Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 22/2017

25-07-2017

Synthesis of Li1.2Mn0.54Co0.13Ni0.13O2 by sol–gel method and its electrochemical properties as cathode materials for lithium-ion batteries

Authors: Xiaoling Ma, Huibing He, Ya Sun, Youxiang Zhang

Published in: Journal of Materials Science: Materials in Electronics | Issue 22/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Li1.2Mn0.54Co0.13Ni0.13O2 was synthesized by sol–gel method at 700, 800, 900 and 1000 °C, respectively, characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and measured as the cathode materials for lithium-ion batteries (LIBs). After their performances have been compared, 800 °C was considered as the optimum synthesis temperature for Li1.2Mn0.54Co0.13Ni0.13O2 as the cathode materials for LIBs. When charge–discharged at 20 mA g−1 in a voltage window of 2.0–4.8 V, the Li1.2Mn0.54Co0.13Ni0.13O2 synthesized at 800 °C (LMNCO-800) showed charge and discharge capacities of 376.2 and 276.3 mAh g−1, respectively, with irreversible capacity of 99.9 mAh g−1 and Coulombic efficiency of 73.4%, in the first charge–discharge cycle. The discharge capacity was 239.0 mAh g−1 in the 50th charge–discharge cycle, with capacity retention of 86.6%. The LMNCO-800 also showed superior high-rate performances. When cycled at the rates of 0.5, 1, 2 and 5 C rate (1 C = 200 mA g−1), the discharge capacities of the Li1.2Mn0.54Co0.13Ni0.13O2 can reach 241, 171, 150 and 110 mAh g−1, respectively. When characterized with high-resolution transmission electron microscopy (TEM), nanodomains with two different structures can be found in LMNCO-800, with some nanodomains showing monoclinic Li2MnO3 structure and the other nanodomains showing hexagonal LiMO2 structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004)CrossRef M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004)CrossRef
2.
go back to reference M.J. Armstrong, C. O’Dwyer, W.J. Macklin, J.D. Holmes, Evaluating the performances of nanostructured materials as lithium-ion battery electrodes. Nano Res. 7, 1–62 (2014)CrossRef M.J. Armstrong, C. O’Dwyer, W.J. Macklin, J.D. Holmes, Evaluating the performances of nanostructured materials as lithium-ion battery electrodes. Nano Res. 7, 1–62 (2014)CrossRef
3.
go back to reference Z.G. Yang, J.L. Zhang, M.W. Kintner-Meyer, X.C. Lu, D. Choi, J. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)CrossRef Z.G. Yang, J.L. Zhang, M.W. Kintner-Meyer, X.C. Lu, D. Choi, J. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)CrossRef
4.
go back to reference H.J. Yu, H.S. Zhou, High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 4, 1268–1280 (2013)CrossRef H.J. Yu, H.S. Zhou, High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 4, 1268–1280 (2013)CrossRef
5.
go back to reference D.L. Ye, L.Z. Wang, Li2MnO3 based Li-rich cathode materials: towards a better tomorrow of high energy lithium ion batteries. Mater. Technol. 29, A59–A69 (2014)CrossRef D.L. Ye, L.Z. Wang, Li2MnO3 based Li-rich cathode materials: towards a better tomorrow of high energy lithium ion batteries. Mater. Technol. 29, A59–A69 (2014)CrossRef
6.
go back to reference C.S. Johnson, J.S. Kim, C. Lefief, N. Li, J.T. Vaughey, M.M. Thackeray, The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x) LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 6, 1085–1091 (2004)CrossRef C.S. Johnson, J.S. Kim, C. Lefief, N. Li, J.T. Vaughey, M.M. Thackeray, The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x) LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 6, 1085–1091 (2004)CrossRef
7.
go back to reference M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, S.A. Hackney, Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem. Commun. 8, 1531–1538 (2006)CrossRef M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, S.A. Hackney, Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem. Commun. 8, 1531–1538 (2006)CrossRef
8.
go back to reference K.A. Jarvis, Z. Deng, L.F. Allard, A. Manthiram, P.J. Ferreira, Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem. Mater. 23, 3614–3621 (2011)CrossRef K.A. Jarvis, Z. Deng, L.F. Allard, A. Manthiram, P.J. Ferreira, Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem. Mater. 23, 3614–3621 (2011)CrossRef
9.
go back to reference J.H. Lim, H. Bang, K.S. Lee et al., Electrochemical characterization of Li2MnO3–Li[Ni1/3Co1/3Mn1/3]O2–LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries. J. Power Sources 189, 571–575 (2009)CrossRef J.H. Lim, H. Bang, K.S. Lee et al., Electrochemical characterization of Li2MnO3–Li[Ni1/3Co1/3Mn1/3]O2–LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries. J. Power Sources 189, 571–575 (2009)CrossRef
10.
go back to reference F. Wu, H. Lu, Y. Su et al., Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, for lithium-ion batteries. J. Appl. Electrochem. 40, 783–789 (2010)CrossRef F. Wu, H. Lu, Y. Su et al., Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, for lithium-ion batteries. J. Appl. Electrochem. 40, 783–789 (2010)CrossRef
11.
go back to reference J.H. Kim, Y.K. Sun, Electrochemical performance of Li[LixNi(1–3x)/2Mn(1+ x)/2]O2 cathode materials synthesized by a sol–gel method. J. Power Sources 119, 166–170 (2003)CrossRef J.H. Kim, Y.K. Sun, Electrochemical performance of Li[LixNi(1–3x)/2Mn(1+ x)/2]O2 cathode materials synthesized by a sol–gel method. J. Power Sources 119, 166–170 (2003)CrossRef
12.
go back to reference B.J. Hwang, C.J. Wang, C.H. Chen et al., Electrochemical properties of Li[Nix Li(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤ 0.5) cathode materials prepared by a sol–gel process. J. Power Sources 146, 658–663 (2005)CrossRef B.J. Hwang, C.J. Wang, C.H. Chen et al., Electrochemical properties of Li[Nix Li(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤ 0.5) cathode materials prepared by a sol–gel process. J. Power Sources 146, 658–663 (2005)CrossRef
13.
go back to reference J. Liu, L. Chen, M. Hou et al., General synthesis of xLi2MnO3·(1–x)LiMn1/3 Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. J. Mater. Chem. 22, 25380–25387 (2012)CrossRef J. Liu, L. Chen, M. Hou et al., General synthesis of xLi2MnO3·(1–x)LiMn1/3 Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. J. Mater. Chem. 22, 25380–25387 (2012)CrossRef
14.
go back to reference Z.Y. Wang, B. Li, J. Ma et al., The enhanced electrochemical performance of nanocrystalline Li[Li0.26Ni0.11Mn0.63]O2 synthesized by the molten-salt method for Li-ion batteries. Electrochim. Acta 117, 285–291 (2014)CrossRef Z.Y. Wang, B. Li, J. Ma et al., The enhanced electrochemical performance of nanocrystalline Li[Li0.26Ni0.11Mn0.63]O2 synthesized by the molten-salt method for Li-ion batteries. Electrochim. Acta 117, 285–291 (2014)CrossRef
15.
go back to reference J.M. Kim, S. Tsuruta, N. Kumagai, Electrochemical properties of Li(Li(1–x)/3 CoxMn(2–2x)/3)O2 (0 ≤ x ≤ 1) solid solutions prepared by poly-vinyl alcohol (PVA) method. Electrochem. Commun. 9, 103–108 (2007)CrossRef J.M. Kim, S. Tsuruta, N. Kumagai, Electrochemical properties of Li(Li(1–x)/3 CoxMn(2–2x)/3)O2 (0 ≤ x ≤ 1) solid solutions prepared by poly-vinyl alcohol (PVA) method. Electrochem. Commun. 9, 103–108 (2007)CrossRef
16.
go back to reference X. Wei, S. Zhang, Z. Du et al., Electrochemical performance of high-capacity nanostructured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery by hydrothermal method. Electrochim. Acta 107, 549–554 (2013)CrossRef X. Wei, S. Zhang, Z. Du et al., Electrochemical performance of high-capacity nanostructured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery by hydrothermal method. Electrochim. Acta 107, 549–554 (2013)CrossRef
17.
go back to reference M.G. Kim, M. Jo, Y.S. Hong et al., Template-free synthesis of Li[Ni0.25Li0.15 Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem. Commun. 2, 218–220 (2009)CrossRef M.G. Kim, M. Jo, Y.S. Hong et al., Template-free synthesis of Li[Ni0.25Li0.15 Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem. Commun. 2, 218–220 (2009)CrossRef
18.
go back to reference C.C. Wang, K.A. Jarvis, P.J. Ferreira, A. Manthiram, Effect of synthesis conditions on the first charge and reversible capacities of lithium-rich layered oxide cathodes. Chem. Mater. 25, 3267–3275 (2013)CrossRef C.C. Wang, K.A. Jarvis, P.J. Ferreira, A. Manthiram, Effect of synthesis conditions on the first charge and reversible capacities of lithium-rich layered oxide cathodes. Chem. Mater. 25, 3267–3275 (2013)CrossRef
19.
go back to reference X.D. Xiang, J.C. Knight, W.S. Li, A. Manthiram, Understanding the influence of composition and synthesis temperature on oxygen loss, reversible capacity, and electrochemical behavior of xLi2MnO3(1−x)LiCoO2 cathodes in the first cycle. J. Phys. Chem. C 118, 23553–23558 (2014)CrossRef X.D. Xiang, J.C. Knight, W.S. Li, A. Manthiram, Understanding the influence of composition and synthesis temperature on oxygen loss, reversible capacity, and electrochemical behavior of xLi2MnO3(1−x)LiCoO2 cathodes in the first cycle. J. Phys. Chem. C 118, 23553–23558 (2014)CrossRef
20.
go back to reference M.N. Ates, S. Mukerjee, K.M. Abraham, A search for the optimum lithium-rich layered metal oxide cathode material for Li-ion batteries. J. Electrochem. Soc. 162, A1236–A1245 (2015)CrossRef M.N. Ates, S. Mukerjee, K.M. Abraham, A search for the optimum lithium-rich layered metal oxide cathode material for Li-ion batteries. J. Electrochem. Soc. 162, A1236–A1245 (2015)CrossRef
21.
go back to reference J.M. Zheng, X.B. Wu, Y.Y. Synthesis optimization, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material of lithium ion battery. Chin. J. Power Sources 35, 1188–1192 (2011) J.M. Zheng, X.B. Wu, Y.Y. Synthesis optimization, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material of lithium ion battery. Chin. J. Power Sources 35, 1188–1192 (2011)
22.
go back to reference H. Yim, W.Y. Kong, S.J. Yoon et al., Fabrication and electrochemical properties of hemisphere structured 3D Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode thin film for all-solid-state lithium battery. J. Nanosci. Nanotechnol. 13, 3459–3463 (2013)CrossRef H. Yim, W.Y. Kong, S.J. Yoon et al., Fabrication and electrochemical properties of hemisphere structured 3D Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode thin film for all-solid-state lithium battery. J. Nanosci. Nanotechnol. 13, 3459–3463 (2013)CrossRef
23.
go back to reference J. Bréger, M. Jiang, N. Dupré et al., High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution. J. Solid State Chem. 178, 2575–2585 (2005)CrossRef J. Bréger, M. Jiang, N. Dupré et al., High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution. J. Solid State Chem. 178, 2575–2585 (2005)CrossRef
24.
go back to reference A. Boulineau, L. Croguennec, C. Delmas et al., Reinvestigation of Li2MnO3 structure: electron diffraction and high resolution TEM. Chem. Mater. 21, 4216–4222 (2009)CrossRef A. Boulineau, L. Croguennec, C. Delmas et al., Reinvestigation of Li2MnO3 structure: electron diffraction and high resolution TEM. Chem. Mater. 21, 4216–4222 (2009)CrossRef
25.
go back to reference K.A. Jarvis, Z. Deng, L.F. Allard et al., Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem. Mater. 23, 3614–3621 (2011)CrossRef K.A. Jarvis, Z. Deng, L.F. Allard et al., Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem. Mater. 23, 3614–3621 (2011)CrossRef
26.
go back to reference M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H.S. Zhou, I. Honma, Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007)CrossRef M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H.S. Zhou, I. Honma, Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007)CrossRef
27.
go back to reference N. Yabuuchi, K. Kubota, Y. Aoki, S. Komaba, Understanding particle-size-dependent electrochemical properties of Li2MnO3-based positive electrode materials for rechargeable lithium batteries. J. Phys. Chem. C 120, 875–885 (2016)CrossRef N. Yabuuchi, K. Kubota, Y. Aoki, S. Komaba, Understanding particle-size-dependent electrochemical properties of Li2MnO3-based positive electrode materials for rechargeable lithium batteries. J. Phys. Chem. C 120, 875–885 (2016)CrossRef
28.
go back to reference M. Wang, Y. Yang, Y.X. Zhang, Synthesis of micro-nano hierarchical structured LiFePO4/C composite with both superior high-rate performance and high tap density. Nanoscale 3, 4434–4439 (2011)CrossRef M. Wang, Y. Yang, Y.X. Zhang, Synthesis of micro-nano hierarchical structured LiFePO4/C composite with both superior high-rate performance and high tap density. Nanoscale 3, 4434–4439 (2011)CrossRef
29.
go back to reference K.M. Shaju, P.G. Bruce, A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem. Mater. 20, 5557–5562 (2008)CrossRef K.M. Shaju, P.G. Bruce, A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem. Mater. 20, 5557–5562 (2008)CrossRef
30.
go back to reference E. Hosono, T. Kudo, I. Honma, H. Matsuda, H.S. Zhou, Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 9, 1045–1051 (2009)CrossRef E. Hosono, T. Kudo, I. Honma, H. Matsuda, H.S. Zhou, Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 9, 1045–1051 (2009)CrossRef
31.
go back to reference L. Xiao, J. Xiao, X. Yu, P. Yan, J. Zheng, M. Engelhard, J.G. Zhang, Effects of structural defects on the electrochemical activation of Li2MnO3. Nano Energy 16, 143–151 (2015)CrossRef L. Xiao, J. Xiao, X. Yu, P. Yan, J. Zheng, M. Engelhard, J.G. Zhang, Effects of structural defects on the electrochemical activation of Li2MnO3. Nano Energy 16, 143–151 (2015)CrossRef
32.
go back to reference T. Muraliganth, K.R. Stroukoff, A. Manthiram, Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem. Mater 22, 5754–5761 (2010)CrossRef T. Muraliganth, K.R. Stroukoff, A. Manthiram, Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem. Mater 22, 5754–5761 (2010)CrossRef
Metadata
Title
Synthesis of Li1.2Mn0.54Co0.13Ni0.13O2 by sol–gel method and its electrochemical properties as cathode materials for lithium-ion batteries
Authors
Xiaoling Ma
Huibing He
Ya Sun
Youxiang Zhang
Publication date
25-07-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 22/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7578-y

Other articles of this Issue 22/2017

Journal of Materials Science: Materials in Electronics 22/2017 Go to the issue