2019 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
Published in:
Nanoelectronic Materials
Two-dimensional (2D) materials have, within just one decade, reshaped many disciplines of modern science and technology, both through intensive fundamental research and early commercial applications.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004) CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al.: Electric field effect in atomically thin carbon films. Science
306, 666–669 (2004)
CrossRef
2.
go back to reference Thripuranthaka, M., Late, D.J.: Temperature dependent phonon shifts in single-layer WS 2. ACS Appl. Mater. Interface 6, 1158–1163 (2014) CrossRef Thripuranthaka, M., Late, D.J.: Temperature dependent phonon shifts in single-layer WS
2. ACS Appl. Mater. Interface
6, 1158–1163 (2014)
CrossRef
3.
go back to reference Miremadi, B.K., Morrison, S.R.: High activity catalyst from exfoliated MoS 2. J. Catal. 103, 334–345 (1987) CrossRef Miremadi, B.K., Morrison, S.R.: High activity catalyst from exfoliated MoS
2. J. Catal.
103, 334–345 (1987)
CrossRef
4.
go back to reference Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., et al.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451–10453 (2005) CrossRef Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., et al.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A.
102, 10451–10453 (2005)
CrossRef
5.
go back to reference Pacile, D., Meyer, J.C., Girit, C.O., Zettl, A.: The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008) CrossRef Pacile, D., Meyer, J.C., Girit, C.O., Zettl, A.: The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett.
92, 133107 (2008)
CrossRef
6.
go back to reference Padova, P.D., Ottaviani, C., Quaresima, C., Olivieri, B., Imperatori, P., Salomon, E., et al.: 24 h stability of thick multilayer silicene in air. 2D Mater 1, 021003 (2014) Padova, P.D., Ottaviani, C., Quaresima, C., Olivieri, B., Imperatori, P., Salomon, E., et al.: 24 h stability of thick multilayer silicene in air. 2D Mater
1, 021003 (2014)
7.
go back to reference Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., et al.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011) CrossRef Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., et al.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science
331, 568–571 (2011)
CrossRef
8.
go back to reference Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012) CrossRef Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.
7, 699–712 (2012)
CrossRef
9.
go back to reference Zhou, K.-G., Mao, N.-N., Wang, H.-X., Peng, Y., Zhang, H.-L.: A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50, 10839–10842 (2011) CrossRef Zhou, K.-G., Mao, N.-N., Wang, H.-X., Peng, Y., Zhang, H.-L.: A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed.
50, 10839–10842 (2011)
CrossRef
10.
go back to reference Smith, R.J., King, P.J., Lotya, M., Wirtz, C., Khan, U., De, S., et al.: Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011) CrossRef Smith, R.J., King, P.J., Lotya, M., Wirtz, C., Khan, U., De, S., et al.: Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater.
23, 3944–3948 (2011)
CrossRef
11.
go back to reference Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., Coleman, J.N.: Liquid exfoliation of layered materials. Science 340, 1226419 (2013) CrossRef Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., Coleman, J.N.: Liquid exfoliation of layered materials. Science
340, 1226419 (2013)
CrossRef
12.
go back to reference Hummers, W., Offeman, R.: J. Am. Chem. Soc. 80, 1339 (1958) CrossRef Hummers, W., Offeman, R.: J. Am. Chem. Soc.
80, 1339 (1958)
CrossRef
13.
go back to reference Goncalves, G., Marques, P.A.A.P., Granadeiro, C.M., Nogueira, H.I.S., Singh, M.K., Gracio, J.: Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 21, 4796–4802 (2009) CrossRef Goncalves, G., Marques, P.A.A.P., Granadeiro, C.M., Nogueira, H.I.S., Singh, M.K., Gracio, J.: Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater.
21, 4796–4802 (2009)
CrossRef
14.
go back to reference Osada, M., Sasaki, T.: Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 19, 2503–2511 (2009) CrossRef Osada, M., Sasaki, T.: Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem.
19, 2503–2511 (2009)
CrossRef
15.
go back to reference Hu, L., Ma, R., Ozawa, T.C., Sasaki, T.: Exfoliation of layered europium hydroxide into unilamellar nanosheets. Chem. Asian J. 5, 248–251 (2010) CrossRef Hu, L., Ma, R., Ozawa, T.C., Sasaki, T.: Exfoliation of layered europium hydroxide into unilamellar nanosheets. Chem. Asian J.
5, 248–251 (2010)
CrossRef
16.
go back to reference Coleman, J.N.: Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46, 14–22 (2013) CrossRef Coleman, J.N.: Liquid exfoliation of defect-free graphene. Acc. Chem. Res.
46, 14–22 (2013)
CrossRef
17.
go back to reference Khan, U., O’Neill, A., Lotya, M., De, S., Coleman, J.N.: High-concentration solvent exfoliation of graphene. Small 6, 864–871 (2010) CrossRef Khan, U., O’Neill, A., Lotya, M., De, S., Coleman, J.N.: High-concentration solvent exfoliation of graphene. Small
6, 864–871 (2010)
CrossRef
18.
go back to reference Hernandez, Y., Lotya, M., Rickard, D., Bergin, S.D., Coleman, J.N.: Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26, 3208–3213 (2010) CrossRef Hernandez, Y., Lotya, M., Rickard, D., Bergin, S.D., Coleman, J.N.: Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir
26, 3208–3213 (2010)
CrossRef
19.
go back to reference Zhi, C.Y., Bando, Y., Tang, C.C., Kuwahara, H., Golberg, D.: Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21, 2889–2893 (2009) CrossRef Zhi, C.Y., Bando, Y., Tang, C.C., Kuwahara, H., Golberg, D.: Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater.
21, 2889–2893 (2009)
CrossRef
20.
go back to reference Tang, Q., Zhou, Z.: Graphene-analogous low-dimensional materials. Prog. Mater Sci. 58, 1244–1315 (2013) CrossRef Tang, Q., Zhou, Z.: Graphene-analogous low-dimensional materials. Prog. Mater Sci.
58, 1244–1315 (2013)
CrossRef
21.
go back to reference Feng, J., Peng, L., Wu, C., Sun, X., Hu, S., Lin, C., et al.: Giant moisture responsiveness of VS 2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24, 1969–1974 (2012) CrossRef Feng, J., Peng, L., Wu, C., Sun, X., Hu, S., Lin, C., et al.: Giant moisture responsiveness of VS
2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater.
24, 1969–1974 (2012)
CrossRef
22.
go back to reference Matte, H.S.S.R., Plowman, B., Datta, R., Rao, C.N.R.: Graphene analogues of layered metal selenides. Dalton Trans. 40, 10322–10325 (2011) CrossRef Matte, H.S.S.R., Plowman, B., Datta, R., Rao, C.N.R.: Graphene analogues of layered metal selenides. Dalton Trans.
40, 10322–10325 (2011)
CrossRef
23.
go back to reference O’Neill, A., Khan, U., Coleman, J.N.: Preparation of high concentration dispersions of exfoliated MoS 2 with increased flake size. Chem. Mater. 24, 2414–2421 (2012) CrossRef O’Neill, A., Khan, U., Coleman, J.N.: Preparation of high concentration dispersions of exfoliated MoS
2 with increased flake size. Chem. Mater.
24, 2414–2421 (2012)
CrossRef
24.
go back to reference Lee, B.-I., Lee, K.S., Lee, J.H., Lee, I.S., Byeon, S.-H.: Synthesis of colloidal aqueous suspensions of a layered gadolinium hydroxide: a potential MRI contrast agent. Dalton Trans. 2490–2495 (2009) Lee, B.-I., Lee, K.S., Lee, J.H., Lee, I.S., Byeon, S.-H.: Synthesis of colloidal aqueous suspensions of a layered gadolinium hydroxide: a potential MRI contrast agent. Dalton Trans. 2490–2495 (2009)
25.
go back to reference Green, A.A., Hersam, M.C.: Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009) CrossRef Green, A.A., Hersam, M.C.: Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett.
9, 4031–4036 (2009)
CrossRef
26.
go back to reference Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutierrez, H.R., et al.: Progress, challenges, and opportunities in two dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013) CrossRef Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutierrez, H.R., et al.: Progress, challenges, and opportunities in two dimensional materials beyond graphene. ACS Nano
7, 2898–2926 (2013)
CrossRef
27.
go back to reference Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., Zamora, F.: 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011) CrossRef Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., Zamora, F.: 2D materials: to graphene and beyond. Nanoscale
3, 20–30 (2011)
CrossRef
28.
go back to reference Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P.M., Lou, J.: Large-area vapor-phase growth and characterization of MoS 2 atomic layers on a SiO 2 substrate. Small 8, 966–971 (2012) CrossRef Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P.M., Lou, J.: Large-area vapor-phase growth and characterization of MoS
2 atomic layers on a SiO
2 substrate. Small
8, 966–971 (2012)
CrossRef
29.
go back to reference Lee, Y.-H., Zhang, X.-Q., Zhang, W., Chang, M.-T., Lin, C.-T., Chang, K.-D., et al.: Synthesis of large-area MoS 2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012) CrossRef Lee, Y.-H., Zhang, X.-Q., Zhang, W., Chang, M.-T., Lin, C.-T., Chang, K.-D., et al.: Synthesis of large-area MoS
2 atomic layers with chemical vapor deposition. Adv. Mater.
24, 2320–2325 (2012)
CrossRef
30.
go back to reference Liu, K.-K., Zhang, W., Lee, Y.-H., Lin, Y.-C., Chang, M.-T., Su, C.-Y., et al.: Growth of large-area and highly crystalline MoS 2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012) CrossRef Liu, K.-K., Zhang, W., Lee, Y.-H., Lin, Y.-C., Chang, M.-T., Su, C.-Y., et al.: Growth of large-area and highly crystalline MoS
2 thin layers on insulating substrates. Nano Lett.
12, 1538–1544 (2012)
CrossRef
31.
go back to reference Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei, S., et al.: Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013) CrossRef Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei, S., et al.: Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater.
12, 754–759 (2013)
CrossRef
32.
go back to reference Muller, F., Stowe, K., Sachdev, H.: Symmetry versus commensurability: epitaxial growth of hexagonal boron nitride on Pt (111) from B-trichloroborazine (ClBNH) 3. Chem. Mater. 17, 3464–3467 (2005) CrossRef Muller, F., Stowe, K., Sachdev, H.: Symmetry versus commensurability: epitaxial growth of hexagonal boron nitride on Pt (111) from B-trichloroborazine (ClBNH)
3. Chem. Mater.
17, 3464–3467 (2005)
CrossRef
33.
go back to reference Rokuta, E., Hasegawa, Y., Itoh, A., Yamashita, K., Tanaka, T., Otani, S., et al.: Vibrational spectra of the monolayer films of hexagonal boron nitride and graphite on faceted Ni(755). Surf. Sci. 427–428, 97–101 (1999) CrossRef Rokuta, E., Hasegawa, Y., Itoh, A., Yamashita, K., Tanaka, T., Otani, S., et al.: Vibrational spectra of the monolayer films of hexagonal boron nitride and graphite on faceted Ni(755). Surf. Sci.
427–428, 97–101 (1999)
CrossRef
34.
go back to reference Auwarter, W., Suter, H.U., Sachdev, H., Greber, T.: Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from Btrichloroborazine (ClBNH) 3. Chem. Mater. 16, 343–345 (2004) CrossRef Auwarter, W., Suter, H.U., Sachdev, H., Greber, T.: Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from Btrichloroborazine (ClBNH)
3. Chem. Mater.
16, 343–345 (2004)
CrossRef
35.
go back to reference Corso, M., Auwarter, W., Muntwiler, M., Tamai, A., Greber, T., Osterwalder, Jr.: Boron nitride nanomesh. Science 303, 217–220 (2004) Corso, M., Auwarter, W., Muntwiler, M., Tamai, A., Greber, T., Osterwalder, Jr.: Boron nitride nanomesh. Science
303, 217–220 (2004)
36.
go back to reference Nagashima, A., Tejima, N., Gamou, Y., Kawai, T., Oshima, C.: Electronic states of monolayer hexagonal boron nitride formed on the metal surfaces. Surf. Sci. 357–358, 307–311 (1996) CrossRef Nagashima, A., Tejima, N., Gamou, Y., Kawai, T., Oshima, C.: Electronic states of monolayer hexagonal boron nitride formed on the metal surfaces. Surf. Sci.
357–358, 307–311 (1996)
CrossRef
37.
go back to reference Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., et al.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010) CrossRef Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., et al.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett.
97, 223109 (2010)
CrossRef
38.
go back to reference Zheng, Y., Koebel, A., Petroff, J.F., Boulliard, J.C., Capelle, B., Eddrief, M.J.: Cryst Growth 162, 135–141 (1996) CrossRef Zheng, Y., Koebel, A., Petroff, J.F., Boulliard, J.C., Capelle, B., Eddrief, M.J.: Cryst Growth
162, 135–141 (1996)
CrossRef
39.
go back to reference Palmer, J.E., Saitoh, T., Yodo, T., Tamura, M.: J. Appl. Phys. 74, 7221 (1993) CrossRef Palmer, J.E., Saitoh, T., Yodo, T., Tamura, M.: J. Appl. Phys.
74, 7221 (1993)
CrossRef
40.
go back to reference Shi, Y., Zhou, W., Lu, A.-Y., Fang, W., Lee, Y.-H., Hsu, A.L., et al.: Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012) CrossRef Shi, Y., Zhou, W., Lu, A.-Y., Fang, W., Lee, Y.-H., Hsu, A.L., et al.: Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett.
12, 2784–2791 (2012)
CrossRef
41.
go back to reference Le´andri, C., Oughaddou, H., Aufray, B., Gay, J.M., Lay, G.L., Ranguis, A., et al.: Growth of Si nanostructures on Ag(001). Surf. Sci. 601, 262–267 (2007) CrossRef Le´andri, C., Oughaddou, H., Aufray, B., Gay, J.M., Lay, G.L., Ranguis, A., et al.: Growth of Si nanostructures on Ag(001). Surf. Sci.
601, 262–267 (2007)
CrossRef
42.
go back to reference Aufray, B., Kara, A., Vizzini, S., Oughaddou, H., Leandri, C., Ealet, B., et al.: Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl. Phys. Lett. 96, 183102 (2010) CrossRef Aufray, B., Kara, A., Vizzini, S., Oughaddou, H., Leandri, C., Ealet, B., et al.: Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl. Phys. Lett.
96, 183102 (2010)
CrossRef
43.
go back to reference Padova, P.D., Kubo, O., Olivieri, B., Quaresima, C., Nakayama, T., Aono, M., et al.: Multilayer silicene nanoribbons. Nano Lett. 12, 5500–5503 (2012) CrossRef Padova, P.D., Kubo, O., Olivieri, B., Quaresima, C., Nakayama, T., Aono, M., et al.: Multilayer silicene nanoribbons. Nano Lett.
12, 5500–5503 (2012)
CrossRef
44.
go back to reference Oughaddou, H., Gay, J.M., Aufray, B., Lapena, L., Lay, G.L., Bunk, O., et al.: Ge tetramer structure of the p(2√2 × 4√2)R45° surface reconstruction of Ge/Ag(001): a surface X-ray diffraction and STM study. Phys Rev B 61, 5692 (2000) CrossRef Oughaddou, H., Gay, J.M., Aufray, B., Lapena, L., Lay, G.L., Bunk, O., et al.: Ge tetramer structure of the p(2√2 × 4√2)R45° surface reconstruction of Ge/Ag(001): a surface X-ray diffraction and STM study. Phys Rev B
61, 5692 (2000)
CrossRef
45.
go back to reference Kara, A., Enriquez, H., Seitsonen, A.P., Voon, L.C.L.Y., Vizzini, S., Aufray, B., et al.: A review on silicene–new candidate for electronics. Surf. Sci. Rep. 67, 1–18 (2012) CrossRef Kara, A., Enriquez, H., Seitsonen, A.P., Voon, L.C.L.Y., Vizzini, S., Aufray, B., et al.: A review on silicene–new candidate for electronics. Surf. Sci. Rep.
67, 1–18 (2012)
CrossRef
46.
go back to reference Leandri, C., Oughaddou, H., Gay, J., Aufray, B., Le Lay, G., Biberian, J., et al.: Self-assembled germanium nano-clusters on silver (110). Surf. Sci. 573, L369–L374 (2004) CrossRef Leandri, C., Oughaddou, H., Gay, J., Aufray, B., Le Lay, G., Biberian, J., et al.: Self-assembled germanium nano-clusters on silver (110). Surf. Sci.
573, L369–L374 (2004)
CrossRef
47.
go back to reference Meunier, I., Gay, J.-M., Lapena, L., Aufray, B., Oughaddou, H., Landemark, E., et al.: Atomic structure of the SbCu surface alloy: a surface X-ray diffraction study. Surf. Sci. 422, 42–49 (1999) CrossRef Meunier, I., Gay, J.-M., Lapena, L., Aufray, B., Oughaddou, H., Landemark, E., et al.: Atomic structure of the SbCu surface alloy: a surface X-ray diffraction study. Surf. Sci.
422, 42–49 (1999)
CrossRef
48.
go back to reference Lay, G.L., Padova, P.D., Resta, A., Bruhn, T., Vogt, P.: Strained? Escibs. Epitaxial silicene: can it be strongly strained? J. Phys. D Appl. Phys. 45, 392001 (2012) CrossRef Lay, G.L., Padova, P.D., Resta, A., Bruhn, T., Vogt, P.: Strained? Escibs. Epitaxial silicene: can it be strongly strained? J. Phys. D Appl. Phys.
45, 392001 (2012)
CrossRef
49.
go back to reference Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., et al.: Buckled silicene formation on Ir(111). Nano Lett. 13, 685–690 (2013) CrossRef Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., et al.: Buckled silicene formation on Ir(111). Nano Lett.
13, 685–690 (2013)
CrossRef
50.
go back to reference Chiappe, D., Grazianetti, C., Tallarida, G., Fanciulli, M., Molle, A.: Local electronic properties of corrugated silicene phases. Adv. Mater. 24, 5088–5093 (2012) CrossRef Chiappe, D., Grazianetti, C., Tallarida, G., Fanciulli, M., Molle, A.: Local electronic properties of corrugated silicene phases. Adv. Mater.
24, 5088–5093 (2012)
CrossRef
51.
go back to reference Feng, B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., et al.: Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 12, 3507–3511 (2012) CrossRef Feng, B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., et al.: Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett.
12, 3507–3511 (2012)
CrossRef
52.
go back to reference Lin, C.L., Arafune, R., Kawahara, K., Tsukahara, N., Minamitani, E., Kim, Y., et al.: Structure of silicene grown on Ag(111). Appl. Phys. Exp. 5, 045802 (2012) CrossRef Lin, C.L., Arafune, R., Kawahara, K., Tsukahara, N., Minamitani, E., Kim, Y., et al.: Structure of silicene grown on Ag(111). Appl. Phys. Exp.
5, 045802 (2012)
CrossRef
53.
go back to reference Jamgotchian, H., Colignon, Y., Hamzaoui, N., Ealet, B., Hoarau, J.Y., Aufray, B., et al.: Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature. J. Phys. Condens. Matter 24, 172001 (2012) CrossRef Jamgotchian, H., Colignon, Y., Hamzaoui, N., Ealet, B., Hoarau, J.Y., Aufray, B., et al.: Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature. J. Phys. Condens. Matter
24, 172001 (2012)
CrossRef
54.
go back to reference Peng, Y., Meng, Z., Zhong, C., Lu, J., Yu, W., Jia, Y., et al.: Hydrothermal synthesis and characterization of single-molecular-layer MoS 2 and MoSe 2. Chem. Lett. 30, 772–773 (2001) CrossRef Peng, Y., Meng, Z., Zhong, C., Lu, J., Yu, W., Jia, Y., et al.: Hydrothermal synthesis and characterization of single-molecular-layer MoS
2 and MoSe
2. Chem. Lett.
30, 772–773 (2001)
CrossRef
55.
go back to reference Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., Dai, H.: MoS 2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011) CrossRef Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., Dai, H.: MoS
2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc.
133, 7296–7299 (2011)
CrossRef
56.
go back to reference Jeong, S., Yoo, D., J-t, Jang, Kim, M., Cheon, J.: Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J. Am. Chem. Soc. 134, 18233–18236 (2012) CrossRef Jeong, S., Yoo, D., J-t, Jang, Kim, M., Cheon, J.: Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J. Am. Chem. Soc.
134, 18233–18236 (2012)
CrossRef
57.
go back to reference Wudl, F.: Process for producing chalcogen containing compounds. In: USPTO, editor. USA: AT & T Bell Laboratories; 31 July 1984 Wudl, F.: Process for producing chalcogen containing compounds. In: USPTO, editor. USA: AT & T Bell Laboratories; 31 July 1984
58.
go back to reference Wang, L., Sun, C., Xu, L., Qian, Y.: Convenient synthesis and applications of gram scale boron nitride nanosheets. Catal. Sci. Technol. 1, 1119–1123 (2011) CrossRef Wang, L., Sun, C., Xu, L., Qian, Y.: Convenient synthesis and applications of gram scale boron nitride nanosheets. Catal. Sci. Technol.
1, 1119–1123 (2011)
CrossRef
59.
go back to reference Nag, A., Raidongia, K., Hembram, K.P., Datta, R., Waghmare, U.V., Rao, C.: Graphene analogues of BN: novel synthesis and properties. ACS Nano 4, 1539–1544 (2010) CrossRef Nag, A., Raidongia, K., Hembram, K.P., Datta, R., Waghmare, U.V., Rao, C.: Graphene analogues of BN: novel synthesis and properties. ACS Nano
4, 1539–1544 (2010)
CrossRef
60.
go back to reference Yang, S., Gong, Y., Liu, Z., Zhan, L., Hashim, D.P., Ma, L., et al.: Bottom-up approach toward single crystalline VO 2–graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 13, 1596–1601 (2013) CrossRef Yang, S., Gong, Y., Liu, Z., Zhan, L., Hashim, D.P., Ma, L., et al.: Bottom-up approach toward single crystalline VO
2–graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett.
13, 1596–1601 (2013)
CrossRef
61.
go back to reference Zhang, N., Liu, X., Yi, R., Shi, R., Gao, G., Qiu, G.: Selective and controlled synthesis of single-crystalline yttrium hydroxide/oxide nanosheets and nanotubes. J. Phys. Chem. C 112, 17788–17795 (2008) CrossRef Zhang, N., Liu, X., Yi, R., Shi, R., Gao, G., Qiu, G.: Selective and controlled synthesis of single-crystalline yttrium hydroxide/oxide nanosheets and nanotubes. J. Phys. Chem. C
112, 17788–17795 (2008)
CrossRef
62.
go back to reference Wang, Y., Xia, Y.: Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 4, 2047–2050 (2004). https://doi.org/10.1021/nl048689j CrossRef Wang, Y., Xia, Y.: Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett.
4, 2047–2050 (2004).
https://doi.org/10.1021/nl048689j
CrossRef
63.
go back to reference Iravani, S.: Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638 (2011). https://doi.org/10.1039/c1gc15386b CrossRef Iravani, S.: Green synthesis of metal nanoparticles using plants. Green Chem.
13, 2638 (2011).
https://doi.org/10.1039/c1gc15386b
CrossRef
64.
go back to reference Bello, S.A., Agunsoye, J.O., Hassan, S.B.: Synthesis of coconut shell nanoparticles via a top down approach: assessment of milling duration on the particle sizes and morphologies of coconut shell nanoparticles. Mater. Lett. (2015). http://dx.doi.org/10.1016/j.matlet.2015.07.063 Bello, S.A., Agunsoye, J.O., Hassan, S.B.: Synthesis of coconut shell nanoparticles via a top down approach: assessment of milling duration on the particle sizes and morphologies of coconut shell nanoparticles. Mater. Lett. (2015).
http://dx.doi.org/10.1016/j.matlet.2015.07.063
65.
go back to reference Priyadarshana, G., Kottegoda, N., Senaratne, A., de Alwis, A., Karunaratne, V., Priyadarshana, G., Kottegoda, N., Senaratne, A., de Alwis, A., Karunaratne, V.: Synthesis of magnetite nanoparticles by top-down approach from a high purity ore. J. Nanomater. 2015, 1–8 (2015). https://doi.org/10.1155/2015/317312 CrossRef Priyadarshana, G., Kottegoda, N., Senaratne, A., de Alwis, A., Karunaratne, V., Priyadarshana, G., Kottegoda, N., Senaratne, A., de Alwis, A., Karunaratne, V.: Synthesis of magnetite nanoparticles by top-down approach from a high purity ore. J. Nanomater.
2015, 1–8 (2015).
https://doi.org/10.1155/2015/317312
CrossRef
66.
go back to reference Garrigue, P., Delville, M.-H., Labrugère, C., Cloutet, E., Kulesza, P.J., Morand, J.P., Kuhn, A.: Top-down approach for the preparation of colloidal carbon nanoparticles. Chem. Mater. 16, 2984–2986 (2004). https://doi.org/10.1021/cm049685i CrossRef Garrigue, P., Delville, M.-H., Labrugère, C., Cloutet, E., Kulesza, P.J., Morand, J.P., Kuhn, A.: Top-down approach for the preparation of colloidal carbon nanoparticles. Chem. Mater.
16, 2984–2986 (2004).
https://doi.org/10.1021/cm049685i
CrossRef
67.
go back to reference Zhang, X., Lai, Z., Liu, Z., Tan, C., Huang, Y., Li, B., Zhao, M., Xie, L., Huang, W., Zhang, H.: A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew. Chemie Int. Ed. 54, 5425–5428 (2015). https://doi.org/10.1002/anie.201501071 CrossRef Zhang, X., Lai, Z., Liu, Z., Tan, C., Huang, Y., Li, B., Zhao, M., Xie, L., Huang, W., Zhang, H.: A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew. Chemie Int. Ed.
54, 5425–5428 (2015).
https://doi.org/10.1002/anie.201501071
CrossRef
68.
go back to reference Zhou, Y., Dong, C.-K., Han, L., Yang, J., Du, X.-W.: Topdown preparation of active cobalt oxide catalyst. ACS Catal. 6, 6699–6703 (2016). https://doi.org/10.1021/acscatal.6b02416 CrossRef Zhou, Y., Dong, C.-K., Han, L., Yang, J., Du, X.-W.: Topdown preparation of active cobalt oxide catalyst. ACS Catal.
6, 6699–6703 (2016).
https://doi.org/10.1021/acscatal.6b02416
CrossRef
69.
go back to reference Mogilevsky, G., Hartman, O., Emmons, E.D., Balboa, A., DeCoste, J.B., Schindler, B.J., Iordanov, I., Karwacki, C.J.: Bottom-up synthesis of anatase nanoparticles with graphene domains. ACS Appl. Mater. Interfaces 6, 10638–10648 (2014). https://doi.org/10.1021/am502322y CrossRef Mogilevsky, G., Hartman, O., Emmons, E.D., Balboa, A., DeCoste, J.B., Schindler, B.J., Iordanov, I., Karwacki, C.J.: Bottom-up synthesis of anatase nanoparticles with graphene domains. ACS Appl. Mater. Interfaces
6, 10638–10648 (2014).
https://doi.org/10.1021/am502322y
CrossRef
70.
go back to reference Liu, D., Li, C., Zhou, F., Zhang, T., Zhang, H., Li, X., Duan, G., Cai, W., Li, Y.: Rapid synthesis of monodisperse Au nanospheres through a laser irradiation -induced shape conversion, self-assembly and their electromagnetic coupling SERS enhancement. Sci. Rep. 5, 7686 (2015). https://doi.org/10.1038/srep07686 CrossRef Liu, D., Li, C., Zhou, F., Zhang, T., Zhang, H., Li, X., Duan, G., Cai, W., Li, Y.: Rapid synthesis of monodisperse Au nanospheres through a laser irradiation -induced shape conversion, self-assembly and their electromagnetic coupling SERS enhancement. Sci. Rep.
5, 7686 (2015).
https://doi.org/10.1038/srep07686
CrossRef
71.
go back to reference Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., Lifshitz, Y., Lee, S.-T., Zhong, J., Kang, Z.: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 80(347), 970–974 (2015). https://doi.org/10.1126/science.aaa3145 CrossRef Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., Lifshitz, Y., Lee, S.-T., Zhong, J., Kang, Z.: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science
80(347), 970–974 (2015).
https://doi.org/10.1126/science.aaa3145
CrossRef
72.
go back to reference Needham, D., Arslanagic, A., Glud, K., Hervella, P., Karimi, L., Hoeilund-Carlsen, P.-F., Kinoshita, K., Mollenhauer, J., Parra, E., Utoft, A., Walke, P.: Bottom up design of nanoparticles for anti-cancer diapeutics: “put the drug in the cancer’s food”. J. Drug Target 1–21 (2016). http://dx.doi.org/10.1080/1061186X.2016.1238092 Needham, D., Arslanagic, A., Glud, K., Hervella, P., Karimi, L., Hoeilund-Carlsen, P.-F., Kinoshita, K., Mollenhauer, J., Parra, E., Utoft, A., Walke, P.: Bottom up design of nanoparticles for anti-cancer diapeutics: “put the drug in the cancer’s food”. J. Drug Target 1–21 (2016).
http://dx.doi.org/10.1080/1061186X.2016.1238092
73.
go back to reference Parveen, K., Banse, V., Ledwani, L.: Green synthesis of nanoparticles: their advantages and disadvantages. Acta Nat. 20048 (2016). http://dx.doi.org/10.1063/1.4945168 Parveen, K., Banse, V., Ledwani, L.: Green synthesis of nanoparticles: their advantages and disadvantages. Acta Nat. 20048 (2016).
http://dx.doi.org/10.1063/1.4945168
74.
go back to reference Ahmed, S., Annu, S., Yudha, S.S.: Biosynthesis of gold nanoparticles: a green approach. J. Photochem. Photobiol. B Biol. 161, 141–153 (2016). https://doi.org/10.1016/j.jphotobiol.2016.04.034 CrossRef Ahmed, S., Annu, S., Yudha, S.S.: Biosynthesis of gold nanoparticles: a green approach. J. Photochem. Photobiol. B Biol.
161, 141–153 (2016).
https://doi.org/10.1016/j.jphotobiol.2016.04.034
CrossRef
75.
go back to reference Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F.: Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv. Coll. Interface Sci. 170, 2–27 (2012). https://doi.org/10.1016/j.cis.2011.11.001 CrossRef Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F.: Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv. Coll. Interface Sci.
170, 2–27 (2012).
https://doi.org/10.1016/j.cis.2011.11.001
CrossRef
76.
go back to reference Lieber, C.M.: Nanoscale science and technology: building a big future from small things. MRS Bull. 28, 486–491 (2003) CrossRef Lieber, C.M.: Nanoscale science and technology: building a big future from small things. MRS Bull.
28, 486–491 (2003)
CrossRef
77.
go back to reference Plummer, J.D., Deal, M.D., Griffin, P.B.: Silicon VLSI technology: fundamentals, practice, and modelling. Prentice Hall (2000) Plummer, J.D., Deal, M.D., Griffin, P.B.: Silicon VLSI technology: fundamentals, practice, and modelling. Prentice Hall (2000)
78.
go back to reference Lu, J.G., Chang, P., Fan, Z.: Quasi-one-dimensional metal oxide materials—synthesis, properties and applications. Mat. Sci. Eng. R-Rep. 52, 49–91 (2006) CrossRef Lu, J.G., Chang, P., Fan, Z.: Quasi-one-dimensional metal oxide materials—synthesis, properties and applications. Mat. Sci. Eng. R-Rep.
52, 49–91 (2006)
CrossRef
79.
go back to reference Wang, Z.L.: Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annu. Rev. Phys. Chem. 55, 159–196 (2004) CrossRef Wang, Z.L.: Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annu. Rev. Phys. Chem.
55, 159–196 (2004)
CrossRef
80.
go back to reference Hejazi, S.R., Hosseini, H.R.M., Ghamsari, M.S.: The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid-solid (VLS) mechanism. J. Alloy. Compd. 455, 353–357 (2008) CrossRef Hejazi, S.R., Hosseini, H.R.M., Ghamsari, M.S.: The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid-solid (VLS) mechanism. J. Alloy. Compd.
455, 353–357 (2008)
CrossRef
81.
go back to reference Park, J., Choi, H.-H., Siebein, K., Singh, R.K.: Two-step evaporation process for formation of aligned zinc oxide nanowires. J. Cryst. Growth 258, 342–348 (2003) CrossRef Park, J., Choi, H.-H., Siebein, K., Singh, R.K.: Two-step evaporation process for formation of aligned zinc oxide nanowires. J. Cryst. Growth
258, 342–348 (2003)
CrossRef
82.
go back to reference Chen, J.Y., Pan, C.J., Tsao, F.C., Kuo, C.H., Chi, G.C., Pong, B.J., Chang, C.Y., Norton, D.P., Pearton, S.J.: Characterization of ZnO nanowires grown on Si (100) with and without Au catalyst. Vacuum 84, 1076–1079 (2009) CrossRef Chen, J.Y., Pan, C.J., Tsao, F.C., Kuo, C.H., Chi, G.C., Pong, B.J., Chang, C.Y., Norton, D.P., Pearton, S.J.: Characterization of ZnO nanowires grown on Si (100) with and without Au catalyst. Vacuum
84, 1076–1079 (2009)
CrossRef
83.
go back to reference Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E., Yang, P.: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001) CrossRef Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E., Yang, P.: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater.
13, 113–116 (2001)
CrossRef
84.
go back to reference Li, S.Y., Lee, C.Y., Tseng, T.Y.: Copper-catalyzed ZnO nanowires on silicon (1 0 0) grownby vapor-liquid-solid process. J. Cryst. Growth 247, 357–362 (2003) CrossRef Li, S.Y., Lee, C.Y., Tseng, T.Y.: Copper-catalyzed ZnO nanowires on silicon (1 0 0) grownby vapor-liquid-solid process. J. Cryst. Growth
247, 357–362 (2003)
CrossRef
85.
go back to reference Wang, J.X., Liu, D.F., Yan, X.Q., Yuan, H.J., Ci, L.J., Zhou, Z.P., Gao, Y., Song, L., Liu, L.F., Zhou, W.Y., Wang, G., Xie, S.S.: Growth of SnO 2 nanowires with uniform branched structures. Solid State Commun. 130, 89–94 (2004) CrossRef Wang, J.X., Liu, D.F., Yan, X.Q., Yuan, H.J., Ci, L.J., Zhou, Z.P., Gao, Y., Song, L., Liu, L.F., Zhou, W.Y., Wang, G., Xie, S.S.: Growth of SnO
2 nanowires with uniform branched structures. Solid State Commun.
130, 89–94 (2004)
CrossRef
86.
go back to reference Chen, J.Y., Pan, C.J., Tsao, F.C., Kuo, C.H., Chi, G.C., Pong, B.J., Chang, C.Y., NortonS, D.P., Pearton, J.: Characterization of ZnO nanowires grown on Si (100) with and without Au catalyst. Vacuum 83, 1076–1079 (2009) CrossRef Chen, J.Y., Pan, C.J., Tsao, F.C., Kuo, C.H., Chi, G.C., Pong, B.J., Chang, C.Y., NortonS, D.P., Pearton, J.: Characterization of ZnO nanowires grown on Si (100) with and without Au catalyst. Vacuum
83, 1076–1079 (2009)
CrossRef
87.
go back to reference Johnson, M.C., Aloni,S., McCready, D.E., Bourret-Courchesne, E.D.: Controlled vapor–liquid–solid growth of indium, gallium, and tin oxide nanowires via chemical vapor Johnson, M.C., Aloni,S., McCready, D.E., Bourret-Courchesne, E.D.: Controlled vapor–liquid–solid growth of indium, gallium, and tin oxide nanowires via chemical vapor
88.
go back to reference Wagner, R.S., Ellis, W.C.: Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964) CrossRef Wagner, R.S., Ellis, W.C.: Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett.
4, 89–90 (1964)
CrossRef
89.
go back to reference Weber, W., et al.: Silicon nanowires: catalytic growth and electrical characterization. Phys. Stat. Sol. (b) 243, 3340–33451–6 (2006) CrossRef Weber, W., et al.: Silicon nanowires: catalytic growth and electrical characterization. Phys. Stat. Sol. (b)
243, 3340–33451–6 (2006)
CrossRef
90.
go back to reference Kirkham, M., Wang, X., Wang, Z.L., Snyder, R.L.: Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process. Nanotechnology 18, 365304 (2007) CrossRef Kirkham, M., Wang, X., Wang, Z.L., Snyder, R.L.: Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process. Nanotechnology
18, 365304 (2007)
CrossRef
91.
go back to reference Law, J.B.K., Boothroyd, C.B., Thong, J.T.L.: Site-specific growth of ZnO nanowires from patterned Zn via compatible semiconductor processing. J. Cryst. Growth 310, 2485–2492 (2008) CrossRef Law, J.B.K., Boothroyd, C.B., Thong, J.T.L.: Site-specific growth of ZnO nanowires from patterned Zn via compatible semiconductor processing. J. Cryst. Growth
310, 2485–2492 (2008)
CrossRef
92.
go back to reference Fan, H.J., Scholz, R., Kolb, F.M., Zacharias, M.: Two-dimensional dendritic ZnO nanowiresfrom oxidation of Zn microcrystals. Appl. Phys. Lett. 85, 4142–4144 (2004) CrossRef Fan, H.J., Scholz, R., Kolb, F.M., Zacharias, M.: Two-dimensional dendritic ZnO nanowiresfrom oxidation of Zn microcrystals. Appl. Phys. Lett.
85, 4142–4144 (2004)
CrossRef
93.
go back to reference Dang, H.Y., Wang, J., Fan, S.S.: The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. Nanotechnology 738 (2003) Dang, H.Y., Wang, J., Fan, S.S.: The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. Nanotechnology 738 (2003)
94.
go back to reference Wan, Q., Lin, C.L., Yu, X.B., Wang, T.H.: Room-temperature hydrogen storage characteristics of ZnO nanowires. Appl. Phys. Lett. 84, 124–126 (2004) CrossRef Wan, Q., Lin, C.L., Yu, X.B., Wang, T.H.: Room-temperature hydrogen storage characteristics of ZnO nanowires. Appl. Phys. Lett.
84, 124–126 (2004)
CrossRef
95.
go back to reference Chen, Y.Q., Jiang, J., Wang, B., Hou, J.G.: Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth. J. Phys. D Appl. Phys. 3319 (2004) Chen, Y.Q., Jiang, J., Wang, B., Hou, J.G.: Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth. J. Phys. D Appl. Phys. 3319 (2004)
96.
go back to reference Chen, Y., Cui, X., Zhang, K., Pan, D., Zhang, S., Wang, B., Hou, J.G.: Bulk quantity synthesis and self-catalytic VLS growth of SnO 2 nanowires by lower-temperature evaporation. Chem. Phys. Lett. 369, 16–20 (2003) CrossRef Chen, Y., Cui, X., Zhang, K., Pan, D., Zhang, S., Wang, B., Hou, J.G.: Bulk quantity synthesis and self-catalytic VLS growth of SnO
2 nanowires by lower-temperature evaporation. Chem. Phys. Lett.
369, 16–20 (2003)
CrossRef
97.
go back to reference Orlandi, M.O., Leite, E.R., Aguiar, R., Bettini, J., Longo, E.: Growth of SnO nanobelts and dendrites by a self-catalytic VLS process. J. Phys. Chem. B 110, 6621–6625 (2006) CrossRef Orlandi, M.O., Leite, E.R., Aguiar, R., Bettini, J., Longo, E.: Growth of SnO nanobelts and dendrites by a self-catalytic VLS process. J. Phys. Chem. B
110, 6621–6625 (2006)
CrossRef
98.
go back to reference Dai, Z.R., Pan, Z.W., Wang, Z.L.: Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Func. Mater. 13, 9–24 (2003) CrossRef Dai, Z.R., Pan, Z.W., Wang, Z.L.: Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Func. Mater.
13, 9–24 (2003)
CrossRef
99.
go back to reference Hsu, Y.-J., Lu, S.-Y.: Vapour-solid growth of Sn nanowires: growth mechanism and superconductivity. J. Phys. Chem. B 109, 4398–4403 (2005) CrossRef Hsu, Y.-J., Lu, S.-Y.: Vapour-solid growth of Sn nanowires: growth mechanism and superconductivity. J. Phys. Chem. B
109, 4398–4403 (2005)
CrossRef
100.
go back to reference Pan, Z.W., Dai, Z.R., Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001) CrossRef Pan, Z.W., Dai, Z.R., Wang, Z.L.: Nanobelts of semiconducting oxides. Science
291, 1947–1949 (2001)
CrossRef
101.
go back to reference Yun, J., Jin, C.Y., Ahn, J.H., Jeon, S., Park, I.: A self-heated silicon nanowire array: selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications. Nanoscale 5, 6851–6856 (2013) CrossRef Yun, J., Jin, C.Y., Ahn, J.H., Jeon, S., Park, I.: A self-heated silicon nanowire array: selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications. Nanoscale
5, 6851–6856 (2013)
CrossRef
- Title
- Synthesis Methods For 2D Nanostructured Materials, Nanoparticles (NPs), Nanotubes (NTs) and Nanowires (NWs)
- DOI
- https://doi.org/10.1007/978-3-030-21621-4_12
- Author:
-
Loutfy H. Madkour
- Publisher
- Springer International Publishing
- Sequence number
- 12
- Chapter number
- 12