Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 1/2018

11-12-2017

Synthesis of Aluminum-Titanium Carbide Micro and Nanocomposites by the Rotating Impeller In-Situ Gas–Liquid Reaction Method

Authors: Inigo Anza, Makhlouf M. Makhlouf

Published in: Metallurgical and Materials Transactions B | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Rotating Impeller In-Situ Gas–Liquid Reaction Method is employed for the production of Al-TiC composites. The method relies on injecting a carbon-bearing gas by means of a rotating impeller into a specially formulated molten aluminum-titanium alloy. Under the optimal conditions of temperature and composition, the gas reacts preferentially with titanium to form titanium carbide particles. The design of the apparatus, the process operation window, and the routes for forming titanium carbide particles with different sizes are elucidated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Partial pressure up to 10−30 bar in the Ellingham diagram for lithium oxidation reaction at 1273 K (1000 °C).
 
2
The temperature in the process window of Figure 1 is above 1073 K (800 °C).
 
3
D50 < 15 nm = 50 vol pct of the particles are less than 15 nm, and D99 < 30 nm = 99 vol pct of the particles are less than 30 nm.
 
Literature
1.
go back to reference R. Molina, P. Amalberto and M. Rosso, Metall. Sci. Tech, 2011, vol. 29-1, pp. 5-15. R. Molina, P. Amalberto and M. Rosso, Metall. Sci. Tech, 2011, vol. 29-1, pp. 5-15.
2.
go back to reference R. Molina, P. Amalberto and M. Rosso, Metall. Sci. Tech, 2011, vol. 29-2, pp. 5-15. R. Molina, P. Amalberto and M. Rosso, Metall. Sci. Tech, 2011, vol. 29-2, pp. 5-15.
3.
go back to reference W Kasprzak, D Emadi, M Sahoo, M Aniolek (2009) Trans Tech Publ. 618:595-600. W Kasprzak, D Emadi, M Sahoo, M Aniolek (2009) Trans Tech Publ. 618:595-600.
4.
go back to reference I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-50.CrossRef I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-50.CrossRef
5.
go back to reference Z.R. Hesabi, A. Simchi and S.M. Seyed Reihani, Mater. Sci. Eng. A, 2006, vol. 428, pp. 159-168.CrossRef Z.R. Hesabi, A. Simchi and S.M. Seyed Reihani, Mater. Sci. Eng. A, 2006, vol. 428, pp. 159-168.CrossRef
6.
go back to reference F. Tang, M. Hagiwara and J. M. Schoenung, Mater. Sci. Eng. A, 2005, vol. 407, pp. 306-314.CrossRef F. Tang, M. Hagiwara and J. M. Schoenung, Mater. Sci. Eng. A, 2005, vol. 407, pp. 306-314.CrossRef
7.
go back to reference D. Y. Ying and D. L. Zhang, Mater. Sci. Eng. A, 2000, vol. 286, pp. 152-156.CrossRef D. Y. Ying and D. L. Zhang, Mater. Sci. Eng. A, 2000, vol. 286, pp. 152-156.CrossRef
8.
go back to reference J. Naser, W. Riehemann and H. Ferkel, Mater. Sci. Eng. A, 1997, vol. 234, pp. 467-469.CrossRef J. Naser, W. Riehemann and H. Ferkel, Mater. Sci. Eng. A, 1997, vol. 234, pp. 467-469.CrossRef
10.
go back to reference D. Zhang and L. Nastac, J. Materials, 2014, vol. 3, pp. 296-302. D. Zhang and L. Nastac, J. Materials, 2014, vol. 3, pp. 296-302.
11.
go back to reference L. Chen, J. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J. Yang, S. Mathaudhu and X. Li, Nature, 2015, vol. 528, pp. 539-43.CrossRef L. Chen, J. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J. Yang, S. Mathaudhu and X. Li, Nature, 2015, vol. 528, pp. 539-43.CrossRef
12.
go back to reference L. Chen, D. Weiss, J. Morrow, J. Xu and X. Li, Manuf. Letters, 2013, vol. 1, pp. 62-65.CrossRef L. Chen, D. Weiss, J. Morrow, J. Xu and X. Li, Manuf. Letters, 2013, vol. 1, pp. 62-65.CrossRef
13.
go back to reference X. Li, Y. Yang and D. Weiss, Metall. Sci. and Tech., 2008, vol. 26-2, p. 12-20. X. Li, Y. Yang and D. Weiss, Metall. Sci. and Tech., 2008, vol. 26-2, p. 12-20.
14.
go back to reference C. Borgonovo and M. Makhlouf, In Mechanical Engineering, Worcester Polytechnic Institute, Massachusetts, USA, 2013, p. 185. C. Borgonovo and M. Makhlouf, In Mechanical Engineering, Worcester Polytechnic Institute, Massachusetts, USA, 2013, p. 185.
15.
go back to reference Q. Hou, R. Mutharasan and M. Koczak, Mater. Sci. Eng. A, 1995, vol. 195, pp. 121-129.CrossRef Q. Hou, R. Mutharasan and M. Koczak, Mater. Sci. Eng. A, 1995, vol. 195, pp. 121-129.CrossRef
16.
17.
go back to reference M.J. Koczak, and K.S. Kumar, US Patent 4808372A, 1989. M.J. Koczak, and K.S. Kumar, US Patent 4808372A, 1989.
18.
19.
20.
21.
22.
go back to reference R.G. Reddy and B. Wu, US Patent 6343640, 2002. R.G. Reddy and B. Wu, US Patent 6343640, 2002.
23.
go back to reference B. Wu and R. G. Reddy, Metall. Mater. Trans. B, 2002, vol. 33, pp. 543-550.CrossRef B. Wu and R. G. Reddy, Metall. Mater. Trans. B, 2002, vol. 33, pp. 543-550.CrossRef
24.
go back to reference Q. Zheng, B. Wu and R. G. Reddy, Adv. Eng. Mater., 2003, vol. 5, pp. 167-172.CrossRef Q. Zheng, B. Wu and R. G. Reddy, Adv. Eng. Mater., 2003, vol. 5, pp. 167-172.CrossRef
25.
go back to reference Q. Zheng and R. G. Reddy, Metall. Mater. Trans. B, 2003, vol. 34, pp. 793-804.CrossRef Q. Zheng and R. G. Reddy, Metall. Mater. Trans. B, 2003, vol. 34, pp. 793-804.CrossRef
26.
27.
go back to reference Y. Cho, J. Lee and S. Kim, Metall. Mat. Trans. A, 2014, vol. 45, pp. 5667-5678.CrossRef Y. Cho, J. Lee and S. Kim, Metall. Mat. Trans. A, 2014, vol. 45, pp. 5667-5678.CrossRef
28.
go back to reference A. Jarfors and H. Fredriksson, Microgravity. Sci. Technol., 1991, vol. 3, pp. 216-221. A. Jarfors and H. Fredriksson, Microgravity. Sci. Technol., 1991, vol. 3, pp. 216-221.
29.
go back to reference X. C. Tong and H. S. Fang, Metall. Mat. Trans. A, 1998, vol. 29, pp. 875-891.CrossRef X. C. Tong and H. S. Fang, Metall. Mat. Trans. A, 1998, vol. 29, pp. 875-891.CrossRef
31.
go back to reference M. K. Premkumar and M. G. Chu, Metall. Mat. Trans. A, 1993, vol. 24, pp. 2358-2362.CrossRef M. K. Premkumar and M. G. Chu, Metall. Mat. Trans. A, 1993, vol. 24, pp. 2358-2362.CrossRef
32.
go back to reference M. K. Premkumar and M. G. Chu, Mater. Sci. Eng. A, 1995, vol. 202, pp. 172-178.CrossRef M. K. Premkumar and M. G. Chu, Mater. Sci. Eng. A, 1995, vol. 202, pp. 172-178.CrossRef
33.
go back to reference T. Nukami and M. C. Flemings, Metall. Mat. Trans. A, 1995, vol. 26, pp. 1877-1884.CrossRef T. Nukami and M. C. Flemings, Metall. Mat. Trans. A, 1995, vol. 26, pp. 1877-1884.CrossRef
34.
go back to reference A. Varma, A. S. Rogachev, A. S. Mukasyan and S. Hwang, Adv. Chem. Eng., 1998, vol. 24, pp. 79-226.CrossRef A. Varma, A. S. Rogachev, A. S. Mukasyan and S. Hwang, Adv. Chem. Eng., 1998, vol. 24, pp. 79-226.CrossRef
35.
go back to reference JC LaSalvia, DK Kim, RA Lipsett, MA Meyers (1995) Metall. Mater. Trans. A 26:3001–3009.CrossRef JC LaSalvia, DK Kim, RA Lipsett, MA Meyers (1995) Metall. Mater. Trans. A 26:3001–3009.CrossRef
36.
go back to reference C. Borgonovo and M.M. Makhlouf, Metall. Mater. Trans. A, 2016, pp. 1–10. C. Borgonovo and M.M. Makhlouf, Metall. Mater. Trans. A, 2016, pp. 1–10.
37.
go back to reference C. Borgonovo and M.M. Makhlouf, Metall. Mater. Trans. A, 2016, pp. 1–11. C. Borgonovo and M.M. Makhlouf, Metall. Mater. Trans. A, 2016, pp. 1–11.
38.
go back to reference L. Svendsen and A. Jarfors, Mater. Sci. Technol., 1993, vol 9, pp. 948-957.CrossRef L. Svendsen and A. Jarfors, Mater. Sci. Technol., 1993, vol 9, pp. 948-957.CrossRef
39.
go back to reference Berry AJ (1938) Qualitative inorganic Analysis, Cambridge University Press, Cambridge. Berry AJ (1938) Qualitative inorganic Analysis, Cambridge University Press, Cambridge.
40.
go back to reference D. R. Gaskell: Introduction to the thermodynamics of materials, Taylor & Francis, New York, 2008, pp. 306-313. D. R. Gaskell: Introduction to the thermodynamics of materials, Taylor & Francis, New York, 2008, pp. 306-313.
41.
go back to reference R. A. Rapp and X. Zheng, Metall. Mat. Trans. A, 1991, vol. 22, pp. 3071-3075.CrossRef R. A. Rapp and X. Zheng, Metall. Mat. Trans. A, 1991, vol. 22, pp. 3071-3075.CrossRef
43.
go back to reference C Schmitz (2006) Handbook of Aluminium Recycling. Vulkan-Verlag GmbH, Essen. C Schmitz (2006) Handbook of Aluminium Recycling. Vulkan-Verlag GmbH, Essen.
44.
go back to reference E. M. Savitskii: Physical metallurgy of refractory metals and alloys, Springer Science & Business Media, 2012, pp. 17. E. M. Savitskii: Physical metallurgy of refractory metals and alloys, Springer Science & Business Media, 2012, pp. 17.
45.
go back to reference Y. Yamada and A. W. Castleman, Chem. Phys. Lett., 1993, vol. 204, pp. 133-138.CrossRef Y. Yamada and A. W. Castleman, Chem. Phys. Lett., 1993, vol. 204, pp. 133-138.CrossRef
46.
go back to reference I Anza (2016) Mechanical Engineering. Worcester Polytechnic Institute, Worcester. I Anza (2016) Mechanical Engineering. Worcester Polytechnic Institute, Worcester.
47.
go back to reference R. U. Khan, Int. J. Chem. React. Eng, 2009, vol. 7, pp. 23-23. R. U. Khan, Int. J. Chem. React. Eng, 2009, vol. 7, pp. 23-23.
48.
go back to reference A. Holmen, O. Olsvik and O. A. Rokstad, Fuel Process. Technol., 1995, vol. 42, pp. 249-267.CrossRef A. Holmen, O. Olsvik and O. A. Rokstad, Fuel Process. Technol., 1995, vol. 42, pp. 249-267.CrossRef
49.
go back to reference S. Swaminathan, B. S. Rao and V. Jayaram, Mater. Sci. Eng. A, 2002, vol. 337, pp. 134-139.CrossRef S. Swaminathan, B. S. Rao and V. Jayaram, Mater. Sci. Eng. A, 2002, vol. 337, pp. 134-139.CrossRef
50.
go back to reference Y. Huashun, J. D. Kim and S. B. Kang, Mater. Sci. Eng. A, 2004, vol. 386, pp. 318-325.CrossRef Y. Huashun, J. D. Kim and S. B. Kang, Mater. Sci. Eng. A, 2004, vol. 386, pp. 318-325.CrossRef
51.
go back to reference A. Schweighofer and S. Kudela, Kovove Materialy, 1977, vol. 15, pp. 257-268. A. Schweighofer and S. Kudela, Kovove Materialy, 1977, vol. 15, pp. 257-268.
52.
go back to reference M. Dyzia and J. Śleziona, Arch. Mat. Sci. Eng., 2008, vol. 31, pp. 17-20. M. Dyzia and J. Śleziona, Arch. Mat. Sci. Eng., 2008, vol. 31, pp. 17-20.
53.
go back to reference J. Śleziona and M. Dyzia, Arch. Found. Eng., 2008, vol. 8, pp. 134-138. J. Śleziona and M. Dyzia, Arch. Found. Eng., 2008, vol. 8, pp. 134-138.
54.
go back to reference H. Z. Ye, X. Y. Liu and B. Luan, J. Mater. Process. Technol., 2005, vol. 166, pp. 79-85.CrossRef H. Z. Ye, X. Y. Liu and B. Luan, J. Mater. Process. Technol., 2005, vol. 166, pp. 79-85.CrossRef
55.
go back to reference TY Kosolapova (2012) Carbides: properties, production, and applications. Springer Science & Business Media, New York, pp. 61-63. TY Kosolapova (2012) Carbides: properties, production, and applications. Springer Science & Business Media, New York, pp. 61-63.
56.
57.
go back to reference A. Jarfors, H. Fredriksson and L. Froyen, Mater. Sci. Eng., A 1991, vol. 135, pp. 119-123.CrossRef A. Jarfors, H. Fredriksson and L. Froyen, Mater. Sci. Eng., A 1991, vol. 135, pp. 119-123.CrossRef
58.
59.
go back to reference A Violi, GA Voth, AF Sarofim (2003) Prepr. Pap. Am. Chem. Soc.48:545. A Violi, GA Voth, AF Sarofim (2003) Prepr. Pap. Am. Chem. Soc.48:545.
60.
go back to reference G. Blanquart and H. Pitsch, 5th US Comb. Meet., 2007, pp. 1–19. G. Blanquart and H. Pitsch, 5th US Comb. Meet., 2007, pp. 1–19.
61.
go back to reference K.A. Jensen, J.M. Suo-Anttila, and L.G. Blevins, Sandia National Laboratories Report, SAND2005-0337, 2005, pp. 15–18. K.A. Jensen, J.M. Suo-Anttila, and L.G. Blevins, Sandia National Laboratories Report, SAND2005-0337, 2005, pp. 15–18.
62.
go back to reference J Ma (1996) Chemical Engineering. Brigham Young University, Provo, pp. 8-27. J Ma (1996) Chemical Engineering. Brigham Young University, Provo, pp. 8-27.
63.
go back to reference D. Tricker, A. Tarrant, and D. Hashiguchi, TMS 2016. D. Tricker, A. Tarrant, and D. Hashiguchi, TMS 2016.
64.
65.
go back to reference M. Zlokarnik (2008) Stirring: Theory and practice. Wiley, New York, pp. 69-70. M. Zlokarnik (2008) Stirring: Theory and practice. Wiley, New York, pp. 69-70.
66.
Metadata
Title
Synthesis of Aluminum-Titanium Carbide Micro and Nanocomposites by the Rotating Impeller In-Situ Gas–Liquid Reaction Method
Authors
Inigo Anza
Makhlouf M. Makhlouf
Publication date
11-12-2017
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 1/2018
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-017-1148-9

Other articles of this Issue 1/2018

Metallurgical and Materials Transactions B 1/2018 Go to the issue

Premium Partners