for superior sodium storage performance. Nanoscale 9:1484–1490CrossRef
202.
go back to reference Ye Z, Kong L, Chen F, Chen Z, Lin Y, Liu C (2018) A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes. Optik 164:345–354CrossRef Ye Z, Kong L, Chen F, Chen Z, Lin Y, Liu C (2018) A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes. Optik 164:345–354CrossRef
203.
go back to reference Sadaiyandi K, Kennedy A, Sagadevan S, Chowdhury ZZ, Johan MR, Aziz FA, Rafique RF, Selvi RT (2018) Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res Lett 13:229CrossRef Sadaiyandi K, Kennedy A, Sagadevan S, Chowdhury ZZ, Johan MR, Aziz FA, Rafique RF, Selvi RT (2018) Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res Lett 13:229CrossRef
Metadata
Title
Synthesis and Photocatalytic Properties of 2D Transition Metal Dichalcogenides
Authors
Mohd. Parvaz
Hasan Abbas
Zishan H. Khan
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9904-0_1

Premium Partners