Skip to main content
Top

2013 | OriginalPaper | Chapter

6. Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy

Authors : Manjula I. Nandasiri, Satyanarayana V. N. T. Kuchibhatla, Suntharampillai Thevuthasan

Published in: Metal Oxide Nanomaterials for Chemical Sensors

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to develop next generation chemical sensors using nano-scale materials, we need to understand the sensing mechanisms at atomic level. This requires synthesizing chemical sensing materials with controlled structure, chemical composition and surface morphology. Although the commonly used wet chemical synthesis methods provide quality materials for large-scale production of materials, alternative thin film deposition techniques such as sputtering, chemical vapor deposition (CVD), and molecular beam epitaxy (MBE) can also be useful to achieve atomic-scale control over the structure and composition over a large fabrication area for potential device fabrication as well as to gain an understanding of the chemical sensing properties of nano-scale materials. Especially, MBE has been used to synthesize metal oxide thin films with ultra-pure, well-ordered surfaces, which can be used to understand the effect of surface morphology, structure, and composition on the gas sensing properties. In this chapter, we provide a detailed discussion of thin film growth using MBE along with some in situ characterization capabilities such as reflection high energy electron diffraction (RHEED) and low energy electron diffraction (LEED). In addition, this chapter focuses on the discussion of the growth, characterization and gas sensing properties of metal oxide thin films such as doped CeO2 and SnO2. The chapter also emphasizes the significance of various in situ and ex situ characterization techniques to understand the material properties there by developing methodologies to synthesize better materials with tunable characteristics for sensing applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Presicce DS, Taurino AM (2004) Solid state gas sensors: state of the art and future activities. ChemInform 35(29). doi:10.1002/chin.200429283 Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Presicce DS, Taurino AM (2004) Solid state gas sensors: state of the art and future activities. ChemInform 35(29). doi:10.​1002/​chin.​200429283
2.
go back to reference Moseley PT (1997) Solid state gas sensors. Meas Sci Technol 8(3):223 Moseley PT (1997) Solid state gas sensors. Meas Sci Technol 8(3):223
3.
go back to reference Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng, B 139(1):1–23 Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng, B 139(1):1–23
4.
go back to reference Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792 Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792
5.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58
6.
go back to reference Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625 Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625
7.
go back to reference Comini E et al (2007) Single crystal ZnO nanowires as optical and conductometric chemical sensor. J Phys D Appl Phys 40(23):7255 Comini E et al (2007) Single crystal ZnO nanowires as optical and conductometric chemical sensor. J Phys D Appl Phys 40(23):7255
8.
go back to reference Hwang IS, Kim SJ, Choi JK, Choi J, Ji H, Kim GT, Cao G, Lee JH (2010) Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires. Sens Actuators B: Chem 148(2):595–600 Hwang IS, Kim SJ, Choi JK, Choi J, Ji H, Kim GT, Cao G, Lee JH (2010) Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires. Sens Actuators B: Chem 148(2):595–600
9.
go back to reference Kolmakov A, Zhang Y, Cheng G, Moskovits M (2003) Detection of CO and O2 using Tin Oxide Nanowire sensors. Adv Mater 15(12):997–1000 Kolmakov A, Zhang Y, Cheng G, Moskovits M (2003) Detection of CO and O2 using Tin Oxide Nanowire sensors. Adv Mater 15(12):997–1000
10.
go back to reference Kumar M et al (2009) Tunable synthesis of indium oxide octahedra, nanowires and tubular nanoarrow structures under oxidizing and reducing ambients. Nanotechnology 20(23):235608 Kumar M et al (2009) Tunable synthesis of indium oxide octahedra, nanowires and tubular nanoarrow structures under oxidizing and reducing ambients. Nanotechnology 20(23):235608
11.
go back to reference Li C, Zhang D, Liu X, Han S, Tang T, Han J, Zhou C (2003) In2O3 nanowires as chemical sensors. Appl Phys Lett 82(10):1613–1615 Li C, Zhang D, Liu X, Han S, Tang T, Han J, Zhou C (2003) In2O3 nanowires as chemical sensors. Appl Phys Lett 82(10):1613–1615
12.
go back to reference Chu D, Zeng YP, Jiang D, Masuda Y (2009) In2O3-SnO2 nano-toasts and nanorods: precipitation preparation, formation mechanism, and gas sensitive properties. Sens Actuators B: Chem 137(2), 630–636. 32 Chu D, Zeng YP, Jiang D, Masuda Y (2009) In2O3-SnO2 nano-toasts and nanorods: precipitation preparation, formation mechanism, and gas sensitive properties. Sens Actuators B: Chem 137(2), 630–636. 32
13.
go back to reference Forleo A, Francioso L, Capone S, Casino F, Siciliano P, Tan OK, Hui H (2011) Fabrication at wafer level of miniaturized gas sensors based on SnO2 nanorods deposited by PECVD and gas sensing characteristics. Sens Actuators B: Chem 154(2):283–287 Forleo A, Francioso L, Capone S, Casino F, Siciliano P, Tan OK, Hui H (2011) Fabrication at wafer level of miniaturized gas sensors based on SnO2 nanorods deposited by PECVD and gas sensing characteristics. Sens Actuators B: Chem 154(2):283–287
14.
go back to reference Zhang Y, Yu K, Jiang D, Zhu Z, Geng H, Luo L (2005) Zinc oxide nanorod and nanowire for humidity sensor. Appl Surf Sci 242(1–2):212–217 Zhang Y, Yu K, Jiang D, Zhu Z, Geng H, Luo L (2005) Zinc oxide nanorod and nanowire for humidity sensor. Appl Surf Sci 242(1–2):212–217
15.
go back to reference Zhi-Peng S et al (2006) Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology 17(9):2266 Zhi-Peng S et al (2006) Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology 17(9):2266
16.
go back to reference Comini E, Faglia G, Sberveglieri G, Pan Z, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81(10):1869–1871 Comini E, Faglia G, Sberveglieri G, Pan Z, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81(10):1869–1871
17.
go back to reference Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949 Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949
18.
go back to reference Gao L, Li Q, Song Z, Wang J (2000) Preparation of nano-scale titania thick film and its oxygen sensitivity. Sens Actuators B: Chem 71(3):179–183 Gao L, Li Q, Song Z, Wang J (2000) Preparation of nano-scale titania thick film and its oxygen sensitivity. Sens Actuators B: Chem 71(3):179–183
19.
go back to reference Gupta S, Kuchibhatla SVNT, Engelhard MH, Shutthanandan V, Nachimuthu P, Jiang W, Saraf LV, Thevuthasan S, Prasad S (2009) Influence of samaria doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices. Sens Actuators B: Chem 139(2):380–386 Gupta S, Kuchibhatla SVNT, Engelhard MH, Shutthanandan V, Nachimuthu P, Jiang W, Saraf LV, Thevuthasan S, Prasad S (2009) Influence of samaria doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices. Sens Actuators B: Chem 139(2):380–386
20.
go back to reference Hu Y, Tan OK, Pan JS, Huang H, Cao W (2005) The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor. Sens Actuators B: Chem 108(1–2):244–249 Hu Y, Tan OK, Pan JS, Huang H, Cao W (2005) The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor. Sens Actuators B: Chem 108(1–2):244–249
21.
go back to reference Ichimura M, Baoleer A, Sueyoshi T (2010) Properties of gas sensors based on photochemically deposited nano- crystalline SnO2 films. Phys Status Solidi (c) 7(3–4), 1168–1171 Ichimura M, Baoleer A, Sueyoshi T (2010) Properties of gas sensors based on photochemically deposited nano- crystalline SnO2 films. Phys Status Solidi (c) 7(3–4), 1168–1171
22.
go back to reference Ogita M, Higo K, Nakanishi Y, Hatanaka Y (2001) Ga2O3 thin film for oxygen sensor at high temperature. Appl Surf Sci 175–176:721–725 Ogita M, Higo K, Nakanishi Y, Hatanaka Y (2001) Ga2O3 thin film for oxygen sensor at high temperature. Appl Surf Sci 175–176:721–725
23.
go back to reference Sanghavi R, Nandasiri M, Kuchibhatla S, Weilin J, Varga T, Nachimuthu P, Engelhard MH, Shutthanandan V, Thevuthasan S, Kayani A, Prasad S (2011) Thickness dependency of thin-film samaria-doped ceria for oxygen sensing. Sens J, IEEE 11(1), 217–224 Sanghavi R, Nandasiri M, Kuchibhatla S, Weilin J, Varga T, Nachimuthu P, Engelhard MH, Shutthanandan V, Thevuthasan S, Kayani A, Prasad S (2011) Thickness dependency of thin-film samaria-doped ceria for oxygen sensing. Sens J, IEEE 11(1), 217–224
24.
go back to reference Chambers SA (2010) Epitaxial growth and properties of doped transition metal and complex oxide films. Adv Mater 22(2):219–248 Chambers SA (2010) Epitaxial growth and properties of doped transition metal and complex oxide films. Adv Mater 22(2):219–248
25.
go back to reference DiMeo JF, Cavicchi RE, Semancik S, Suehle JS, Tea NH, Small J, Armstrong JT, Kelliher JT (1998) In situ conductivity characterization of oxide thin film growth phenomena on microhotplates. J Vac Sci Technol A: Vac, Surf, Films 16(1):131–138 DiMeo JF, Cavicchi RE, Semancik S, Suehle JS, Tea NH, Small J, Armstrong JT, Kelliher JT (1998) In situ conductivity characterization of oxide thin film growth phenomena on microhotplates. J Vac Sci Technol A: Vac, Surf, Films 16(1):131–138
26.
go back to reference LeGore LJ, Lad RJ, Moulzolf SC, Vetelino JF, Frederick BG, Kenik EA (2002) Defects and morphology of tungsten trioxide thin films. Thin Solid Films 406(1–2):79–86 LeGore LJ, Lad RJ, Moulzolf SC, Vetelino JF, Frederick BG, Kenik EA (2002) Defects and morphology of tungsten trioxide thin films. Thin Solid Films 406(1–2):79–86
27.
go back to reference Moulzolf SC, Ding S-a, Lad RJ (2001) Stoichiometry and microstructure effects on tungsten oxide chemiresistive films. Sens Actuators B: Chem 77(1–2):375–382 Moulzolf SC, Ding S-a, Lad RJ (2001) Stoichiometry and microstructure effects on tungsten oxide chemiresistive films. Sens Actuators B: Chem 77(1–2):375–382
28.
go back to reference Moulzolf SC, Frankel DJ, Lad RJ (2002) In situ four-point conductivity and hall effect apparatus for vacuum and controlled atmosphere measurements of thin film materials. Rev Sci Instrum 73(6):2325–2330 Moulzolf SC, Frankel DJ, Lad RJ (2002) In situ four-point conductivity and hall effect apparatus for vacuum and controlled atmosphere measurements of thin film materials. Rev Sci Instrum 73(6):2325–2330
29.
go back to reference Poirier GE, Cavicchi RE, Semancik S (1993) Ultrathin heteroepitaxial SnO2 films for use in gas sensors. AVS, Chicago, pp 1392–1395 Poirier GE, Cavicchi RE, Semancik S (1993) Ultrathin heteroepitaxial SnO2 films for use in gas sensors. AVS, Chicago, pp 1392–1395
30.
go back to reference Vetrone J, Chung YW, Cavicchi R, Semancik S (1993) Role of initial conductance and gas pressure on the conductance response of single-crystal SnO2 thin films to H2, O2, and CO. J Appl Phys 73(12):8371–8376 Vetrone J, Chung YW, Cavicchi R, Semancik S (1993) Role of initial conductance and gas pressure on the conductance response of single-crystal SnO2 thin films to H2, O2, and CO. J Appl Phys 73(12):8371–8376
31.
go back to reference Goldman AM (2006) Oxide heterostructures grown by molecular beam epitaxy: spin injection in superconductors and magnetic coupling phenomena. Appl Surf Sci 252(11):3928–3932 Goldman AM (2006) Oxide heterostructures grown by molecular beam epitaxy: spin injection in superconductors and magnetic coupling phenomena. Appl Surf Sci 252(11):3928–3932
32.
go back to reference Oh S, Di Luccio T, Eckstein JN (2005) T linearity of in-plane resistivity in Bi2Sr2CaCu2O8 + δ thin films. Phys Rev B 71(5):052504 Oh S, Di Luccio T, Eckstein JN (2005) T linearity of in-plane resistivity in Bi2Sr2CaCu2O8 + δ thin films. Phys Rev B 71(5):052504
33.
go back to reference Parendo KA, Sarwa B, Tan KH, Goldman AM (2006) Hot-electron effects in the two-dimensional superconductor-insulator transition. Phys Rev B 74(13):134517 Parendo KA, Sarwa B, Tan KH, Goldman AM (2006) Hot-electron effects in the two-dimensional superconductor-insulator transition. Phys Rev B 74(13):134517
34.
go back to reference Parendo KA, Tan KHSB, Goldman AM (2006) Electrostatic and parallel-magnetic-field tuned two-dimensional superconductor-insulator transitions. Phys Rev B 73(17):174527 Parendo KA, Tan KHSB, Goldman AM (2006) Electrostatic and parallel-magnetic-field tuned two-dimensional superconductor-insulator transitions. Phys Rev B 73(17):174527
35.
go back to reference Chambers SA, Liang Y (1999) Growth of β-MnO2 films on TiO2(110) by oxygen plasma assisted molecular beam epitaxy. Surf Sci 420(2–3):123–133 Chambers SA, Liang Y (1999) Growth of β-MnO2 films on TiO2(110) by oxygen plasma assisted molecular beam epitaxy. Surf Sci 420(2–3):123–133
36.
go back to reference Gao Y, Chambers SA (1997) Heteroepitaxial growth of α-Fe2O3, γ-Fe2O3 and Fe3O4 thin films by oxygen-plasma-assisted molecular beam epitaxy. J Cryst Growth 174(1–4):446–454 Gao Y, Chambers SA (1997) Heteroepitaxial growth of α-Fe2O3, γ-Fe2O3 and Fe3O4 thin films by oxygen-plasma-assisted molecular beam epitaxy. J Cryst Growth 174(1–4):446–454
37.
go back to reference Guo LW, Peng DL, Makino H, Inaba K, Ko HJ, Sumiyama K, Yao T (2000) Structural and magnetic properties of Mn3O4 films grown on MgO(001) substrates by plasma-assisted MBE. J Magn Magn Mater 213(3):321–325 Guo LW, Peng DL, Makino H, Inaba K, Ko HJ, Sumiyama K, Yao T (2000) Structural and magnetic properties of Mn3O4 films grown on MgO(001) substrates by plasma-assisted MBE. J Magn Magn Mater 213(3):321–325
38.
go back to reference Lind DM, Berry SD, Chern G, Mathias H, Testardi LR (1992) Growth and structural characterization of Fe3O4 and NiO thin films and superlattices grown by oxygen-plasma-assisted molecular-beam epitaxy. Phys Rev B 45(4):1838–1850 Lind DM, Berry SD, Chern G, Mathias H, Testardi LR (1992) Growth and structural characterization of Fe3O4 and NiO thin films and superlattices grown by oxygen-plasma-assisted molecular-beam epitaxy. Phys Rev B 45(4):1838–1850
39.
go back to reference Peacor SD, Hibma T (1994) Reflection high-energy electron diffraction study of the growth of NiO and CoO thin films by molecular beam epitaxy. Surf Sci 301(1–3):11–18 Peacor SD, Hibma T (1994) Reflection high-energy electron diffraction study of the growth of NiO and CoO thin films by molecular beam epitaxy. Surf Sci 301(1–3):11–18
40.
go back to reference Altman EI, Droubay T, Chambers SA (2002) Growth of MoO3 films by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films 414(2):205–215 Altman EI, Droubay T, Chambers SA (2002) Growth of MoO3 films by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films 414(2):205–215
41.
go back to reference Chen PJ, Goodman DW (1994) Epitaxial growth of ultrathin Al2O3 films on Ta(110). Surf Sci 312(3):L767–L773 Chen PJ, Goodman DW (1994) Epitaxial growth of ultrathin Al2O3 films on Ta(110). Surf Sci 312(3):L767–L773
42.
go back to reference Freund HJ (1995) Metal oxide surfaces: electronic structure and molecular adsorption. Phys Status Solidi (b) 192(2), 407–440 Freund HJ (1995) Metal oxide surfaces: electronic structure and molecular adsorption. Phys Status Solidi (b) 192(2), 407–440
43.
go back to reference Ohsawa T, Lyubinetsky I, Du Y, Henderson MA, Shutthanandan V, Chambers SA (2009) Crystallographic dependence of visible-light photoactivity in epitaxial TiO2-xNx anatase and rutile. Physical Review B 79(8):085401 Ohsawa T, Lyubinetsky I, Du Y, Henderson MA, Shutthanandan V, Chambers SA (2009) Crystallographic dependence of visible-light photoactivity in epitaxial TiO2-xNx anatase and rutile. Physical Review B 79(8):085401
44.
go back to reference Peden CHF, Herman GS (1999) Z. Ismagilov, I.; Kay, B. D.; Henderson, M. A.; Kim, Y.-J.; Chambers, S. A., Model catalyst studies with single crystals and epitaxial thin oxide films. Catal Today 51(3–4):513–519 Peden CHF, Herman GS (1999) Z. Ismagilov, I.; Kay, B. D.; Henderson, M. A.; Kim, Y.-J.; Chambers, S. A., Model catalyst studies with single crystals and epitaxial thin oxide films. Catal Today 51(3–4):513–519
45.
go back to reference René F (2000) Growth of thin, crystalline oxide, nitride and oxynitride films on metal and metal alloy surfaces. Surf Sci Rep 38(6–8):195–294 René F (2000) Growth of thin, crystalline oxide, nitride and oxynitride films on metal and metal alloy surfaces. Surf Sci Rep 38(6–8):195–294
46.
go back to reference Street SC, Xu C, Goodman DW (1997) The physical and chemical properties of ultrathin oxide films. Annu Rev Phys Chem 48(1):43–68 Street SC, Xu C, Goodman DW (1997) The physical and chemical properties of ultrathin oxide films. Annu Rev Phys Chem 48(1):43–68
47.
go back to reference Chambers SA (2000) Epitaxial growth and properties of thin film oxides. Surf Sci Rep 39(5–6):105–180 Chambers SA (2000) Epitaxial growth and properties of thin film oxides. Surf Sci Rep 39(5–6):105–180
48.
go back to reference Kim YJ, Gao Y, Herman GS, Thevuthasan S, Jiang W, McCready DE, Chambers SA (1999) Growth and structure of epitaxial CeO2 by oxygen-plasma-assisted molecular 35 beam epitaxy. J Vac Sci Technol A: Vac, Surf, Films 17(3):926–935 Kim YJ, Gao Y, Herman GS, Thevuthasan S, Jiang W, McCready DE, Chambers SA (1999) Growth and structure of epitaxial CeO2 by oxygen-plasma-assisted molecular 35 beam epitaxy. J Vac Sci Technol A: Vac, Surf, Films 17(3):926–935
49.
go back to reference Kuchibhatla SVNT, Hu SY, Yu ZQ, Shutthanandan V, Li YL, Nachimuthu P, Jiang W, Thevuthasan S, Henager CH, Sundaram SK (2009) Morphology, orientation relationship, and stability analysis of Cu2O nanoclusters on SrTiO3(100). Appl Phys Lett 95(5), 053111–053111-3 Kuchibhatla SVNT, Hu SY, Yu ZQ, Shutthanandan V, Li YL, Nachimuthu P, Jiang W, Thevuthasan S, Henager CH, Sundaram SK (2009) Morphology, orientation relationship, and stability analysis of Cu2O nanoclusters on SrTiO3(100). Appl Phys Lett 95(5), 053111–053111-3
50.
go back to reference Francioso L, Presicce DS, Taurino AM, Rella R, Siciliano P, Ficarella A (2003) Automotive application of sol-gel TiO2 thin film-based sensor for lambda measurement. Sens Actuators B: Chem 95(1–3):66–72 Francioso L, Presicce DS, Taurino AM, Rella R, Siciliano P, Ficarella A (2003) Automotive application of sol-gel TiO2 thin film-based sensor for lambda measurement. Sens Actuators B: Chem 95(1–3):66–72
51.
go back to reference Izu N, Shin W, Matsubara I, Murayama N (2004) Development of resistive oxygen sensors based on cerium oxide thick film. J Electroceram 13(1):703–706 Izu N, Shin W, Matsubara I, Murayama N (2004) Development of resistive oxygen sensors based on cerium oxide thick film. J Electroceram 13(1):703–706
52.
go back to reference Papkovsky DB (1995) New oxygen sensors and their application to biosensing. Sens Actuators B: Chem 29(1–3):213–218 Papkovsky DB (1995) New oxygen sensors and their application to biosensing. Sens Actuators B: Chem 29(1–3):213–218
53.
go back to reference Ramamoorthy R, Dutta PK, Akbar SA (2003) Oxygen sensors: materials, methods, designs and applications. J Mater Sci 38(21):4271–4282 Ramamoorthy R, Dutta PK, Akbar SA (2003) Oxygen sensors: materials, methods, designs and applications. J Mater Sci 38(21):4271–4282
54.
go back to reference Smiddy M, Fitzgerald M, Kerry JP, Papkovsky DB, O’ Sullivan CK, Guilbault GG (2002) Use of oxygen sensors to non-destructively measure the oxygen content in modified atmosphere and vacuum packed beef: impact of oxygen content on lipid oxidation. Meat Sci 61(3):285–290 Smiddy M, Fitzgerald M, Kerry JP, Papkovsky DB, O’ Sullivan CK, Guilbault GG (2002) Use of oxygen sensors to non-destructively measure the oxygen content in modified atmosphere and vacuum packed beef: impact of oxygen content on lipid oxidation. Meat Sci 61(3):285–290
55.
go back to reference Tsukada K, Sakai S, Hase K, Minamitani H (2003) Development of catheter-type optical oxygen sensor and applications to bioinstrumentation. Biosens Bioelectron 18(12):1439–1445 Tsukada K, Sakai S, Hase K, Minamitani H (2003) Development of catheter-type optical oxygen sensor and applications to bioinstrumentation. Biosens Bioelectron 18(12):1439–1445
56.
go back to reference Benammar M (1994) Techniques for measurement of oxygen and air-to-fuel ratio using zirconia sensors: a review. Meas Sci Technol 5(7):757 Benammar M (1994) Techniques for measurement of oxygen and air-to-fuel ratio using zirconia sensors: a review. Meas Sci Technol 5(7):757
57.
go back to reference Lari A, Khodadadi A, Mortazavi Y (2009) Semiconducting metal oxides as electrode material for YSZ-based oxygen sensors. Sens Actuators B: Chem 139(2):361–368 Lari A, Khodadadi A, Mortazavi Y (2009) Semiconducting metal oxides as electrode material for YSZ-based oxygen sensors. Sens Actuators B: Chem 139(2):361–368
58.
go back to reference Ogita M, Yuasa S, Kobayashi K, Yamada Y, Nakanishi Y, Hatanaka Y (2003) Presumption and improvement for gallium oxide thin film of high temperature oxygen sensors. Appl Surf Sci 212–213:397–401 Ogita M, Yuasa S, Kobayashi K, Yamada Y, Nakanishi Y, Hatanaka Y (2003) Presumption and improvement for gallium oxide thin film of high temperature oxygen sensors. Appl Surf Sci 212–213:397–401
59.
go back to reference Balducci G, Islam MS, Kaspar J, Fornasiero P, Graziani M (2000) Bulk reduction and oxygen migration in the ceria-based oxides. Chem Mater 12(3):677–681 Balducci G, Islam MS, Kaspar J, Fornasiero P, Graziani M (2000) Bulk reduction and oxygen migration in the ceria-based oxides. Chem Mater 12(3):677–681
60.
go back to reference Mamontov E, Egami T, Brezny R, Koranne M, Tyagi S (2000) Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J Phys Chem B 104(47):11110–11116 Mamontov E, Egami T, Brezny R, Koranne M, Tyagi S (2000) Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J Phys Chem B 104(47):11110–11116
61.
go back to reference Maskell WC (1987) Inorganic solid state chemically sensitive devices: electrochemical oxygen gas sensors. J Phys E: Sci Instrum 20(10):1156 Maskell WC (1987) Inorganic solid state chemically sensitive devices: electrochemical oxygen gas sensors. J Phys E: Sci Instrum 20(10):1156
62.
go back to reference Dietz H (1982) Gas-diffusion-controlled solid-electrolyte oxygen sensors. Solid State Ionics 6(2):175–183 Dietz H (1982) Gas-diffusion-controlled solid-electrolyte oxygen sensors. Solid State Ionics 6(2):175–183
63.
go back to reference Gerblinger J, Lohwasser W, Lampe U, Meixner H (1995) High temperature oxygen sensor based on sputtered cerium oxide. Sens Actuators B: Chem 26(1–3):93–96 Gerblinger J, Lohwasser W, Lampe U, Meixner H (1995) High temperature oxygen sensor based on sputtered cerium oxide. Sens Actuators B: Chem 26(1–3):93–96
64.
go back to reference Beie HJ, Gnörich A (1991) Oxygen gas sensors based on CeO2 thick and thin films. Sens Actuators B: Chem 4(3–4):393–399 Beie HJ, Gnörich A (1991) Oxygen gas sensors based on CeO2 thick and thin films. Sens Actuators B: Chem 4(3–4):393–399
65.
go back to reference Izu N, Itoh T, Shin W, Matsubara I, Murayama N (2007) The effect of hafnia doping on the resistance of ceria for use in resistive oxygen sensors. Sens Actuators B: Chem 123(1):407–412 Izu N, Itoh T, Shin W, Matsubara I, Murayama N (2007) The effect of hafnia doping on the resistance of ceria for use in resistive oxygen sensors. Sens Actuators B: Chem 123(1):407–412
66.
go back to reference Izu N, Oh-hori N, Itou M, Shin W, Matsubara I, Murayama N (2005) Resistive oxygen gas sensors based on Ce1-xZrxO2 nano powder prepared using new precipitation method. Sens Actuators B: Chem 108(1–2):238–243 Izu N, Oh-hori N, Itou M, Shin W, Matsubara I, Murayama N (2005) Resistive oxygen gas sensors based on Ce1-xZrxO2 nano powder prepared using new precipitation method. Sens Actuators B: Chem 108(1–2):238–243
67.
go back to reference Izu N, Shin W, Matsubara I, Murayama N (2006) Evaluation of response characteristics of resistive oxygen sensors based on porous cerium oxide thick film using pressure modulation method. Sens Actuators B: Chem 113(1):207–213 Izu N, Shin W, Matsubara I, Murayama N (2006) Evaluation of response characteristics of resistive oxygen sensors based on porous cerium oxide thick film using pressure modulation method. Sens Actuators B: Chem 113(1):207–213
68.
go back to reference Jasinski P, Suzuki T, Anderson HU (2003) Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B: Chem 95(1–3):73–77 Jasinski P, Suzuki T, Anderson HU (2003) Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B: Chem 95(1–3):73–77
69.
go back to reference Várhegyi EB, Perczel IV, Gerblinger J, Fleischer M, Meixner H, Giber J (1994) Auger and SIMS study of segregation and corrosion behaviour of some semiconducting oxide gas-sensor materials. Sens Actuators B: Chem 19(1–3):569–572 Várhegyi EB, Perczel IV, Gerblinger J, Fleischer M, Meixner H, Giber J (1994) Auger and SIMS study of segregation and corrosion behaviour of some semiconducting oxide gas-sensor materials. Sens Actuators B: Chem 19(1–3):569–572
70.
go back to reference Agrafiotis C, Tsetsekou A, Stournaras CJ, Julbe A, Dalmazio L, Guizard C (2000) Deposition of nanophase doped-ceria systems on ceramic honeycombs for automotive catalytic applications. Solid State Ionics 136–137(1301–1306):37 Agrafiotis C, Tsetsekou A, Stournaras CJ, Julbe A, Dalmazio L, Guizard C (2000) Deposition of nanophase doped-ceria systems on ceramic honeycombs for automotive catalytic applications. Solid State Ionics 136–137(1301–1306):37
71.
go back to reference Bera D, Kuchibhatla SVNT, Azad S, Saraf L, Wang CM, Shutthanandan V, Nachimuthu P, McCready DE, Engelhard MH, Marina OA, Baer DR, Seal S, Thevuthasan S (2008) Growth and characterization of highly oriented gadolinia-doped ceria (111) thin films on zirconia (111)/sapphire (0001) substrates. Thin Solid Films 516(18):6088–6094 Bera D, Kuchibhatla SVNT, Azad S, Saraf L, Wang CM, Shutthanandan V, Nachimuthu P, McCready DE, Engelhard MH, Marina OA, Baer DR, Seal S, Thevuthasan S (2008) Growth and characterization of highly oriented gadolinia-doped ceria (111) thin films on zirconia (111)/sapphire (0001) substrates. Thin Solid Films 516(18):6088–6094
72.
go back to reference Fergus JW (2006) Electrolytes for solid oxide fuel cells. J Power Sources 162(1):30–40 Fergus JW (2006) Electrolytes for solid oxide fuel cells. J Power Sources 162(1):30–40
73.
go back to reference Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36(5):1105–1117 Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36(5):1105–1117
74.
go back to reference Yu ZQ, Kuchibhatla SVNT, Saraf LV, Marina OA, Wang CM, Engelhard MH, Shutthanandan V, Nachimuthu P, Thevuthasan S (2008) Conductivity of oriented samaria-doped ceria thin films grown by oxygen-plasma-assisted molecular beam epitaxy. Electrochem Solid-State Lett 11(5):B76–B78 Yu ZQ, Kuchibhatla SVNT, Saraf LV, Marina OA, Wang CM, Engelhard MH, Shutthanandan V, Nachimuthu P, Thevuthasan S (2008) Conductivity of oriented samaria-doped ceria thin films grown by oxygen-plasma-assisted molecular beam epitaxy. Electrochem Solid-State Lett 11(5):B76–B78
75.
go back to reference Bellino MG, Lamas DG, Walsöe de Reca NE (2006) Enhanced ionic conductivity in nanostructured, heavily doped ceria ceramics. Adv Funct Mater 16(1):107–113 Bellino MG, Lamas DG, Walsöe de Reca NE (2006) Enhanced ionic conductivity in nanostructured, heavily doped ceria ceramics. Adv Funct Mater 16(1):107–113
76.
go back to reference Esposito V, Traversa E (2008) Design of electroceramics for solid oxides fuel cell applications: playing with ceria. J Am Ceram Soc 91(4):1037–1051 Esposito V, Traversa E (2008) Design of electroceramics for solid oxides fuel cell applications: playing with ceria. J Am Ceram Soc 91(4):1037–1051
77.
go back to reference Omar S, Wachsman ED, Nino JC (2008) Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ionics 178(37–38):1890–1897 Omar S, Wachsman ED, Nino JC (2008) Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ionics 178(37–38):1890–1897
78.
go back to reference Sanna S, Esposito V, Pergolesi D, Orsini A, Tebano A, Licoccia S, Balestrino G, Traversa E (2009) Fabrication and electrochemical properties of epitaxial samarium-doped ceria films on SrTiO3-buffered MgO substrates. Adv Funct Mater 19(11):1713–1719 Sanna S, Esposito V, Pergolesi D, Orsini A, Tebano A, Licoccia S, Balestrino G, Traversa E (2009) Fabrication and electrochemical properties of epitaxial samarium-doped ceria films on SrTiO3-buffered MgO substrates. Adv Funct Mater 19(11):1713–1719
79.
go back to reference Zha S, Xia C, Meng G (2003) Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J Power Sources 115(1):44–48 Zha S, Xia C, Meng G (2003) Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J Power Sources 115(1):44–48
80.
go back to reference Kilner JA (2008) Ionic conductors: feel the strain. Nat Mater 7(11):838–839 Kilner JA (2008) Ionic conductors: feel the strain. Nat Mater 7(11):838–839
81.
go back to reference Kilner JA, Brook RJ (1982) A study of oxygen ion conductivity in doped non-stoichiometric oxides. Solid State Ionics 6(3):237–252 Kilner JA, Brook RJ (1982) A study of oxygen ion conductivity in doped non-stoichiometric oxides. Solid State Ionics 6(3):237–252
82.
go back to reference Kim DJ (1989) Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide [M = Hf4 + , Zr4 + , Ce4 + , Th4 + , U4 +] solid solutions. J Am Ceram Soc 72(8):1415–1421 Kim DJ (1989) Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide [M = Hf4 + , Zr4 + , Ce4 + , Th4 + , U4 +] solid solutions. J Am Ceram Soc 72(8):1415–1421
83.
go back to reference Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2006) Optimization of ionic conductivity in doped ceria. Proc Nat Acad Sci USA 103(10):3518–3521 Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2006) Optimization of ionic conductivity in doped ceria. Proc Nat Acad Sci USA 103(10):3518–3521
84.
go back to reference Gerhardt-Anderson R, Nowick AS (1981) Ionic conductivity of CeO2 with trivalent dopants of different ionic radii. Solid State Ionics 5:547–550 Gerhardt-Anderson R, Nowick AS (1981) Ionic conductivity of CeO2 with trivalent dopants of different ionic radii. Solid State Ionics 5:547–550
85.
go back to reference Hayashi H, Sagawa R, Inaba H, Kawamura K (2000) Molecular dynamics calculations on ceria-based solid electrolytes with different radius dopants. Solid State Ionics 131(3–4):281–290 Hayashi H, Sagawa R, Inaba H, Kawamura K (2000) Molecular dynamics calculations on ceria-based solid electrolytes with different radius dopants. Solid State Ionics 131(3–4):281–290
86.
go back to reference Minervini L, Zacate MO, Grimes RW (1999) Defect cluster formation in M2O3-doped CeO2. Solid State Ionics 116(3–4):339–349 Minervini L, Zacate MO, Grimes RW (1999) Defect cluster formation in M2O3-doped CeO2. Solid State Ionics 116(3–4):339–349
87.
go back to reference Eguchi K (1997) Ceramic materials containing rare earth oxides for solid oxide fuel cell. J Alloy Compd 250(1–2):486–491 Eguchi K (1997) Ceramic materials containing rare earth oxides for solid oxide fuel cell. J Alloy Compd 250(1–2):486–491
88.
go back to reference Fu Y-P, Wen S-B, Lu C-H (2008) Preparation and characterization of samaria-doped ceria electrolyte materials for solid oxide fuel cells. J Am Ceram Soc 91(1):127–131 Fu Y-P, Wen S-B, Lu C-H (2008) Preparation and characterization of samaria-doped ceria electrolyte materials for solid oxide fuel cells. J Am Ceram Soc 91(1):127–131
89.
go back to reference Jung G-B, Huang T-J, Chang C-L (2002) Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte. J Solid State Electrochem 6(4):225–230 Jung G-B, Huang T-J, Chang C-L (2002) Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte. J Solid State Electrochem 6(4):225–230
90.
go back to reference Mansilla C, Holgado JP, Espinós JP, González-Elipe AR, Yubero F (2007) Microstructure and transport properties of ceria and samaria doped ceria thin films prepared by EBE-IBAD. Surf Coat Technol 202(4–7):1256–1261 Mansilla C, Holgado JP, Espinós JP, González-Elipe AR, Yubero F (2007) Microstructure and transport properties of ceria and samaria doped ceria thin films prepared by EBE-IBAD. Surf Coat Technol 202(4–7):1256–1261
91.
go back to reference Yahiro H, Eguchi Y, Eguchi K, Arai H (1988) Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure. J Appl Electrochem 18(4):527–531 Yahiro H, Eguchi Y, Eguchi K, Arai H (1988) Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure. J Appl Electrochem 18(4):527–531
92.
go back to reference Zhan Z, Wen T-L, Tu H, Lu Z-Y (2001) AC impedance investigation of samarium-doped ceria. J Electrochem Soc 148(5):A427–A432 Zhan Z, Wen T-L, Tu H, Lu Z-Y (2001) AC impedance investigation of samarium-doped ceria. J Electrochem Soc 148(5):A427–A432
93.
go back to reference Yu ZQ, Kuchibhatla SVNT, Engelhard MH, Shutthanandan V, Wang CM, Nachimuthu P, Marina OA, Saraf LV, Thevuthasan S, Seal S (2008) Growth and structure of epitaxial Ce0.8Sm0.2O1.9 by oxygen-plasma-assisted molecular beam epitaxy. J Cryst Growth 310(10):2450–2456 Yu ZQ, Kuchibhatla SVNT, Engelhard MH, Shutthanandan V, Wang CM, Nachimuthu P, Marina OA, Saraf LV, Thevuthasan S, Seal S (2008) Growth and structure of epitaxial Ce0.8Sm0.2O1.9 by oxygen-plasma-assisted molecular beam epitaxy. J Cryst Growth 310(10):2450–2456
94.
go back to reference Henderson MA, Perkins CL, Engelhard MH, Thevuthasan S, Peden CHF (2003) Redox properties of water on the oxidized and reduced surfaces of CeO2(1 1 1). Surf Sci 526(1–2):1–18 Henderson MA, Perkins CL, Engelhard MH, Thevuthasan S, Peden CHF (2003) Redox properties of water on the oxidized and reduced surfaces of CeO2(1 1 1). Surf Sci 526(1–2):1–18
95.
go back to reference Kim YJ, Thevuthasan S, Shutthananadan V, Perkins CL, McCready DE, Herman GS, Gao Y, Tran TT, Chambers SA, Peden CHF (2002) Growth and structure of epitaxial Ce1-xZrxO2 thin films on yttria-stabilized zirconia (111). J Electron Spectrosc Relat Phenom 126(1–3):177–190 Kim YJ, Thevuthasan S, Shutthananadan V, Perkins CL, McCready DE, Herman GS, Gao Y, Tran TT, Chambers SA, Peden CHF (2002) Growth and structure of epitaxial Ce1-xZrxO2 thin films on yttria-stabilized zirconia (111). J Electron Spectrosc Relat Phenom 126(1–3):177–190
96.
go back to reference Thevuthasan S, Peden CHF, Engelhard MH, Baer DR, Herman GS, Jiang W, Liang Y, Weber WJ (1999) The ion beam materials analysis laboratory at the environmental molecular sciences laboratory. Nucl Instrum Methods Phys Res, Sect A 420(1–2):81–89 Thevuthasan S, Peden CHF, Engelhard MH, Baer DR, Herman GS, Jiang W, Liang Y, Weber WJ (1999) The ion beam materials analysis laboratory at the environmental molecular sciences laboratory. Nucl Instrum Methods Phys Res, Sect A 420(1–2):81–89
97.
go back to reference Mayer M (1997) SIMNRA user’s guide. Tech Rep IPP 9/113 Mayer M (1997) SIMNRA user’s guide. Tech Rep IPP 9/113
98.
go back to reference Mayer M (1999) SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. In: Proceedings of the 15th international conference on the application of accelerators in research and industry Mayer M (1999) SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. In: Proceedings of the 15th international conference on the application of accelerators in research and industry
99.
go back to reference Sanghavi RP, Nandasiri M, Kuchibhatla S, Nachimuthu P, Engelhard MH, Shutthanandan V, Jiang W, Thevuthasan S, Kayani A, Prasad S (2009) Performance evaluation of an oxygen sensor as a function of the samaria doped ceria film thickness. MRS Online Proc Libr 1209:P03–07 Sanghavi RP, Nandasiri M, Kuchibhatla S, Nachimuthu P, Engelhard MH, Shutthanandan V, Jiang W, Thevuthasan S, Kayani A, Prasad S (2009) Performance evaluation of an oxygen sensor as a function of the samaria doped ceria film thickness. MRS Online Proc Libr 1209:P03–07
100.
go back to reference Moos R, Menesklou W, Schreiner H-J, Härdtl KH (2000) Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control. Sens Actuators B: Chem 67(1–2):178–183 Moos R, Menesklou W, Schreiner H-J, Härdtl KH (2000) Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control. Sens Actuators B: Chem 67(1–2):178–183
101.
go back to reference Dolbec R, El Khakani MA, Serventi AM, Trudeau M, Saint-Jacques RG (2002) Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition. Thin Solid Films 419(1–2):230–236 Dolbec R, El Khakani MA, Serventi AM, Trudeau M, Saint-Jacques RG (2002) Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition. Thin Solid Films 419(1–2):230–236
102.
go back to reference Kim S, Oliver M (2010) Structural, electrical, and optical properties of reactively sputtered SnO2 thin films. Met Mater Int 16(3), 441–446 Kim S, Oliver M (2010) Structural, electrical, and optical properties of reactively sputtered SnO2 thin films. Met Mater Int 16(3), 441–446
103.
go back to reference Kim TW, Lee DU, Lee JH, Choo DC, Jung M, Yoon YS (2001) Structural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on p-InSb (111) substrates. J Appl Phys 90(1):175–180 Kim TW, Lee DU, Lee JH, Choo DC, Jung M, Yoon YS (2001) Structural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on p-InSb (111) substrates. J Appl Phys 90(1):175–180
104.
go back to reference Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79(2–4):47–154 Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79(2–4):47–154
105.
go back to reference Saukko S, Lassi U, Lantto V, Kroneld M, Novikov S, Kuivalainen P, Rantala TT, Mizsei J (2005) Experimental studies of O2 − SnO2 surface interaction using powder, thick films and monocrystalline thin films. Thin Solid Films 490(1):48–53 Saukko S, Lassi U, Lantto V, Kroneld M, Novikov S, Kuivalainen P, Rantala TT, Mizsei J (2005) Experimental studies of O2 − SnO2 surface interaction using powder, thick films and monocrystalline thin films. Thin Solid Films 490(1):48–53
106.
go back to reference Batzill M, Diebold U (2007) Surface studies of gas sensing metal oxides. Phys Chem Chem Phys 9(19):2307–2318 Batzill M, Diebold U (2007) Surface studies of gas sensing metal oxides. Phys Chem Chem Phys 9(19):2307–2318
107.
go back to reference Madou MJ, Morrison SR (1989) Chemical sensing with solid state devices. Academic, San Diego Madou MJ, Morrison SR (1989) Chemical sensing with solid state devices. Academic, San Diego
108.
go back to reference Schierbaum KD, Wiemhöfer HD, Göpel W (1988) Defect structure and sensing mechanism of SnO2 gas sensors: comparative electrical and spectroscopic studies. Solid State Ionics 28–30(Part 2):1631–1636 Schierbaum KD, Wiemhöfer HD, Göpel W (1988) Defect structure and sensing mechanism of SnO2 gas sensors: comparative electrical and spectroscopic studies. Solid State Ionics 28–30(Part 2):1631–1636
109.
go back to reference Seal S, Shukla S (2002) Nanocrystalline SnO gas sensors in view of surface reactions and modifications. JOM 54(9):35–38 Seal S, Shukla S (2002) Nanocrystalline SnO gas sensors in view of surface reactions and modifications. JOM 54(9):35–38
110.
go back to reference Yamazoe N, Fuchigami J, Kishikawa M, Seiyama T (1979) Interactions of tin oxide surface with O2, H2O and H2. Surf Sci 86:335–344 Yamazoe N, Fuchigami J, Kishikawa M, Seiyama T (1979) Interactions of tin oxide surface with O2, H2O and H2. Surf Sci 86:335–344
111.
go back to reference Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Asia 7(1):63–75 Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Asia 7(1):63–75
112.
go back to reference Chang S-C (1980) Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements. J Vac Sci Technol 17(1):366–369 Chang S-C (1980) Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements. J Vac Sci Technol 17(1):366–369
113.
go back to reference Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167 Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167
114.
go back to reference Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators B: Chem 107(1):209–232 Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators B: Chem 107(1):209–232
115.
go back to reference Göpel W (1994) New materials and transducers for chemical sensors. Sens Actuators B: Chem 18(1–3):1–21 Göpel W (1994) New materials and transducers for chemical sensors. Sens Actuators B: Chem 18(1–3):1–21
116.
go back to reference Morrison SR (1981) Semiconductor gas sensors. Sens Actuators 2:329–341 Morrison SR (1981) Semiconductor gas sensors. Sens Actuators 2:329–341
117.
go back to reference Gardner JW (1990) A non-linear diffusion-reaction model of electrical conduction in semiconductor gas sensors. Sens Actuators B: Chem 1(1–6):166–170 Gardner JW (1990) A non-linear diffusion-reaction model of electrical conduction in semiconductor gas sensors. Sens Actuators B: Chem 1(1–6):166–170
118.
go back to reference Geistlinger H (1993) Electron theory of thin-film gas sensors. Sens Actuators B: Chem 17(1):47–60 Geistlinger H (1993) Electron theory of thin-film gas sensors. Sens Actuators B: Chem 17(1):47–60
119.
go back to reference McAleer JF, Moseley PT, Norris JOW, Williams DE (1987) Tin dioxide gas sensors. Part 1. Aspects of the surface chemistry revealed by electrical conductance variations. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 83(4):1323–1346 McAleer JF, Moseley PT, Norris JOW, Williams DE (1987) Tin dioxide gas sensors. Part 1. Aspects of the surface chemistry revealed by electrical conductance variations. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 83(4):1323–1346
120.
go back to reference Morrison SR (1987) Mechanism of semiconductor gas sensor operation. Sens Actuators 11(3):283–287 Morrison SR (1987) Mechanism of semiconductor gas sensor operation. Sens Actuators 11(3):283–287
121.
go back to reference Srivastava RK, Lal P, Dwivedi R, Srivastava SK (1994) Sensing mechanism in tin oxide-based thick-film gas sensors. Sens Actuators B: Chem 21(3):213–218 Srivastava RK, Lal P, Dwivedi R, Srivastava SK (1994) Sensing mechanism in tin oxide-based thick-film gas sensors. Sens Actuators B: Chem 21(3):213–218
122.
go back to reference Sberveglieri G (1995) Recent developments in semiconducting thin-film gas sensors. Sens Actuators B: Chem 23(2–3):103–109 Sberveglieri G (1995) Recent developments in semiconducting thin-film gas sensors. Sens Actuators B: Chem 23(2–3):103–109
123.
go back to reference Korotcenkov G, Cho BK, Tolstoy V (2010) SnO2-based thin film gas sensors with functionalized surface. Adv Mater Res 93–94:145–148 Korotcenkov G, Cho BK, Tolstoy V (2010) SnO2-based thin film gas sensors with functionalized surface. Adv Mater Res 93–94:145–148
124.
go back to reference Kroneld M, Novikov S, Saukko S, Kuivalainen P, Kostamo P, Lantto V (2006) Gas sensing properties of SnO2 thin films grown by MBE. Sens Actuators B: Chem 118(1–2):110–114 Kroneld M, Novikov S, Saukko S, Kuivalainen P, Kostamo P, Lantto V (2006) Gas sensing properties of SnO2 thin films grown by MBE. Sens Actuators B: Chem 118(1–2):110–114
125.
go back to reference Feng X, Ma J, Yang F, Ji F, Luan C (2008) Preparation and characterization of single crystalline SnO2 films deposited on α-Al2O3 (0001) by MOCVD. Mater Lett 62(12–13):1809–1811 Feng X, Ma J, Yang F, Ji F, Luan C (2008) Preparation and characterization of single crystalline SnO2 films deposited on α-Al2O3 (0001) by MOCVD. Mater Lett 62(12–13):1809–1811
126.
go back to reference Semancik S, Cavicchi RE (1991) The growth of thin, epitaxial SnO2 films for gas sensing applications. Thin Solid Films 206(1–2):81–87 Semancik S, Cavicchi RE (1991) The growth of thin, epitaxial SnO2 films for gas sensing applications. Thin Solid Films 206(1–2):81–87
127.
go back to reference Lee DS, Rue GH, Huh JS, Choi SD, Lee DD (2001) Sensing characteristics of epitaxially-grown tin oxide gas sensor on sapphire substrate. Sens Actuators B: Chem 77(1–2):90–94 Lee DS, Rue GH, Huh JS, Choi SD, Lee DD (2001) Sensing characteristics of epitaxially-grown tin oxide gas sensor on sapphire substrate. Sens Actuators B: Chem 77(1–2):90–94
128.
go back to reference Ohgaki T, Matsuoka R, Watanabe K, Matsumoto K, Adachi Y, Sakaguchi I, Hishita S, Ohashi N, Haneda H (2010) Synthesizing SnO2 thin films and characterizing sensing performances. Sens Actuators B: Chem 150(1), 99–104 Ohgaki T, Matsuoka R, Watanabe K, Matsumoto K, Adachi Y, Sakaguchi I, Hishita S, Ohashi N, Haneda H (2010) Synthesizing SnO2 thin films and characterizing sensing performances. Sens Actuators B: Chem 150(1), 99–104
129.
go back to reference Kim DH, Kim W-S, Lee SB, Hong S-H (2010) Gas sensing properties in epitaxial SnO2 films grown on TiO2 single crystals with various orientations. Sens Actuators B: Chem 147(2):653–659 Kim DH, Kim W-S, Lee SB, Hong S-H (2010) Gas sensing properties in epitaxial SnO2 films grown on TiO2 single crystals with various orientations. Sens Actuators B: Chem 147(2):653–659
130.
go back to reference Rosental A, Tarre A, Gerst A, Sundqvist J, Hårsta A, Aidla A, Aarik J, Sammelselg V, Uustare T (2003) Gas sensing properties of epitaxial SnO2 thin films prepared by atomic layer deposition. Sens Actuators B: Chem 93(1–3):552–555 Rosental A, Tarre A, Gerst A, Sundqvist J, Hårsta A, Aidla A, Aarik J, Sammelselg V, Uustare T (2003) Gas sensing properties of epitaxial SnO2 thin films prepared by atomic layer deposition. Sens Actuators B: Chem 93(1–3):552–555
131.
go back to reference Palgrave RG, Bourlange A, Payne DJ, Foord JS, Egdell RG (2009) Interfacial diffusion during growth of SnO2(110) on TiO2(110) by oxygen plasma assisted molecular beam epitaxy. Cryst Growth Des 9(4):1793–1797 Palgrave RG, Bourlange A, Payne DJ, Foord JS, Egdell RG (2009) Interfacial diffusion during growth of SnO2(110) on TiO2(110) by oxygen plasma assisted molecular beam epitaxy. Cryst Growth Des 9(4):1793–1797
132.
go back to reference White ME, Tsai MY, Wu F, Speck JS (2008) Plasma-assisted molecular beam epitaxy and characterization of SnO2(101) on r-plane sapphire. J Vac Sci Technol A: Vac, Surf, Films 26(5):1300–1307 White ME, Tsai MY, Wu F, Speck JS (2008) Plasma-assisted molecular beam epitaxy and characterization of SnO2(101) on r-plane sapphire. J Vac Sci Technol A: Vac, Surf, Films 26(5):1300–1307
133.
go back to reference Tsai MY, White ME, Speck JS (2008) Plasma-assisted molecular beam epitaxy of SnO2 on TiO2. J Cryst Growth 310(18):4256–4261 Tsai MY, White ME, Speck JS (2008) Plasma-assisted molecular beam epitaxy of SnO2 on TiO2. J Cryst Growth 310(18):4256–4261
134.
go back to reference Batzill M, Burst JM, Diebold U (2005) Pure and cobalt-doped SnO2(101) films grown by molecular beam epitaxy on Al2O3. Thin Solid Films 484(1–2):132–139 Batzill M, Burst JM, Diebold U (2005) Pure and cobalt-doped SnO2(101) films grown by molecular beam epitaxy on Al2O3. Thin Solid Films 484(1–2):132–139
135.
go back to reference Hishita S, Janecek P, Haneda H (2010) Epitaxial growth of tin oxide film on TiO2(1 1 0) using molecular beam epitaxy. J Cryst Growth 312(20):3046–3049 Hishita S, Janecek P, Haneda H (2010) Epitaxial growth of tin oxide film on TiO2(1 1 0) using molecular beam epitaxy. J Cryst Growth 312(20):3046–3049
136.
go back to reference Chen JS, Li HL, Huang JL (2002) Structural and CO sensing characteristics of Ti-added SnO2 thin films. Appl Surf Sci 187(3–4):305–312 Chen JS, Li HL, Huang JL (2002) Structural and CO sensing characteristics of Ti-added SnO2 thin films. Appl Surf Sci 187(3–4):305–312
137.
go back to reference Zakrzewska K, Radecka M (2007) TiO2-SnO2 system for gas sensing-Photodegradation of organic contaminants. Thin Solid Films 515(23):8332–8338 Zakrzewska K, Radecka M (2007) TiO2-SnO2 system for gas sensing-Photodegradation of organic contaminants. Thin Solid Films 515(23):8332–8338
138.
go back to reference Hishita S, Janecek P, Haneda H (2009) Epitaxial growth of SnO2 film on Sn-doped TiO2(110). Vacuum 84(5):597–601 Hishita S, Janecek P, Haneda H (2009) Epitaxial growth of SnO2 film on Sn-doped TiO2(110). Vacuum 84(5):597–601
139.
go back to reference Winter R, Scharnagl K, Fuchs A, Doll T, Eisele I (2000) Molecular beam evaporation-grown indium oxide and indium aluminium films for low-temperature gas sensors. Sens Actuators B: Chem 66(1–3):85–87 Winter R, Scharnagl K, Fuchs A, Doll T, Eisele I (2000) Molecular beam evaporation-grown indium oxide and indium aluminium films for low-temperature gas sensors. Sens Actuators B: Chem 66(1–3):85–87
140.
go back to reference Bourlange A, Payne DJ, Palgrave RG, Foord JS, Egdell RG, Jacobs RMJ, Schertel A, Hutchison JL, Dobson PJ (2009) Investigation of the growth of In2O3 on Y-stabilized ZrO2(100) by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films 517(15), 4286–4294 Bourlange A, Payne DJ, Palgrave RG, Foord JS, Egdell RG, Jacobs RMJ, Schertel A, Hutchison JL, Dobson PJ (2009) Investigation of the growth of In2O3 on Y-stabilized ZrO2(100) by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films 517(15), 4286–4294
141.
go back to reference Mei ZX, Wang Y, Du XL, Zeng ZQ, Ying MJ, Zheng H, Jia JF, Xue QK, Zhang Z (2006) Growth of In2O3 single-crystalline film on sapphire(0 0 0 1) substrate by molecular beam epitaxy. J Cryst Growth 289(2):686–689 Mei ZX, Wang Y, Du XL, Zeng ZQ, Ying MJ, Zheng H, Jia JF, Xue QK, Zhang Z (2006) Growth of In2O3 single-crystalline film on sapphire(0 0 0 1) substrate by molecular beam epitaxy. J Cryst Growth 289(2):686–689
142.
go back to reference Taga N, Maekawa M, Shigesato Y, Yasui I, Haynes TE (1998) Deposition of hetero-epitaxial In2O3 thin films by molecular beam epitaxy. Jpn J Appl Phys 37(12A), 6524–6529 Taga N, Maekawa M, Shigesato Y, Yasui I, Haynes TE (1998) Deposition of hetero-epitaxial In2O3 thin films by molecular beam epitaxy. Jpn J Appl Phys 37(12A), 6524–6529
143.
go back to reference Chen Y, Bagnall DM, Zhu Z, Sekiuchi T, Park KT, Hiraga K, Yao T, Koyama S, Shen MY, Goto T (1997) Growth of ZnO single crystal thin films on c-plane (0 0 0 1) sapphire by plasma enhanced molecular beam epitaxy. J Cryst Growth 181(1–2):165–169 Chen Y, Bagnall DM, Zhu Z, Sekiuchi T, Park KT, Hiraga K, Yao T, Koyama S, Shen MY, Goto T (1997) Growth of ZnO single crystal thin films on c-plane (0 0 0 1) sapphire by plasma enhanced molecular beam epitaxy. J Cryst Growth 181(1–2):165–169
144.
go back to reference Fons P, Iwata K, Niki S, Yamada A, Matsubara K (1999) Growth of high-quality epitaxial ZnO films on α-Al2O3. J Cryst Growth 201–202:627–632 Fons P, Iwata K, Niki S, Yamada A, Matsubara K (1999) Growth of high-quality epitaxial ZnO films on α-Al2O3. J Cryst Growth 201–202:627–632
145.
go back to reference Heo YW, Ip K, Pearton SJ, Norton DP, Budai JD (2006) Growth of ZnO thin films on c-plane Al2O3 by molecular beam epitaxy using ozone as an oxygen source. Appl Surf Sci 252(20):7442–7448 Heo YW, Ip K, Pearton SJ, Norton DP, Budai JD (2006) Growth of ZnO thin films on c-plane Al2O3 by molecular beam epitaxy using ozone as an oxygen source. Appl Surf Sci 252(20):7442–7448
146.
go back to reference Jian-Feng Y, You-Ming L, Hong-Wei L, Yi-Chun L, Bing-Hui L, Xi-Wu F, Jun-Ming Z (2005) Growth and properties of ZnO nanotubes grown on Si(1 1 1) substrate by plasma-assisted molecular beam epitaxy. J Cryst Growth 280(1–2):206–211 Jian-Feng Y, You-Ming L, Hong-Wei L, Yi-Chun L, Bing-Hui L, Xi-Wu F, Jun-Ming Z (2005) Growth and properties of ZnO nanotubes grown on Si(1 1 1) substrate by plasma-assisted molecular beam epitaxy. J Cryst Growth 280(1–2):206–211
147.
go back to reference Liang HW, Lu YM, Shen DZ, Li BH, Zhang ZZ, Shan CX, Zhang JY, Fan XW, Du GT (2006) Growth of vertically aligned single crystal ZnO nanotubes by plasma-molecular beam epitaxy. Solid State Commun 137(4):182–186 Liang HW, Lu YM, Shen DZ, Li BH, Zhang ZZ, Shan CX, Zhang JY, Fan XW, Du GT (2006) Growth of vertically aligned single crystal ZnO nanotubes by plasma-molecular beam epitaxy. Solid State Commun 137(4):182–186
148.
go back to reference Kang BS, Heo YW, Tien LC, Norton DP, Ren F, Gila BP, Pearton SJ (2005) Hydrogen and ozone gas sensing using multiple ZnO nanorods. Appl Phys A Mater Sci Process 80(5):1029–1032 Kang BS, Heo YW, Tien LC, Norton DP, Ren F, Gila BP, Pearton SJ (2005) Hydrogen and ozone gas sensing using multiple ZnO nanorods. Appl Phys A Mater Sci Process 80(5):1029–1032
149.
go back to reference Tien LC, Norton DP, Pearton SJ, Wang HT, Ren F (2007) Nucleation control for ZnO nanorods grown by catalyst-driven molecular beam epitaxy. Appl Surf Sci 253(10):4620–4625 Tien LC, Norton DP, Pearton SJ, Wang HT, Ren F (2007) Nucleation control for ZnO nanorods grown by catalyst-driven molecular beam epitaxy. Appl Surf Sci 253(10):4620–4625
150.
go back to reference Greenwood OD, Moulzolf SC, Blau PJ, Lad RJ (1999) The influence of microstructure on tribological properties of WO3 thin films. Wear 232(1):84–90 Greenwood OD, Moulzolf SC, Blau PJ, Lad RJ (1999) The influence of microstructure on tribological properties of WO3 thin films. Wear 232(1):84–90
151.
go back to reference Lad RJ (2002) Heteroepitaxy of tungsten oxide films on sapphire and silicon for chemiresistive sensor applications. Proc IEEE, Sens 1(393–397):44 Lad RJ (2002) Heteroepitaxy of tungsten oxide films on sapphire and silicon for chemiresistive sensor applications. Proc IEEE, Sens 1(393–397):44
152.
go back to reference LeGore LJ, Greenwood OD, Paulus JW, Frankel DJ, Lad RJ (1997) Controlled growth of WO3 films. AVS, Philadelphia, pp 1223–1227 LeGore LJ, Greenwood OD, Paulus JW, Frankel DJ, Lad RJ (1997) Controlled growth of WO3 films. AVS, Philadelphia, pp 1223–1227
153.
go back to reference Gao W, Klie R, Altman EI (2005) Growth of anatase films on vicinal and flat LaAlO3 (110) substrates by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films 485(1–2):115–125 Gao W, Klie R, Altman EI (2005) Growth of anatase films on vicinal and flat LaAlO3 (110) substrates by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films 485(1–2):115–125
154.
go back to reference Gao Y, Chambers SA (1996) MBE growth and characterization of epitaxial TiO2 and Nb-doped TiO2 films. Mater Lett 26(4–5):217–221 Gao Y, Chambers SA (1996) MBE growth and characterization of epitaxial TiO2 and Nb-doped TiO2 films. Mater Lett 26(4–5):217–221
155.
go back to reference Shao R, Wang C, McCready DE, Droubay TC, Chambers SA (2007) Growth and structure of MBE grown TiO2 anatase films with rutile nano-crystallites. Surf Sci 601(6):1582–1589 Shao R, Wang C, McCready DE, Droubay TC, Chambers SA (2007) Growth and structure of MBE grown TiO2 anatase films with rutile nano-crystallites. Surf Sci 601(6):1582–1589
156.
go back to reference Weng X, Fisher P, Skowronski M, Salvador PA, Maksimov O (2008) Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrates using reactive molecular beam epitaxy. J Cryst Growth 310(3):545–550 Weng X, Fisher P, Skowronski M, Salvador PA, Maksimov O (2008) Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrates using reactive molecular beam epitaxy. J Cryst Growth 310(3):545–550
Metadata
Title
Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy
Authors
Manjula I. Nandasiri
Satyanarayana V. N. T. Kuchibhatla
Suntharampillai Thevuthasan
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5395-6_6

Premium Partners