Skip to main content
Top

2019 | OriginalPaper | Chapter

16. Synthesis and Properties of Hydrogels Prepared by Various Polymerization Reaction Systems

Authors : Nalini Ranganathan, R. Joseph Bensingh, M. Abdul Kader, Sanjay K. Nayak

Published in: Cellulose-Based Superabsorbent Hydrogels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Among all biomass, cellulose is the most abundant renewable polysaccharide in nature, accounting for approximately 40% of the lignocellulosic biomass. The ability of cellulose to absorb enormous amounts of water has prompted the large use of cellulose in preparation of various hydrogels. Cellulose-based hydrogels are generally synthesized by two steps, (i) solubilization of cellulose fibers or powder and (ii) physical and/or chemical cross-linking, in order to obtain a three-dimensional network of hydrophilic polymer chains. The physical synthesizing method includes ionic interaction, hydrophobic interaction, and hydrogen bond formation, whereas the chemically cross-linked hydrogel preparation involves different polymerization techniques such as chain-growth polymerization, irradiation polymerization, and step-growth polymerization. Further, another technique such as bulk polymerization is also used to form gels mainly using lactic acid as monomer. Indeed, the high density of free hydroxyl groups present in the cellulose structure permits them to undergo functionalization/chemical modification, which allows producing cellulose derivatives. The properties of cellulosic hydrogels change based on the different environmental stimuli. The external stimulus includes pH, temperature, light, electric or magnetic field, mechanical stress, etc. The responses of the hydrogel based on the exposure to different stimuli are discussed in this chapter. However, the cellulose hydrogels basically have good biocompatibility and non-toxicity combined with relevant mechanical properties. They showed highest absorption capacity, the swelling/deswelling behavior, and its rate depends on various factors such as particle size, porosity, solvent concentration, cross-linking density, etc. The swell behavior is addressed using various kinetic models such as Fickian, non-Fickian, and Flory. Further, biodegradation, mechanical, and rheological properties variation with respect to cross-linking density and other parameters (shape, pore size, reinforcement, etc.) and stimuli are considered and discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels a review. Saudi Pharm J 24(5):554–559CrossRefPubMed Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels a review. Saudi Pharm J 24(5):554–559CrossRefPubMed
2.
go back to reference Ciolacu D, Oprea AM, Anghel N, Cazacu G, Cazacu M (2012) New cellulose-lignin and their application in controlled release of polyphenols. Mater Sci Eng C 32:452–463CrossRef Ciolacu D, Oprea AM, Anghel N, Cazacu G, Cazacu M (2012) New cellulose-lignin and their application in controlled release of polyphenols. Mater Sci Eng C 32:452–463CrossRef
3.
go back to reference Wu J, Liang S, Dai H, Zhang X, Yu X, Cai Y, Zhang L, Wen N, Jiang B, Xu J (2010) Structure and properties of cellulose/chitin blended hydrogel membranes fabricated via a solution pre-gelation technique. Carbohydr Polym 79:677–684CrossRef Wu J, Liang S, Dai H, Zhang X, Yu X, Cai Y, Zhang L, Wen N, Jiang B, Xu J (2010) Structure and properties of cellulose/chitin blended hydrogel membranes fabricated via a solution pre-gelation technique. Carbohydr Polym 79:677–684CrossRef
4.
go back to reference Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5(4):810–823CrossRefPubMedPubMedCentral Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5(4):810–823CrossRefPubMedPubMedCentral
5.
go back to reference Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75CrossRef Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75CrossRef
6.
go back to reference Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688CrossRef Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688CrossRef
7.
go back to reference Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53CrossRef Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53CrossRef
8.
go back to reference Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209(12):1266–1273CrossRef Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209(12):1266–1273CrossRef
10.
go back to reference Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Inst Methods Phys Res Sect B 151:56–64CrossRef Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Inst Methods Phys Res Sect B 151:56–64CrossRef
11.
go back to reference Okay O (2015) Self-healing hydrogels formed via hydrophobic interactions. In: Seiffert S (ed) Supramolecular polymer networks and gels. Advances in polymer science, vol 268. Springer, Berlin, pp 101–142 Okay O (2015) Self-healing hydrogels formed via hydrophobic interactions. In: Seiffert S (ed) Supramolecular polymer networks and gels. Advances in polymer science, vol 268. Springer, Berlin, pp 101–142
13.
go back to reference Saini K (2017) Preparation method, properties and crosslinking of hydrogel: a review. Pharmatutor 5(1):27–36 Saini K (2017) Preparation method, properties and crosslinking of hydrogel: a review. Pharmatutor 5(1):27–36
14.
go back to reference Martínez-Ruvalcaba A, Chornet E, Rodrigue D (2007) Viscoelastic properties of dispersed chitosan/xanthan hydrogels. Carbohydr Polym 67(4):586–595CrossRef Martínez-Ruvalcaba A, Chornet E, Rodrigue D (2007) Viscoelastic properties of dispersed chitosan/xanthan hydrogels. Carbohydr Polym 67(4):586–595CrossRef
16.
go back to reference Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel− sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12(4):1087–1109CrossRefPubMed Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel− sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12(4):1087–1109CrossRefPubMed
17.
go back to reference Wen Qi, Dong Yi (2016) Fundamentals of hydrogels. In: Demirci U, Khademhosseini A (eds) Gels handbook fundamentals, properties and application. World Scientific Publications, Singapore. ISBN 978-981-4656-13-9 Wen Qi, Dong Yi (2016) Fundamentals of hydrogels. In: Demirci U, Khademhosseini A (eds) Gels handbook fundamentals, properties and application. World Scientific Publications, Singapore. ISBN 978-981-4656-13-9
18.
go back to reference Vasquez JM, Tumolva TP (2015) Synthesis and characterization of a self-assembling hydrogel from water-soluble cellulose derivatives and sodium hydroxide/thiourea solution. Am J Chem 5(2):60–65 Vasquez JM, Tumolva TP (2015) Synthesis and characterization of a self-assembling hydrogel from water-soluble cellulose derivatives and sodium hydroxide/thiourea solution. Am J Chem 5(2):60–65
19.
go back to reference Tibbitt MW, Kloxin AM, Sawicki LA, Anseth KS (2013) Mechanical properties and degradation of chain and step polymerized photodegradable hydrogels. Macromolecules 46:2785–2792CrossRefPubMedCentral Tibbitt MW, Kloxin AM, Sawicki LA, Anseth KS (2013) Mechanical properties and degradation of chain and step polymerized photodegradable hydrogels. Macromolecules 46:2785–2792CrossRefPubMedCentral
20.
21.
go back to reference Ifkovits JL, Burdick JA (2007) Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13(10):2369–2385CrossRefPubMed Ifkovits JL, Burdick JA (2007) Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13(10):2369–2385CrossRefPubMed
22.
go back to reference Sannino A, Esposito A, Nicolais L, Del Nobile MA, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci Mater Med 11(4):247–253CrossRefPubMed Sannino A, Esposito A, Nicolais L, Del Nobile MA, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci Mater Med 11(4):247–253CrossRefPubMed
23.
go back to reference Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti PA, Ambrosio L, Nicolais L (2004) Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 5(1):92–96CrossRefPubMed Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti PA, Ambrosio L, Nicolais L (2004) Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 5(1):92–96CrossRefPubMed
24.
go back to reference Sannino A, Pappada S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polym J 46(25):11206–11212CrossRef Sannino A, Pappada S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polym J 46(25):11206–11212CrossRef
25.
go back to reference Sannino A, Nicolais L (2005) Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels. Polym J 46(13):4676–4685CrossRef Sannino A, Nicolais L (2005) Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels. Polym J 46(13):4676–4685CrossRef
26.
go back to reference Suo A, Qian J, Yao Y, Zhang W (2005) Synthesis and properties of carboxymethyl cellulose-graft-poly(acrylic acid-co-acrylamide) as a novel cellulose-based superabsorbent. J Appl Polym Sci 103(3):1382–1388CrossRef Suo A, Qian J, Yao Y, Zhang W (2005) Synthesis and properties of carboxymethyl cellulose-graft-poly(acrylic acid-co-acrylamide) as a novel cellulose-based superabsorbent. J Appl Polym Sci 103(3):1382–1388CrossRef
27.
go back to reference Qiu X, Hu S (2013) Smart materials based on cellulose: a review of the preparations, properties, and applications. Dent Mater 6(3):738–781 Qiu X, Hu S (2013) Smart materials based on cellulose: a review of the preparations, properties, and applications. Dent Mater 6(3):738–781
28.
go back to reference Liao Q, Shao Q, Qiu G, Lu X (2012) Methacrylic acid-triggered phase transition behavior of thermosensitive hydroxypropylcellulose. Carbohydr Polym 89:1301–1304CrossRefPubMed Liao Q, Shao Q, Qiu G, Lu X (2012) Methacrylic acid-triggered phase transition behavior of thermosensitive hydroxypropylcellulose. Carbohydr Polym 89:1301–1304CrossRefPubMed
29.
go back to reference Chen Y, Ding D, Mao Z, He Y, Hu Y, Wu W, Jiang X (2008) Synthesis of hydroxypropylcellulose-poly(acrylic acid) particles with semi-interpenetrating polymer network structure. Biomacromolecules 9:2609–2614CrossRefPubMed Chen Y, Ding D, Mao Z, He Y, Hu Y, Wu W, Jiang X (2008) Synthesis of hydroxypropylcellulose-poly(acrylic acid) particles with semi-interpenetrating polymer network structure. Biomacromolecules 9:2609–2614CrossRefPubMed
30.
go back to reference Demirel GB, Caykara T, Demiray M, Guru M (2009) Effect of pore-forming agent type on swelling properties of macroporous poly(N-[3-(dimethylaminopropyl)]-methacrylamide-co-acrylamide) hydrogels. J Macromol Sci A Pure Appl Chem 46:58–64CrossRef Demirel GB, Caykara T, Demiray M, Guru M (2009) Effect of pore-forming agent type on swelling properties of macroporous poly(N-[3-(dimethylaminopropyl)]-methacrylamide-co-acrylamide) hydrogels. J Macromol Sci A Pure Appl Chem 46:58–64CrossRef
34.
go back to reference Kołodyńska D, Skiba A, Górecka B, Hubicki Z (2016) Hydrogels from fundaments to application, emerging concepts. In: Sutapa Biswas Majee (ed) Analysis and applications of hydrogels. IntechOpen, India. ISBN 978-953-51-2510-5, Print ISBN 978-953-51-2509-9 Kołodyńska D, Skiba A, Górecka B, Hubicki Z (2016) Hydrogels from fundaments to application, emerging concepts. In: Sutapa Biswas Majee (ed) Analysis and applications of hydrogels. IntechOpen, India. ISBN 978-953-51-2510-5, Print ISBN 978-953-51-2509-9
35.
go back to reference Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314CrossRefPubMed Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314CrossRefPubMed
37.
go back to reference Decker C (1987) UV-curing chemistry: past, present and future. J Coatings Technol 59:97–106 Decker C (1987) UV-curing chemistry: past, present and future. J Coatings Technol 59:97–106
38.
go back to reference Frediani M, Giachi G, Rosi L, Frediani P (2011) Ch. 9 Synthesis and processing of biodegradable and bio-based polymers by microwave irradiation. In: Chandra U (ed) Microwave heating. In Tech, United Kingdom. ISBN 978-953-307-573-0, p 382. https://doi.org/10.5772/23692 Frediani M, Giachi G, Rosi L, Frediani P (2011) Ch. 9 Synthesis and processing of biodegradable and bio-based polymers by microwave irradiation. In: Chandra U (ed) Microwave heating. In Tech, United Kingdom. ISBN 978-953-307-573-0, p 382. https://​doi.​org/​10.​5772/​23692
39.
go back to reference Reeves R, Ribeiro A, Lombardo L, Boyer R, Leach JB (2010) Synthesis and characterization of carboxymethylcellulose-methacrylate hydrogel cell scaffolds. Polymer 2(3):252–264CrossRef Reeves R, Ribeiro A, Lombardo L, Boyer R, Leach JB (2010) Synthesis and characterization of carboxymethylcellulose-methacrylate hydrogel cell scaffolds. Polymer 2(3):252–264CrossRef
41.
go back to reference Coates EE, Riggin CN, Fishe JP (2013) Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis. J Biomed Mater Res A 101:1962–1970CrossRefPubMed Coates EE, Riggin CN, Fishe JP (2013) Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis. J Biomed Mater Res A 101:1962–1970CrossRefPubMed
42.
go back to reference Mohd Amin MCI, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88(2):465–473CrossRef Mohd Amin MCI, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88(2):465–473CrossRef
43.
go back to reference Alla SG, Sen M, El-Naggar AW (2012) Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydr Polym 89(2):478–485CrossRef Alla SG, Sen M, El-Naggar AW (2012) Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydr Polym 89(2):478–485CrossRef
44.
go back to reference Panda A, Manohar SB, Sabharwal S, Bhardwaj YK, Majali AB (2000) Synthesis and swelling characteristics of poly (N-isopropylacrylamide) temperature sensitive hydrogels crosslinked by electron beam irradiation. Radiat Phys Chem 58(1):101–110CrossRef Panda A, Manohar SB, Sabharwal S, Bhardwaj YK, Majali AB (2000) Synthesis and swelling characteristics of poly (N-isopropylacrylamide) temperature sensitive hydrogels crosslinked by electron beam irradiation. Radiat Phys Chem 58(1):101–110CrossRef
45.
go back to reference Said HM, Alla SG, El-Naggar AW (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61(3):397–404CrossRef Said HM, Alla SG, El-Naggar AW (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61(3):397–404CrossRef
46.
go back to reference Kudaibergenov S, Jaeger W, Laschewsky A (2006) Polymeric betaines: synthesis, characterization, and application. In: Supramolecular polymers polymeric betains oligomers. Advances in polymer science, vol 201. Springer, Berlin/Heidelberg Kudaibergenov S, Jaeger W, Laschewsky A (2006) Polymeric betaines: synthesis, characterization, and application. In: Supramolecular polymers polymeric betains oligomers. Advances in polymer science, vol 201. Springer, Berlin/Heidelberg
47.
go back to reference Fei B, Chen C, Chen S, Peng S, Zhuang Y, An Y, Dong L (2004) Crosslinking of poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] using dicumyl peroxide as initiator. Polym Int 53(7):937–943CrossRef Fei B, Chen C, Chen S, Peng S, Zhuang Y, An Y, Dong L (2004) Crosslinking of poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] using dicumyl peroxide as initiator. Polym Int 53(7):937–943CrossRef
48.
go back to reference Darwis D, Mitomo H, Enjoji T, Yoshii F, Makuuchi K (1998) Heat resistance of radiation crosslinked poly (ε-caprolactone). J Appl Polym Sci 68:581–588CrossRef Darwis D, Mitomo H, Enjoji T, Yoshii F, Makuuchi K (1998) Heat resistance of radiation crosslinked poly (ε-caprolactone). J Appl Polym Sci 68:581–588CrossRef
49.
go back to reference Darwis D, Nishimura K, Mitomo H, Yoshii F (1999) Improvement of processability of poly (ε-caprolactone) by radiation techniques. J Appl Polym Sci 74(7):1815–1820CrossRef Darwis D, Nishimura K, Mitomo H, Yoshii F (1999) Improvement of processability of poly (ε-caprolactone) by radiation techniques. J Appl Polym Sci 74(7):1815–1820CrossRef
50.
go back to reference Liu P, Zhai M, Li J, Peng J, Wu J (2002) Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat Phys Chem 63:525–528CrossRef Liu P, Zhai M, Li J, Peng J, Wu J (2002) Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat Phys Chem 63:525–528CrossRef
51.
go back to reference Wach RA, Mitomo H, Yoshii F, Kume T (2001) Hydrogel of biodegradable cellulose derivatives. II. Effect of some factors on radiation-induced crosslinking of CMC. J Appl Polym Sci 81:3030–3037CrossRef Wach RA, Mitomo H, Yoshii F, Kume T (2001) Hydrogel of biodegradable cellulose derivatives. II. Effect of some factors on radiation-induced crosslinking of CMC. J Appl Polym Sci 81:3030–3037CrossRef
52.
53.
go back to reference Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Dent Mater 2(2):353–373 Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Dent Mater 2(2):353–373
54.
go back to reference Kharkar PM, Kiick KL, Kloxin AM (2013) Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev 42(17):7335–7372CrossRefPubMedPubMedCentral Kharkar PM, Kiick KL, Kloxin AM (2013) Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev 42(17):7335–7372CrossRefPubMedPubMedCentral
55.
go back to reference Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360CrossRef Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360CrossRef
56.
go back to reference Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11(1–2):1–35CrossRef Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11(1–2):1–35CrossRef
57.
go back to reference Shiotani A, Mori T, Niidome T, Niidome Y, Katayama Y (2007) Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir 23(7):4012–4018CrossRefPubMed Shiotani A, Mori T, Niidome T, Niidome Y, Katayama Y (2007) Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir 23(7):4012–4018CrossRefPubMed
58.
go back to reference Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339CrossRefPubMed Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339CrossRefPubMed
60.
go back to reference Zhang K, Luo Y, Li Z (2007) Synthesis and characterization of a pH-and ionic strength-responsive hydrogel. Soft Mater 5(4):183–195CrossRef Zhang K, Luo Y, Li Z (2007) Synthesis and characterization of a pH-and ionic strength-responsive hydrogel. Soft Mater 5(4):183–195CrossRef
61.
go back to reference Adel AM, Abou-Youssef H, El-Gendy AA, Nada AM (2010) Carboxymethylated cellulose hydrogel; sorption behavior and characterization. Nat Sci 8(8):244–256 Adel AM, Abou-Youssef H, El-Gendy AA, Nada AM (2010) Carboxymethylated cellulose hydrogel; sorption behavior and characterization. Nat Sci 8(8):244–256
62.
go back to reference Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65(9):1148–1171CrossRefPubMed Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65(9):1148–1171CrossRefPubMed
63.
go back to reference De SK, Aluru N, Johnson B, Crone W, Beebe DJ, Moore J (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromech Syst 11:544–555CrossRef De SK, Aluru N, Johnson B, Crone W, Beebe DJ, Moore J (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromech Syst 11:544–555CrossRef
64.
go back to reference Onofrei MD, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Mendez-Vilas A, Solano-Martin A (eds) Polymer science: research advances, practical applications and educational aspects. Formatex Research Center Publication, Spain. pp 108–120. ISBN: 978-84-942134-8-9 Onofrei MD, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Mendez-Vilas A, Solano-Martin A (eds) Polymer science: research advances, practical applications and educational aspects. Formatex Research Center Publication, Spain. pp 108–120. ISBN: 978-84-942134-8-9
65.
go back to reference Jarry C, Leroux JC, Haeck J, Chaput C (2002) Irradiating or autoclaving chitosan/polyol solutions: effect on thermogelling chitosan-β-glycerophosphate systems. Chem Pharm Bull 50(10):1335–1340CrossRef Jarry C, Leroux JC, Haeck J, Chaput C (2002) Irradiating or autoclaving chitosan/polyol solutions: effect on thermogelling chitosan-β-glycerophosphate systems. Chem Pharm Bull 50(10):1335–1340CrossRef
66.
go back to reference Schuetz YB, Gurny R, Jordan O (2008) A novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 68(1):19–25CrossRefPubMed Schuetz YB, Gurny R, Jordan O (2008) A novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 68(1):19–25CrossRefPubMed
67.
go back to reference Schild H (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249CrossRef Schild H (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249CrossRef
68.
go back to reference Gao X, Cao Y, Song X, Zhang Z, Xiao C, He C, Chen X (2013) pH-and thermo-responsive poly(N-isopropylacrylamide-co-acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups. J Mater Chem B 1:5578–5587CrossRefPubMed Gao X, Cao Y, Song X, Zhang Z, Xiao C, He C, Chen X (2013) pH-and thermo-responsive poly(N-isopropylacrylamide-co-acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups. J Mater Chem B 1:5578–5587CrossRefPubMed
69.
go back to reference Meléndez-Ortiz HI, Varca GH, Lugão AB, Bucio E (2015) Smart polymers and coatings obtained by ionizing radiation: synthesis and biomedical applications. J Polym Chem 5(03):17 Meléndez-Ortiz HI, Varca GH, Lugão AB, Bucio E (2015) Smart polymers and coatings obtained by ionizing radiation: synthesis and biomedical applications. J Polym Chem 5(03):17
70.
go back to reference Tomatsu I, Peng K, Kros A (2011) Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev 63(14):1257–1266CrossRefPubMed Tomatsu I, Peng K, Kros A (2011) Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev 63(14):1257–1266CrossRefPubMed
71.
go back to reference Bawa P, Pillay V, Choonara YE, Du Toit LC (2009) Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 4(2):022001CrossRefPubMed Bawa P, Pillay V, Choonara YE, Du Toit LC (2009) Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 4(2):022001CrossRefPubMed
72.
go back to reference Sanna R, Fortunati E, Alzari V, Nuvoli D, Terenzi A, Casula MF, Kenny JM, Mariani A (2013) Poly (N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels. Cellulose 20(5):2393–2402CrossRef Sanna R, Fortunati E, Alzari V, Nuvoli D, Terenzi A, Casula MF, Kenny JM, Mariani A (2013) Poly (N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels. Cellulose 20(5):2393–2402CrossRef
73.
go back to reference Gong JP, Nitta T, Osada Y (1994) Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. One-dimensional capillary model. J Phys Chem 98(38):9583–9587CrossRef Gong JP, Nitta T, Osada Y (1994) Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. One-dimensional capillary model. J Phys Chem 98(38):9583–9587CrossRef
74.
go back to reference Budtova T, Suleimenov I, Frenkel S (1995) Electrokinetics of the contraction of a polyelectrolyte hydrogel under the influence of constant electric current. Polym Gels Networks 3(3):387–393CrossRef Budtova T, Suleimenov I, Frenkel S (1995) Electrokinetics of the contraction of a polyelectrolyte hydrogel under the influence of constant electric current. Polym Gels Networks 3(3):387–393CrossRef
75.
go back to reference Shang J, Shao Z, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. Biomaterials 9(4):1208–1213 Shang J, Shao Z, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. Biomaterials 9(4):1208–1213
76.
go back to reference Kim J, Wang N, Chen Y, Lee SK, Yun GY (2007) Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate. Cellulose 14(3):217–223CrossRef Kim J, Wang N, Chen Y, Lee SK, Yun GY (2007) Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate. Cellulose 14(3):217–223CrossRef
77.
go back to reference Wallace M, Cardoso AZ, Frith WJ, Iggo JA, Adams DJ (2014) Magnetically aligned supramolecular hydrogels. Chem Eur J 20(50):16484–16487CrossRefPubMed Wallace M, Cardoso AZ, Frith WJ, Iggo JA, Adams DJ (2014) Magnetically aligned supramolecular hydrogels. Chem Eur J 20(50):16484–16487CrossRefPubMed
78.
go back to reference Zhao W, Odelius K, Edlund U, Zhao C, Albertsson AC (2015) In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules 16(8):2522–2528CrossRefPubMedPubMedCentral Zhao W, Odelius K, Edlund U, Zhao C, Albertsson AC (2015) In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules 16(8):2522–2528CrossRefPubMedPubMedCentral
79.
go back to reference Chatterjee J, Haik Y, Chen CJ (2001) Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres. J Magn Magn Mater 225(1):21–29CrossRef Chatterjee J, Haik Y, Chen CJ (2001) Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres. J Magn Magn Mater 225(1):21–29CrossRef
80.
go back to reference Popovic Z, Sjöstrand J (2001) Resolution, separation of retinal ganglion cells, and cortical magnification in humans. Vis Res 41(10):1313–1319CrossRefPubMed Popovic Z, Sjöstrand J (2001) Resolution, separation of retinal ganglion cells, and cortical magnification in humans. Vis Res 41(10):1313–1319CrossRefPubMed
81.
go back to reference Liberti PA, Rao CG, Terstappen LW (2001) Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood. J Magn Magn Mater 225(1):301–307CrossRef Liberti PA, Rao CG, Terstappen LW (2001) Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood. J Magn Magn Mater 225(1):301–307CrossRef
82.
go back to reference Shinkai M, Yanase M, Suzuki M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1999) Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater 194(1):176–184CrossRef Shinkai M, Yanase M, Suzuki M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1999) Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater 194(1):176–184CrossRef
83.
go back to reference Eichler S, Ramon O, Cohen Y, Mizrahi S (2002) Swelling and contraction drove mass transfer processes during osmotic dehydration of uncharged hydrogels. Int J Food Sci Technol 37(3):245–253CrossRef Eichler S, Ramon O, Cohen Y, Mizrahi S (2002) Swelling and contraction drove mass transfer processes during osmotic dehydration of uncharged hydrogels. Int J Food Sci Technol 37(3):245–253CrossRef
85.
go back to reference Gupta S, Sinha S, Sinha A (2010) Composition dependent mechanical response of transparent poly (vinyl alcohol) hydrogels. Colloids Surf B Biointerfaces 78(1):115–119CrossRefPubMed Gupta S, Sinha S, Sinha A (2010) Composition dependent mechanical response of transparent poly (vinyl alcohol) hydrogels. Colloids Surf B Biointerfaces 78(1):115–119CrossRefPubMed
86.
go back to reference Feng D, Bai B, Wang H, Suo Y (2016) Enhanced mechanical stability and sensitive swelling performance of chitosan/yeast hybrid hydrogel beads. New J Chem 40(4):3350–3362CrossRef Feng D, Bai B, Wang H, Suo Y (2016) Enhanced mechanical stability and sensitive swelling performance of chitosan/yeast hybrid hydrogel beads. New J Chem 40(4):3350–3362CrossRef
87.
go back to reference Sannino A, Mensitieri G, Nicolais L (2004) Water and synthetic urine sorption capacity of cellulose based hydrogels under a compressive stress field. J Appl Polym Sci 91:3791–3796CrossRef Sannino A, Mensitieri G, Nicolais L (2004) Water and synthetic urine sorption capacity of cellulose based hydrogels under a compressive stress field. J Appl Polym Sci 91:3791–3796CrossRef
88.
go back to reference Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 64:163–174CrossRef Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 64:163–174CrossRef
89.
go back to reference Vashuk EV, Vorobieva EV, Basalyga II, Krutko NP (2001) Water-absorbing properties of hydrogels based on polymeric complexes. Mater Res Innov 4(5–6):350–352CrossRef Vashuk EV, Vorobieva EV, Basalyga II, Krutko NP (2001) Water-absorbing properties of hydrogels based on polymeric complexes. Mater Res Innov 4(5–6):350–352CrossRef
90.
go back to reference Xiao M, Hu J, Zhang L (2014) Synthesis and swelling behavior of biodegradable cellulose-based hydrogels. Adv Mater Res 1033–1034:352–356CrossRef Xiao M, Hu J, Zhang L (2014) Synthesis and swelling behavior of biodegradable cellulose-based hydrogels. Adv Mater Res 1033–1034:352–356CrossRef
91.
go back to reference Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering – from analysis and modeling to technology applications. ISBN 978-953-307-268-5. https://doi.org/10.5772/24553 Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering – from analysis and modeling to technology applications. ISBN 978-953-307-268-5. https://​doi.​org/​10.​5772/​24553
92.
go back to reference Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–388 Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–388
93.
go back to reference Thakur A, Wanchoo RK, Singh P (2011) Structural parameters and swelling behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Chem Biochem Eng Q 25(2):181–194 Thakur A, Wanchoo RK, Singh P (2011) Structural parameters and swelling behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Chem Biochem Eng Q 25(2):181–194
95.
go back to reference Gonçalves M, Figueira P, Maciel D, Rodrigues J, Qu X, Liu C, Tomás H, Li Y (2014) pH-sensitive Laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomater 10(1):300–307CrossRefPubMed Gonçalves M, Figueira P, Maciel D, Rodrigues J, Qu X, Liu C, Tomás H, Li Y (2014) pH-sensitive Laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomater 10(1):300–307CrossRefPubMed
96.
go back to reference Nada WM, Blumenstein O (2015) Characterization and impact of newly synthesized superabsorbent hydrogel nanocomposite on water retention characteristics of sandy soil and grass seedling growth. Int J Soil Sci 10(4):153–165CrossRef Nada WM, Blumenstein O (2015) Characterization and impact of newly synthesized superabsorbent hydrogel nanocomposite on water retention characteristics of sandy soil and grass seedling growth. Int J Soil Sci 10(4):153–165CrossRef
97.
go back to reference Haque MO, Mondal MI (2016) Synthesis and characterization of cellulose-based eco-friendly hydrogels. J Sci Eng 44:45–53 Haque MO, Mondal MI (2016) Synthesis and characterization of cellulose-based eco-friendly hydrogels. J Sci Eng 44:45–53
98.
go back to reference Zhou Y, Fu S, Zhang L, Zhan H (2013) Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-gp (AA-co-AM). Carbohydr Polym 97(2):429–435CrossRefPubMed Zhou Y, Fu S, Zhang L, Zhan H (2013) Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-gp (AA-co-AM). Carbohydr Polym 97(2):429–435CrossRefPubMed
99.
go back to reference Purbrick MD (1996). Photoinitiation photopolymerization and photocuring. Fouassier JP and Hanser Publications, Munich Vienna New York. ISBN 3-446-17069-3. Purbrick MD (1996). Photoinitiation photopolymerization and photocuring. Fouassier JP and Hanser Publications, Munich Vienna New York. ISBN 3-446-17069-3.
101.
go back to reference Fei B, Wach RA, Mitomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC. J Appl Polym Sci 78(2):278–283CrossRef Fei B, Wach RA, Mitomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC. J Appl Polym Sci 78(2):278–283CrossRef
102.
go back to reference Senna AM, Novack KM, Botaro VR (2014) Synthesis and characterization of hydrogels from cellulose acetate by esterification crosslinking with EDTA dianhydride. Carbohydr Polym 114:260–268CrossRefPubMed Senna AM, Novack KM, Botaro VR (2014) Synthesis and characterization of hydrogels from cellulose acetate by esterification crosslinking with EDTA dianhydride. Carbohydr Polym 114:260–268CrossRefPubMed
103.
go back to reference Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers-a review. Pol J Environ Stud 19(2):255–266 Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers-a review. Pol J Environ Stud 19(2):255–266
104.
go back to reference Bhattacharyya S, Guillot S, Dabboue H, Tranchant JF, Salvetat JP (2008) Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules 9(2):505–509CrossRefPubMed Bhattacharyya S, Guillot S, Dabboue H, Tranchant JF, Salvetat JP (2008) Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules 9(2):505–509CrossRefPubMed
105.
go back to reference Chan AW, Whitney RA, Neufeld RJ (2009) Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 10(3):609–616CrossRefPubMed Chan AW, Whitney RA, Neufeld RJ (2009) Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 10(3):609–616CrossRefPubMed
106.
go back to reference Pal K, Banthia AK, Majumdar DK (2008) Effect of heat treatment of starch on the properties of the starch hydrogels. Mater Lett 62(2):215–218CrossRef Pal K, Banthia AK, Majumdar DK (2008) Effect of heat treatment of starch on the properties of the starch hydrogels. Mater Lett 62(2):215–218CrossRef
107.
go back to reference Roy A, Bajpai J, Bajpai AK (2009) Dynamics of controlled release of chlorpyrifos from carbohydrate polymer swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydr Polym 76(2):222–231CrossRef Roy A, Bajpai J, Bajpai AK (2009) Dynamics of controlled release of chlorpyrifos from carbohydrate polymer swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydr Polym 76(2):222–231CrossRef
108.
go back to reference Gattás-Asfura KM, Weisman E, Andreopoulos FM, Micic M, Muller B, Sirpal S, Pham SM, Leblanc RM (2005) Nitrocinnamate-functionalized gelatin: synthesis and “smart” hydrogel formation via photo-cross-linking. Biomacromolecules 6(3):1503–1509CrossRefPubMed Gattás-Asfura KM, Weisman E, Andreopoulos FM, Micic M, Muller B, Sirpal S, Pham SM, Leblanc RM (2005) Nitrocinnamate-functionalized gelatin: synthesis and “smart” hydrogel formation via photo-cross-linking. Biomacromolecules 6(3):1503–1509CrossRefPubMed
109.
go back to reference Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100CrossRef Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100CrossRef
110.
go back to reference Moura MJ, Figueiredo MM, Gil MH (2007) Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules 8(12):3823–3829CrossRefPubMed Moura MJ, Figueiredo MM, Gil MH (2007) Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules 8(12):3823–3829CrossRefPubMed
111.
go back to reference Qu X, Wirsen A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 41(12):4589–4598CrossRef Qu X, Wirsen A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 41(12):4589–4598CrossRef
112.
go back to reference Liu Y, Vrana NE, Cahill PA, McGuinness GB (2009) Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B Appl Biomater 90(2):492–502CrossRefPubMed Liu Y, Vrana NE, Cahill PA, McGuinness GB (2009) Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B Appl Biomater 90(2):492–502CrossRefPubMed
113.
go back to reference Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451 Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451
114.
go back to reference Anderson JM, Langone JJ (1999) Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J Control Release 57(2):107–113CrossRefPubMed Anderson JM, Langone JJ (1999) Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J Control Release 57(2):107–113CrossRefPubMed
117.
go back to reference Mao Y, Zhou J, Cai J, Zhang L (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279(1):246–255CrossRef Mao Y, Zhou J, Cai J, Zhang L (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279(1):246–255CrossRef
118.
go back to reference Webber RE, Shull KR (2004) Strain dependence of the viscoelastic properties of alginate hydrogels. Macromolecules 37(16):6153–6160CrossRef Webber RE, Shull KR (2004) Strain dependence of the viscoelastic properties of alginate hydrogels. Macromolecules 37(16):6153–6160CrossRef
119.
go back to reference Ahearne M, Yang Y, El Haj AJ, Then KY, Liu KK (2005) Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J R Soc Interface 2(5):455–463CrossRefPubMedPubMedCentral Ahearne M, Yang Y, El Haj AJ, Then KY, Liu KK (2005) Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J R Soc Interface 2(5):455–463CrossRefPubMedPubMedCentral
120.
go back to reference Maitra J, Shukla V (2014) Cross-linking in hydrogels – a review. Am J Polym Sci 4(2):25–31 Maitra J, Shukla V (2014) Cross-linking in hydrogels – a review. Am J Polym Sci 4(2):25–31
121.
go back to reference Danielssona C, Ruaulta S, Simonetb M, Neuenschwanderb P, Freya P (2006) Polyesterurethane foam scaffold for smooth muscle cell tissue engineering. Bio-Mater 27:1410–1415 Danielssona C, Ruaulta S, Simonetb M, Neuenschwanderb P, Freya P (2006) Polyesterurethane foam scaffold for smooth muscle cell tissue engineering. Bio-Mater 27:1410–1415
122.
go back to reference Bourges X, Weiss P, Coudreuse A, Daculsi G, Legeay G (2002) General properties of silated hydroxyethylcellulose for potential biomedical applications. Biopolymers 63(4):232–238CrossRefPubMed Bourges X, Weiss P, Coudreuse A, Daculsi G, Legeay G (2002) General properties of silated hydroxyethylcellulose for potential biomedical applications. Biopolymers 63(4):232–238CrossRefPubMed
123.
go back to reference Giirdag G, Sarmad S (2013) Cellulose graft copolymers: synthesis, properties, and applications. In: Kalia S, Sabaa MW (eds) Polysaccharide based graft copolymers. Springer, Berlin/Heidelberg, pp 15–57CrossRef Giirdag G, Sarmad S (2013) Cellulose graft copolymers: synthesis, properties, and applications. In: Kalia S, Sabaa MW (eds) Polysaccharide based graft copolymers. Springer, Berlin/Heidelberg, pp 15–57CrossRef
Metadata
Title
Synthesis and Properties of Hydrogels Prepared by Various Polymerization Reaction Systems
Authors
Nalini Ranganathan
R. Joseph Bensingh
M. Abdul Kader
Sanjay K. Nayak
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-77830-3_18

Premium Partners