Skip to main content
Top
Published in: Journal of Materials Science 13/2019

02-04-2019 | Polymers

Synthesis of dual-functionalized poly(vinyl alcohol)/poly(acrylic acid) electrospun nanofibers with enzyme and copper ion for enhancing anti-biofouling activities

Authors: Jeong-Ann Park, Seung-Chan Lee, Song-Bae Kim

Published in: Journal of Materials Science | Issue 13/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aim of this study was to synthesize dual-functionalized poly(vinyl alcohol) (PVA)/poly(acrylic acid) (PAA) electrospun nanofibers with enzyme and copper ion (Cu(II)) for enhancing anti-biofouling activities. The PVA/PAA nanofibers were successfully synthesized by co-electrospinning (voltage = 17 kV; tip-to-collector distance = 15 cm) and cross-linked by heat treatment. The PVA/PAA nanofibers were functionalized through adsorbing Cu(II) onto the nanofibers to prepare the PVA/PAA-Cu(II) nanofibers. Three proteases (proteinase K, trypsin, and α-chymotrypsin) and a quorum quenching enzyme (acylase I) were tested for biofilm reduction that α-chymotrypsin effectively inhibited the biofilm formation and removed biofilms of Pseudomonas aeruginosa and Staphylococcus aureus. The PVA/PAA nanofibers were dual-functionalized with α-chymotrypsin and Cu(II) to obtain PVA/PAA-Cu(II)-α nanofibers. Degradation tests for extracellular polymeric substances (EPS) extracted from P. aeruginosa indicated that the PVA/PAA-Cu(II)-α nanofibers could degrade the EPS proteins up to 0.26 mg mL−1 for 300 min, which was higher than that of free α-chymotrypsin. For anti-biofouling tests, the log number of planktonic and sessile cells of P. aeruginosa was the lowest in the PVA/PAA-Cu(II)-α nanofibers. The anti-biofouling activities of the PVA/PAA-Cu(II)-α nanofibers could be attributed to the effects of both Cu(II) (killing planktonic and sessile cells) and α-chymotrypsin (degrading the EPS protein in biofilm).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cloete TE, de Kwaadsteniet M, Botes M, Lopez-Romero JM, Hierrezuelo-Leon J, Cakmakci M, Koyuncu I, Garrido-Perez E (2010) Nanotechnology in water treatment applications. Caister Academic Press, Norfolk Cloete TE, de Kwaadsteniet M, Botes M, Lopez-Romero JM, Hierrezuelo-Leon J, Cakmakci M, Koyuncu I, Garrido-Perez E (2010) Nanotechnology in water treatment applications. Caister Academic Press, Norfolk
2.
go back to reference Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V (2018) Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Membr Sci 550:173–197CrossRef Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V (2018) Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Membr Sci 550:173–197CrossRef
3.
go back to reference Davis D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122CrossRef Davis D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122CrossRef
4.
go back to reference Stewart PS, McFeters GA, Huang CT (2000) Biofilm control by antimicrobial agents. In: Bryers JD (ed) Biofilms II: process analysis and application. Wiley, New York Stewart PS, McFeters GA, Huang CT (2000) Biofilm control by antimicrobial agents. In: Bryers JD (ed) Biofilms II: process analysis and application. Wiley, New York
5.
go back to reference Donlan RM, Costerton JW (2002) Biofilms, survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193CrossRef Donlan RM, Costerton JW (2002) Biofilms, survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193CrossRef
6.
go back to reference Molobela P, Cloete TE, Beukes M (2010) Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria. Afr J Microbiol Res 4:1515–1524 Molobela P, Cloete TE, Beukes M (2010) Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria. Afr J Microbiol Res 4:1515–1524
7.
go back to reference Olsen SM, Pedersen LT, Laursen MH, Kill S, Dam-Johansen K (2007) Enzyme-based antifouling coatings, a review. Biofouling 23:369–383CrossRef Olsen SM, Pedersen LT, Laursen MH, Kill S, Dam-Johansen K (2007) Enzyme-based antifouling coatings, a review. Biofouling 23:369–383CrossRef
8.
go back to reference Leroy C, Delbarre C, Ghillebaert F, Compere C, Combes D (2008) Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24:11–22CrossRef Leroy C, Delbarre C, Ghillebaert F, Compere C, Combes D (2008) Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24:11–22CrossRef
9.
go back to reference Zanoni M, Habimana O, Amadio J, Casey E (2016) Antifouling activity of enzyme-functionalized silica nanobeads. Biotechnol Bioeng 113:501–512CrossRef Zanoni M, Habimana O, Amadio J, Casey E (2016) Antifouling activity of enzyme-functionalized silica nanobeads. Biotechnol Bioeng 113:501–512CrossRef
10.
go back to reference Meshram P, Dave R, Joshi H, Dharani G, Kirubagaran R, Venugopalan VP (2016) A fence that eats the weed: alginate lyase immobilization on ultrafiltration membrane for fouling mitigation and flux recovery. Chemosphere 165:144–151CrossRef Meshram P, Dave R, Joshi H, Dharani G, Kirubagaran R, Venugopalan VP (2016) A fence that eats the weed: alginate lyase immobilization on ultrafiltration membrane for fouling mitigation and flux recovery. Chemosphere 165:144–151CrossRef
11.
go back to reference Kristensen JB, Meyer RL, Laursen BS, Shipovskov S, Besenbacher F, Poulsen CH (2008) Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv 26:471–481CrossRef Kristensen JB, Meyer RL, Laursen BS, Shipovskov S, Besenbacher F, Poulsen CH (2008) Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv 26:471–481CrossRef
12.
go back to reference Xavier JB, Picioreanu C, Rani SA, van Loosdrecht MCM, Stewart PS (2005) Biofilm control strategies based on enzymatic disruption of the extracellular polymeric substance matrix- a modeling study. Microbiology 51:3817–3832CrossRef Xavier JB, Picioreanu C, Rani SA, van Loosdrecht MCM, Stewart PS (2005) Biofilm control strategies based on enzymatic disruption of the extracellular polymeric substance matrix- a modeling study. Microbiology 51:3817–3832CrossRef
13.
go back to reference Kim JH, Choi DC, Yeon KM, Kim SR, Lee CH (2011) Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environ Sci Technol 45:1601–1607CrossRef Kim JH, Choi DC, Yeon KM, Kim SR, Lee CH (2011) Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environ Sci Technol 45:1601–1607CrossRef
14.
go back to reference Du Plessis DM, Botes M, Dicks LMT, Cloete TE (2012) Immobilization of commercial hydrolytic enzymes on poly(acrylonitrile) nanofibers for anti-biofilm activity. J Chem Technol Biotechnol 88:585–593CrossRef Du Plessis DM, Botes M, Dicks LMT, Cloete TE (2012) Immobilization of commercial hydrolytic enzymes on poly(acrylonitrile) nanofibers for anti-biofilm activity. J Chem Technol Biotechnol 88:585–593CrossRef
15.
go back to reference Kim LH, Kim SJ, Kim CM, Shin MS, Kook SH, Kim IS (2013) Effects of enzymatic treatment on the reduction of extracellular polymeric substances (EPS) from biofouled membranes. Desalin Water Treat 51:6355–6361CrossRef Kim LH, Kim SJ, Kim CM, Shin MS, Kook SH, Kim IS (2013) Effects of enzymatic treatment on the reduction of extracellular polymeric substances (EPS) from biofouled membranes. Desalin Water Treat 51:6355–6361CrossRef
16.
go back to reference Brady D, Jordaan J (2009) Advances in enzyme immobilization. Biotechnol Lett 31:1639–1650CrossRef Brady D, Jordaan J (2009) Advances in enzyme immobilization. Biotechnol Lett 31:1639–1650CrossRef
17.
go back to reference Wang ZG, Wan LS, Liu ZM, Huang XJ, Xu ZK (2009) Enzyme immobilization on electrospun polymer nanofibers, an overview. J Mol Catal B Enzym 56:189–195CrossRef Wang ZG, Wan LS, Liu ZM, Huang XJ, Xu ZK (2009) Enzyme immobilization on electrospun polymer nanofibers, an overview. J Mol Catal B Enzym 56:189–195CrossRef
18.
go back to reference Lee J, Lee I, Nam J, Hwang DS, Yeon KM, Kim J (2017) Immobilization and stabilization of acylase on carboxylated polyaniline nanofibers for highly effective antifouling application via quorum quenching. ACS Appl Mater Interfaces 9:15424–15432CrossRef Lee J, Lee I, Nam J, Hwang DS, Yeon KM, Kim J (2017) Immobilization and stabilization of acylase on carboxylated polyaniline nanofibers for highly effective antifouling application via quorum quenching. ACS Appl Mater Interfaces 9:15424–15432CrossRef
19.
go back to reference Taheran M, Naghdi M, Brar SK, Knystautas EJ, Verma M, Surampalli RY (2017) Degradation of chlortetracycline using immobilized laccase on polyacrylonitrile-biochar composite nanofibrous membrane. Sci Total Environ 605:315–321CrossRef Taheran M, Naghdi M, Brar SK, Knystautas EJ, Verma M, Surampalli RY (2017) Degradation of chlortetracycline using immobilized laccase on polyacrylonitrile-biochar composite nanofibrous membrane. Sci Total Environ 605:315–321CrossRef
20.
go back to reference Sheldon RA (2007) Enzyme immobilization, the quest for optimum performance. Adv Synth Catal 349:1289–1307CrossRef Sheldon RA (2007) Enzyme immobilization, the quest for optimum performance. Adv Synth Catal 349:1289–1307CrossRef
21.
go back to reference Srbová J, Slováková M, Křípalová Z, Žárská M, Špačková M, Stránská D, Bílková Z (2016) Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. React Funct Polym 104:38–44CrossRef Srbová J, Slováková M, Křípalová Z, Žárská M, Špačková M, Stránská D, Bílková Z (2016) Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. React Funct Polym 104:38–44CrossRef
22.
go back to reference Santo CE, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microb 77:794–802CrossRef Santo CE, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microb 77:794–802CrossRef
23.
go back to reference Thurman RB, Gerba CP, Bitton G (1989) The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Sci Technol 18:295–315 Thurman RB, Gerba CP, Bitton G (1989) The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Sci Technol 18:295–315
24.
go back to reference Vincent M, Duval RE, Hartmann P, Engels-Deutsch M (2017) Contact killing and antimicrobial properties of copper. J Appl Microbiol 124:1032–1046CrossRef Vincent M, Duval RE, Hartmann P, Engels-Deutsch M (2017) Contact killing and antimicrobial properties of copper. J Appl Microbiol 124:1032–1046CrossRef
25.
go back to reference Feng Q, Zhao Y, Wei AF, Li CL, Wei QF, Fong H (2014) Immobilization of catalase on electrospun PVA/PA6-Cu(II) nanofibrous membrane for the development of efficient and reusable enzyme membrane reactor. Environ Sci Technol 48:10390–10397CrossRef Feng Q, Zhao Y, Wei AF, Li CL, Wei QF, Fong H (2014) Immobilization of catalase on electrospun PVA/PA6-Cu(II) nanofibrous membrane for the development of efficient and reusable enzyme membrane reactor. Environ Sci Technol 48:10390–10397CrossRef
26.
go back to reference Lopez-Gallego F, Bentancor L, Mateo C, Hidalgo A, Alonso-Morales N, Della-Ortiz G (2005) Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J Biotechnol 119:70–75CrossRef Lopez-Gallego F, Bentancor L, Mateo C, Hidalgo A, Alonso-Morales N, Della-Ortiz G (2005) Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J Biotechnol 119:70–75CrossRef
27.
go back to reference Park JA, Kang JK, Lee SC, Kim SB (2017) Electrospun poly(acrylic acid)/poly(vinyl alcohol) nanofibrous adsorbents for Cu(II) removal from industrial plating wastewater. RSC Adv 7:18075–18084CrossRef Park JA, Kang JK, Lee SC, Kim SB (2017) Electrospun poly(acrylic acid)/poly(vinyl alcohol) nanofibrous adsorbents for Cu(II) removal from industrial plating wastewater. RSC Adv 7:18075–18084CrossRef
28.
go back to reference Xiao SL, Shen MW, Hui M, Guo R, Zhu MF, Wang SY, Shi XY (2010) Fabrication of water-stable electrospun polyacrylic acid-based nanofibrous mats for removal of copper (II) ions in aqueous solution. J Appl Polym Sci 116:2409–2417 Xiao SL, Shen MW, Hui M, Guo R, Zhu MF, Wang SY, Shi XY (2010) Fabrication of water-stable electrospun polyacrylic acid-based nanofibrous mats for removal of copper (II) ions in aqueous solution. J Appl Polym Sci 116:2409–2417
29.
go back to reference Pitt B, Hamilton MA, Zelver N, Stewart PS (2003) A microtiter-plate screening method for biofilm disinfection and removal. J Microbiol Methods 54:269–276CrossRef Pitt B, Hamilton MA, Zelver N, Stewart PS (2003) A microtiter-plate screening method for biofilm disinfection and removal. J Microbiol Methods 54:269–276CrossRef
30.
go back to reference Zmantar T, Kouidhi B, Miladi H, Mahdouani K, Bakhrouf A (2010) A microtiter plate assay for Staphylococcus aureus biofilm quantification at various pH levels and hydrogen peroxide supplementation. New Microbiol 33:137–145 Zmantar T, Kouidhi B, Miladi H, Mahdouani K, Bakhrouf A (2010) A microtiter plate assay for Staphylococcus aureus biofilm quantification at various pH levels and hydrogen peroxide supplementation. New Microbiol 33:137–145
31.
go back to reference O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R (1999) Genetic approaches to study of biofilms. Academic Press San Diego, California O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R (1999) Genetic approaches to study of biofilms. Academic Press San Diego, California
32.
go back to reference Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W (2000) Alternative transcription factor σB is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J Bacteriol 182:6824–6826CrossRef Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W (2000) Alternative transcription factor σB is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J Bacteriol 182:6824–6826CrossRef
33.
go back to reference Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRef Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRef
34.
go back to reference Wang ZG, Ke BB, Xu ZK (2007) Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes, a comprehensive study. Biotechnol Bioengin 97:708–720CrossRef Wang ZG, Ke BB, Xu ZK (2007) Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes, a comprehensive study. Biotechnol Bioengin 97:708–720CrossRef
35.
go back to reference Wingender J, Strathmann M, Rode A, Leis A, Flemming HC (2001) Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aerugionosa. Methods Enzymol 336:302–314CrossRef Wingender J, Strathmann M, Rode A, Leis A, Flemming HC (2001) Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aerugionosa. Methods Enzymol 336:302–314CrossRef
36.
go back to reference Dreywood R (1946) Qualitative test for carbohydrate material. Ind Eng Chem Anal Ed 18:499CrossRef Dreywood R (1946) Qualitative test for carbohydrate material. Ind Eng Chem Anal Ed 18:499CrossRef
37.
go back to reference de Prijck K, Nelis H, Coenye T (2007) Efficacy of silver-releasing rubber for the prevention of Pseudomonas aeruginosa biofilm formation in water. Biofouling 23:405–411CrossRef de Prijck K, Nelis H, Coenye T (2007) Efficacy of silver-releasing rubber for the prevention of Pseudomonas aeruginosa biofilm formation in water. Biofouling 23:405–411CrossRef
38.
go back to reference Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li QL, Alvarez PJJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723CrossRef Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li QL, Alvarez PJJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723CrossRef
39.
go back to reference Chen CI, Ko YM, Shieh CJ, Liu YC (2011) Direct penicillin G acylase immobilization by using the self-prepared immobilized metal affinity membrane. J Membr Sci 380:34–40CrossRef Chen CI, Ko YM, Shieh CJ, Liu YC (2011) Direct penicillin G acylase immobilization by using the self-prepared immobilized metal affinity membrane. J Membr Sci 380:34–40CrossRef
40.
go back to reference Sun LM, Zhang CL, Li P (2011) Characterization, antimicrobial activity, and mechanism of a high-performance (-)-epigallocatechin-3-gallate(EGCG)-CuII/polyvinyl alcohol(PVA) nanofibrous membrane. J Agric Food Chem 59:5087–5092CrossRef Sun LM, Zhang CL, Li P (2011) Characterization, antimicrobial activity, and mechanism of a high-performance (-)-epigallocatechin-3-gallate(EGCG)-CuII/polyvinyl alcohol(PVA) nanofibrous membrane. J Agric Food Chem 59:5087–5092CrossRef
41.
go back to reference Gule NP, de Kwaadsteniet M, Cloete TE, Klumperman B (2012) Electrospun poly(vinyl alcohol) nanofibers with biocidal additives for application in filter media, 1-Properties affecting fibre morphology and characterization. Macromol Mater Eng 297:609–617CrossRef Gule NP, de Kwaadsteniet M, Cloete TE, Klumperman B (2012) Electrospun poly(vinyl alcohol) nanofibers with biocidal additives for application in filter media, 1-Properties affecting fibre morphology and characterization. Macromol Mater Eng 297:609–617CrossRef
42.
go back to reference Abbasizadeh S, Keshtkar AR, Mousavian MA (2013) Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium(VI) and thorium(IV) removal from aqueous solution. Chem Eng J 220:161–171CrossRef Abbasizadeh S, Keshtkar AR, Mousavian MA (2013) Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium(VI) and thorium(IV) removal from aqueous solution. Chem Eng J 220:161–171CrossRef
43.
go back to reference Sui XM, Shao CL, Liu YC (2005) White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning. Appl Phys Lett 87:113–115CrossRef Sui XM, Shao CL, Liu YC (2005) White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning. Appl Phys Lett 87:113–115CrossRef
44.
go back to reference Li W, Li XY, Chen Y, Li XX, Deng HB, Wang T, Huang R, Fan G (2013) Poly(vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition. Carbohydr Polym 92:2232–2238CrossRef Li W, Li XY, Chen Y, Li XX, Deng HB, Wang T, Huang R, Fan G (2013) Poly(vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition. Carbohydr Polym 92:2232–2238CrossRef
45.
go back to reference Siriwatcharapiboon W, Tinnarat N, Supaphol P (2013) Preparation and characterization of electrospun poly(vinyl alcohol) nanofibers containing platinum or platinum-ruthenium nanoparticles. J Polym Res 20:1–8CrossRef Siriwatcharapiboon W, Tinnarat N, Supaphol P (2013) Preparation and characterization of electrospun poly(vinyl alcohol) nanofibers containing platinum or platinum-ruthenium nanoparticles. J Polym Res 20:1–8CrossRef
46.
go back to reference Kim DS, Park HB, Rhim JW, Lee YM (2005) Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/dilica hybrid membranes. Solid State Ion 176:117–126CrossRef Kim DS, Park HB, Rhim JW, Lee YM (2005) Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/dilica hybrid membranes. Solid State Ion 176:117–126CrossRef
47.
go back to reference Atymur A, Uslu I (2014) Promising materials for wound dressing, PVA/PAA/PVP electrospun nanofibers. Polym Plast Technol Eng 56:655–660CrossRef Atymur A, Uslu I (2014) Promising materials for wound dressing, PVA/PAA/PVP electrospun nanofibers. Polym Plast Technol Eng 56:655–660CrossRef
48.
go back to reference Pallares I, Vendrell J, Aviles FX, Ventura S (2004) Amyloid fibril formation by a partially structured intermediate state of α-chymotrypsin. J Mol Biol 342:321–331CrossRef Pallares I, Vendrell J, Aviles FX, Ventura S (2004) Amyloid fibril formation by a partially structured intermediate state of α-chymotrypsin. J Mol Biol 342:321–331CrossRef
49.
go back to reference Hong J, Xu DM, Gong PJ, Sun HW, Dong L, Yao SD (2007) Covalent binding of α-chymotrypsin on the magnetic nanogels covered by amino groups. J Mol Catal B-Enzym 45:84–90CrossRef Hong J, Xu DM, Gong PJ, Sun HW, Dong L, Yao SD (2007) Covalent binding of α-chymotrypsin on the magnetic nanogels covered by amino groups. J Mol Catal B-Enzym 45:84–90CrossRef
50.
go back to reference Pendashteh A, Mousavi MF, Rahmanifar MS (2013) Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochim Acta 88:347–357CrossRef Pendashteh A, Mousavi MF, Rahmanifar MS (2013) Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochim Acta 88:347–357CrossRef
51.
go back to reference Yeon KM, Lee CH, Kim JB (2009) Magnetic enzyme carrier for effective biofouling control in the membrane bioreactor based on enzymatic quorum quenching. Environ Sci Technol 43:7403–7409CrossRef Yeon KM, Lee CH, Kim JB (2009) Magnetic enzyme carrier for effective biofouling control in the membrane bioreactor based on enzymatic quorum quenching. Environ Sci Technol 43:7403–7409CrossRef
53.
go back to reference Quirόs J, Borges JP, Boltes K, Rodea-Palomares I, Rodal R (2015) Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers. J Hazard Mater 299:298–305CrossRef Quirόs J, Borges JP, Boltes K, Rodea-Palomares I, Rodal R (2015) Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers. J Hazard Mater 299:298–305CrossRef
Metadata
Title
Synthesis of dual-functionalized poly(vinyl alcohol)/poly(acrylic acid) electrospun nanofibers with enzyme and copper ion for enhancing anti-biofouling activities
Authors
Jeong-Ann Park
Seung-Chan Lee
Song-Bae Kim
Publication date
02-04-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 13/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03578-6

Other articles of this Issue 13/2019

Journal of Materials Science 13/2019 Go to the issue

Premium Partners