Skip to main content
Top

09-08-2024

Synthesis and Study of Electromagnetic Wave Absorption Performance of Nano Medium-Entropy FeCoNi Magnetic Alloy Particles with Varying Ni Element Contents

Authors: Hong Li, Hongyang Li, Feng Yang, Qing Cai, Wenqi Xu, Ran Wang, Ying Liu

Published in: Metals and Materials International

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To investigate the influence of Ni element content on the absorptive properties of nano medium-entropy FeCoNi alloy particles, five groups of nano medium-entropy FeCoNi alloy particles was synthesized with varying Ni element contents by chemical liquid-phase reduction, and the microstructure characteristics, magnetic and absorptive properties were studied. The results show that the synthesized nano medium-entropy FeCoNi alloy particles have a spherical geometry and face-centered cubic crystal structure, with a slight increase in particle size as the Ni element content increases, averaging radius 100–200 nm. The alloy particles exhibit soft magnetic properties, with decreasing saturation magnetization intensity, coercivity, and residual magnetization as the Ni element content increases. The real and imaginary parts of the dielectric constant and complex magnetic permeability of the prepared FeCoNi alloy particles show an increasing followed by a decreasing trend with the increase of Ni element content, maximum values was with Ni element content of x = 0.8. As the electromagnetic frequency increases, the real part of the complex magnetic permeability of the alloy particles follows a decreasing trend, and the imaginary part of the magnetic permeability at a Ni element content of x = 0.8 is lower than that of the other alloy particles. The dielectric loss gradually increases with the rise of electromagnetic wave frequency, with polarization relaxation was the primary loss mechanism. At a Ni element content of x = 0.8, the alloy particle sample demonstrates the widest effective absorption bandwidth 4.48 GHz with sample thickness of 1.4 mm and the maximum reflection loss 44.2 dB with thickness of 1.6 mm. Similarly, with Ni element content of x = 1, the alloy particle sample exhibits the largest effective absorption bandwidth 5.36 GHz at thickness 1.6 mm and the maximum reflection loss 32.5 dB at thickness of 1.8 mm.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.C. Lin, Wireless power transfer for mobile applications, and health effects [Telecommunications health and safety]. IEEE Antenn. Propag. M. 55, 250–253 (2013) J.C. Lin, Wireless power transfer for mobile applications, and health effects [Telecommunications health and safety]. IEEE Antenn. Propag. M. 55, 250–253 (2013)
2.
go back to reference S. Wall, Z.M. Wang, M. Lipsett, Real-world cell phone radio frequency electromagnetic field exposures. Environ. Res. Apr. 171, 581–592 (2019)CrossRef S. Wall, Z.M. Wang, M. Lipsett, Real-world cell phone radio frequency electromagnetic field exposures. Environ. Res. Apr. 171, 581–592 (2019)CrossRef
3.
go back to reference C. Augner, T. Gnambs, R. Winker, A. Barth, Acute effects of electromagnetic fields emitted by GSM mobile phones on subjective well-being and physiological reactions: a meta-analysis. Sci. Total Environ. 424, 11–15 (2012) C. Augner, T. Gnambs, R. Winker, A. Barth, Acute effects of electromagnetic fields emitted by GSM mobile phones on subjective well-being and physiological reactions: a meta-analysis. Sci. Total Environ. 424, 11–15 (2012)
4.
go back to reference H.B. Yang, B. Wen, L. Wang, Carbon nanotubes modified CoZn/C composites with rambutan-like applied to electromagnetic wave absorption. Appl. Surf. Sci. 509, 145336 (2020) H.B. Yang, B. Wen, L. Wang, Carbon nanotubes modified CoZn/C composites with rambutan-like applied to electromagnetic wave absorption. Appl. Surf. Sci. 509, 145336 (2020)
5.
go back to reference L.N. Heynick, J.H. Merritt, Radiofrequency fields and teratogenesis. Bioelectromagnetics 24, S174–S186 (2003)CrossRef L.N. Heynick, J.H. Merritt, Radiofrequency fields and teratogenesis. Bioelectromagnetics 24, S174–S186 (2003)CrossRef
6.
go back to reference X. Zhao, G. Dong, C. Wang, The non-thermal biological effects and mechanisms of microwave exposure. Int. J. Radiation Res. Jul. 19(3), 483–494 (2021)CrossRef X. Zhao, G. Dong, C. Wang, The non-thermal biological effects and mechanisms of microwave exposure. Int. J. Radiation Res. Jul. 19(3), 483–494 (2021)CrossRef
7.
go back to reference A. Dubey, T.C. Shami, Metamaterials in Electromagnetic Wave absorbers. Def. Sci. J. Jul. 62(4), 261–268 (2012)CrossRef A. Dubey, T.C. Shami, Metamaterials in Electromagnetic Wave absorbers. Def. Sci. J. Jul. 62(4), 261–268 (2012)CrossRef
8.
go back to reference H.H. Chen, W.L. Ma, Z.Y. Huang, Y. Zhang, Y. Huang, Y.S. Chen, Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 7, 1801318 (2019) H.H. Chen, W.L. Ma, Z.Y. Huang, Y. Zhang, Y. Huang, Y.S. Chen, Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 7, 1801318 (2019)
9.
go back to reference J.Y. Suen, K. Fan, W.A. Padilla, A zero-rank, maximum nullity perfect electromagnetic wave absorber. Adv. Opt. Mater. 7, 1801632 (2019) J.Y. Suen, K. Fan, W.A. Padilla, A zero-rank, maximum nullity perfect electromagnetic wave absorber. Adv. Opt. Mater. 7, 1801632 (2019)
10.
go back to reference K.K. Sawant, A. Satapathy, K. Mahimkar, S. Krishnamurthy, A. Kaur, B. Kandasubramanian, A.A. Bazil Raj, Recent advances in mxene nanocomposites as electromagnetic radiation absorbing materials. J. Electron. Mater. 52, 3576–3590 (2023)CrossRef K.K. Sawant, A. Satapathy, K. Mahimkar, S. Krishnamurthy, A. Kaur, B. Kandasubramanian, A.A. Bazil Raj, Recent advances in mxene nanocomposites as electromagnetic radiation absorbing materials. J. Electron. Mater. 52, 3576–3590 (2023)CrossRef
11.
go back to reference A. Fionov, I. Kraev, G. Yurkov, V. Solodilov, A. Zhukov, A. Surgay, I. Kuznetsova, V. Kolesov, Radio-absorbing materials based on polymer composites and their application to solving the problems of electromagnetic compatibility. Polymers 14, 3026 (2022) A. Fionov, I. Kraev, G. Yurkov, V. Solodilov, A. Zhukov, A. Surgay, I. Kuznetsova, V. Kolesov, Radio-absorbing materials based on polymer composites and their application to solving the problems of electromagnetic compatibility. Polymers 14, 3026 (2022)
12.
go back to reference C.M. Watts, X.L. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012) C.M. Watts, X.L. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012)
13.
go back to reference F. Ruiz-Perez, S.M. López-Estrada, R.V. Tolentino-Hernández, F. Caballero-Briones, Carbon-based radar absorbing materials: a critical review. J. Sci.: Adv. Mater. Devices 7, 100454 (2022) F. Ruiz-Perez, S.M. López-Estrada, R.V. Tolentino-Hernández, F. Caballero-Briones, Carbon-based radar absorbing materials: a critical review. J. Sci.: Adv. Mater. Devices 7, 100454 (2022)
14.
go back to reference Z.T. Shen, Y.P. Zu, Y.Q. Chen, S. Ma, Z.D. Zhang, J. Gong, C. Sun, A novel synthesis method of magnetic porous carbon composites for microwave absorption. Synth. Met. 291, 117184 (2022) Z.T. Shen, Y.P. Zu, Y.Q. Chen, S. Ma, Z.D. Zhang, J. Gong, C. Sun, A novel synthesis method of magnetic porous carbon composites for microwave absorption. Synth. Met. 291, 117184 (2022)
15.
go back to reference J.Y. Yusuf, H. Soleimani, N. Yahya, Y.K. Sanusi, L.L. Adebayo, S. Sikiru, F.A. Wahaab, Recent advances and prospect of cobalt based microwave absorbing materials. Ceram. Int. 46, 26466–26485 (2020) J.Y. Yusuf, H. Soleimani, N. Yahya, Y.K. Sanusi, L.L. Adebayo, S. Sikiru, F.A. Wahaab, Recent advances and prospect of cobalt based microwave absorbing materials. Ceram. Int. 46, 26466–26485 (2020)
16.
go back to reference W.H. Choi, C.G. Kim, Broadband microwave-absorbing honeycomb structure with novel design concept. Compos. B Eng. 83, 14–20 (2015) W.H. Choi, C.G. Kim, Broadband microwave-absorbing honeycomb structure with novel design concept. Compos. B Eng. 83, 14–20 (2015)
17.
go back to reference M. Itoh, M. Terada, F. Shogano, K. Machida, Broadband electromagnetic wave absorbers prepared by grading magnetic powder density. J. Appl. Phys. 108, 063911 (2010) M. Itoh, M. Terada, F. Shogano, K. Machida, Broadband electromagnetic wave absorbers prepared by grading magnetic powder density. J. Appl. Phys. 108, 063911 (2010)
18.
go back to reference J.Y. Fang, P. Li, Y.D. Liu, Y.G. Min, Cobalt magnetic particles and carbon composite microtubes as high-performance electromagnetic wave absorbers. J. Mater. Chem. C 9, 2474–2482 (2021) J.Y. Fang, P. Li, Y.D. Liu, Y.G. Min, Cobalt magnetic particles and carbon composite microtubes as high-performance electromagnetic wave absorbers. J. Mater. Chem. C 9, 2474–2482 (2021)
19.
go back to reference F.F. Yan, Y. Zong, C.J. Zhao, G.G. Tan, Y. Sun, X.H. Li, Z.Y. Ren, X.L. Zheng, Porous Co nanospheres supported on nitrogen-doped graphene as high-efficiency electromagnetic wave absorbers with thin thickness. J. Alloys Compd. 742, 928–936 (2018) F.F. Yan, Y. Zong, C.J. Zhao, G.G. Tan, Y. Sun, X.H. Li, Z.Y. Ren, X.L. Zheng, Porous Co nanospheres supported on nitrogen-doped graphene as high-efficiency electromagnetic wave absorbers with thin thickness. J. Alloys Compd. 742, 928–936 (2018)
20.
go back to reference B.Y. Zhou, Y.F. Wang, F.S. Li, L.Y. Tang, T. Wang, L. Qiao, Submicron carbonyl iron particles as an efficient microwave absorber in the low frequency band. J. Phys. D-Appl. Phys., 50, 475001 (2017) B.Y. Zhou, Y.F. Wang, F.S. Li, L.Y. Tang, T. Wang, L. Qiao, Submicron carbonyl iron particles as an efficient microwave absorber in the low frequency band. J. Phys. D-Appl. Phys., 50, 475001 (2017)
21.
go back to reference Y. Nie, H.H. He, R.Z. Gong, X.C. Zhang, The electromagnetic characteristics and design of mechanically alloyed Fe-Co particles for electromagnetic-wave absorber. J. Magn. Magn. Mater. 310, 13–16 (2007) Y. Nie, H.H. He, R.Z. Gong, X.C. Zhang, The electromagnetic characteristics and design of mechanically alloyed Fe-Co particles for electromagnetic-wave absorber. J. Magn. Magn. Mater. 310, 13–16 (2007)
22.
go back to reference W.C. Li, X. Zhou, Y. Ying, L.Q. Jiang, S.L. Che, Particle thickness effect on electromagnetic properties of flake-shaped FeNi alloy. Phys. Status Solidi A 212, 2944–2950 (2015) W.C. Li, X. Zhou, Y. Ying, L.Q. Jiang, S.L. Che, Particle thickness effect on electromagnetic properties of flake-shaped FeNi alloy. Phys. Status Solidi A 212, 2944–2950 (2015)
23.
go back to reference X.D. Weng, B.Z. Li, Y. Zhang, X.L. Lv, G.X. Gu, Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties. J. Alloys Compd. 695, 508–519 (2017) X.D. Weng, B.Z. Li, Y. Zhang, X.L. Lv, G.X. Gu, Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties. J. Alloys Compd. 695, 508–519 (2017)
24.
go back to reference C.H. Tsau, S.X. Lin, C.H. Fang, Microstructures and corrosion behaviors of FeCoNi and CrFeCoNi equimolar alloys. Mater. Chem. Phys. 186, 534–540 (2017) C.H. Tsau, S.X. Lin, C.H. Fang, Microstructures and corrosion behaviors of FeCoNi and CrFeCoNi equimolar alloys. Mater. Chem. Phys. 186, 534–540 (2017)
25.
go back to reference C. Wang, F.Y. Kang, J.L. Gu, Synthesis and microwave absorbing properties of FeCoNi alloy particles/graphite flaky composites. J. Inorg. Mater. 25(4), 406–410 (2010) C. Wang, F.Y. Kang, J.L. Gu, Synthesis and microwave absorbing properties of FeCoNi alloy particles/graphite flaky composites. J. Inorg. Mater. 25(4), 406–410 (2010)
26.
go back to reference Y.J. Li, J. Zhai, L.C. Zhao, J.P. Chen, X.N. Shang, C.M. Song, J.C. Chen, S. Liu, F.B. Meng, FeCoNi alloy-encapsulated graphene nanoplatelets with excellent magnetic properties, thermal stability and electrochemical performances. J. Solid State Chem. 276, 19–29 (2019) Y.J. Li, J. Zhai, L.C. Zhao, J.P. Chen, X.N. Shang, C.M. Song, J.C. Chen, S. Liu, F.B. Meng, FeCoNi alloy-encapsulated graphene nanoplatelets with excellent magnetic properties, thermal stability and electrochemical performances. J. Solid State Chem. 276, 19–29 (2019)
27.
go back to reference N. Liu, W. Ding, X.J. Wang, J. Zhang, P.J. Zhou, C. Mu, Phases, microstructures and properties of multi-component FeCoNi-based alloys. Mater. Sci. Technol. 36, 654–660 (2020) N. Liu, W. Ding, X.J. Wang, J. Zhang, P.J. Zhou, C. Mu, Phases, microstructures and properties of multi-component FeCoNi-based alloys. Mater. Sci. Technol. 36, 654–660 (2020)
28.
go back to reference P.C. Ji, Z.H. Wang, Y.K. Mu, Y.D. Jia, G. Wang, Microstructural evolution of (FeCoNi)85.84Al7.07Ti7.09 high-entropy alloy fabricated by an optimized selective laser melting process. Mater. Design 224, 111326 (2022) P.C. Ji, Z.H. Wang, Y.K. Mu, Y.D. Jia, G. Wang, Microstructural evolution of (FeCoNi)85.84Al7.07Ti7.09 high-entropy alloy fabricated by an optimized selective laser melting process. Mater. Design 224, 111326 (2022)
29.
go back to reference A. Watanabe, T. Yamamoto, R. Miyamoto, Y. Takigawa, Microstructure and tensile strength of electrodeposited Fe-rich bcc FeCoNi medium-entropy alloys. Mater. Sci. Technol. 39, 2028–2034 (2023) A. Watanabe, T. Yamamoto, R. Miyamoto, Y. Takigawa, Microstructure and tensile strength of electrodeposited Fe-rich bcc FeCoNi medium-entropy alloys. Mater. Sci. Technol. 39, 2028–2034 (2023)
30.
go back to reference B.T. Yang, J.F. Fang, C.Y. Xu, H. Cao, R.X. Zhang, B.A. Zhao, M.Q. Huang, X.Y. Wang, H.L. Lv, R.C. Che, One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 14, 170 (2022) B.T. Yang, J.F. Fang, C.Y. Xu, H. Cao, R.X. Zhang, B.A. Zhao, M.Q. Huang, X.Y. Wang, H.L. Lv, R.C. Che, One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 14, 170 (2022)
31.
go back to reference Z.K. Yin, J. Wu, L.W. Liang, C.C. Kong, A. Pervikov, H.T. Shi, X.W. Li, Microwave-absorbing performance of FeCoNi magnetic nanopowders synthesized by electrical explosion of wires. J. Alloys Compd. 966, 171594 (2023) Z.K. Yin, J. Wu, L.W. Liang, C.C. Kong, A. Pervikov, H.T. Shi, X.W. Li, Microwave-absorbing performance of FeCoNi magnetic nanopowders synthesized by electrical explosion of wires. J. Alloys Compd. 966, 171594 (2023)
32.
go back to reference T. Kim, J. Lee, K. Lee, B. Park, B.M. Jung, S.B. Lee, Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption. Chem. Eng. J. 361, 1182–1189 (2019) T. Kim, J. Lee, K. Lee, B. Park, B.M. Jung, S.B. Lee, Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption. Chem. Eng. J. 361, 1182–1189 (2019)
Metadata
Title
Synthesis and Study of Electromagnetic Wave Absorption Performance of Nano Medium-Entropy FeCoNi Magnetic Alloy Particles with Varying Ni Element Contents
Authors
Hong Li
Hongyang Li
Feng Yang
Qing Cai
Wenqi Xu
Ran Wang
Ying Liu
Publication date
09-08-2024
Publisher
The Korean Institute of Metals and Materials
Published in
Metals and Materials International
Print ISSN: 1598-9623
Electronic ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-024-01737-2

Premium Partners