Skip to main content
Top

2018 | OriginalPaper | Chapter

3. Synthesis of Micro-nanoparticles Using Ultrasound-Responsive Biomolecules

Authors : Kenji Okitsu, Francesca Cavalieri

Published in: Sonochemical Production of Nanomaterials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ultrasonic crosslinking of biomacromolecules and biomolecules can be exploited to fabricate micro-nanodevices. In particular, biologically relevant molecules and macromolecules are desirable building blocks for engineering biomaterials. Ultrasonic synthesis, modification, and assembly of biomolecules and biomacromolecules enable the tuning of size, composition, degradability, surface properties, and biofunctionality of micro-nanodevices. Recent achievements in engineering of micro-nanodevices using ultrasound-responsive biomolecules such as proteins, amino acids, and phenolic molecules will be discussed in this section. These recent findings highlight the potential use of high- and low-frequency ultrasound techniques to fabricate innovative platforms for biomedical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.M. Fitch, C. Tsai, Polymer colloids: particle formation in nonmicellar systems. J. Polym. Sci., Part C: Polym. Lett. 8(10), 703–710 (1970) R.M. Fitch, C. Tsai, Polymer colloids: particle formation in nonmicellar systems. J. Polym. Sci., Part C: Polym. Lett. 8(10), 703–710 (1970)
2.
go back to reference G. Cooper, F. Grieser, S. Biggs, Butyl acrylate/vinyl acetate copolymer latex synthesis using ultrasound as an initiator. J. Colloid Interface Sci. 184(1), 52–63 (1996)CrossRefPubMed G. Cooper, F. Grieser, S. Biggs, Butyl acrylate/vinyl acetate copolymer latex synthesis using ultrasound as an initiator. J. Colloid Interface Sci. 184(1), 52–63 (1996)CrossRefPubMed
3.
go back to reference P. Kruus, D. McDonald, T. Patraboy, Polymerization of styrene initiated by ultrasonic cavitation. J. Phys. Chem. 91(11), 3041–3047 (1987)CrossRef P. Kruus, D. McDonald, T. Patraboy, Polymerization of styrene initiated by ultrasonic cavitation. J. Phys. Chem. 91(11), 3041–3047 (1987)CrossRef
4.
go back to reference S. Biggs, F. Grieser, Preparation of polystyrene latex with ultrasonic initiation. Macromolecules 28(14), 4877–4882 (1995)CrossRef S. Biggs, F. Grieser, Preparation of polystyrene latex with ultrasonic initiation. Macromolecules 28(14), 4877–4882 (1995)CrossRef
5.
go back to reference S.K. Ooi, S. Biggs, Ultrasonic initiation of polystyrene latex synthesis. Ultrason. Sonochem. 7(3), 125–133 (2000)CrossRefPubMed S.K. Ooi, S. Biggs, Ultrasonic initiation of polystyrene latex synthesis. Ultrason. Sonochem. 7(3), 125–133 (2000)CrossRefPubMed
6.
go back to reference J. Zhang, Y. Cao, Y. He, Ultrasonically irradiated emulsion polymerization of styrene in the presence of a polymeric surfactant. J. Appl. Polym. Sci. 94(2), 763–768 (2004)CrossRef J. Zhang, Y. Cao, Y. He, Ultrasonically irradiated emulsion polymerization of styrene in the presence of a polymeric surfactant. J. Appl. Polym. Sci. 94(2), 763–768 (2004)CrossRef
7.
go back to reference Y. He, Y. Cao, Y. Fan, Using anionic polymerizable surfactants in ultrasonically irradiated emulsion polymerization to prepare polymer nanoparticles. J. Appl. Polym. Sci. 107(3), 2022–2027 (2008)CrossRef Y. He, Y. Cao, Y. Fan, Using anionic polymerizable surfactants in ultrasonically irradiated emulsion polymerization to prepare polymer nanoparticles. J. Appl. Polym. Sci. 107(3), 2022–2027 (2008)CrossRef
8.
go back to reference Y. He, Y. Cao, Y. Liu, Initiation mechanism of ultrasonically irradiated emulsion polymerization. J. Polym. Sci., Part B: Polym. Phys. 43(18), 2617–2624 (2005)CrossRef Y. He, Y. Cao, Y. Liu, Initiation mechanism of ultrasonically irradiated emulsion polymerization. J. Polym. Sci., Part B: Polym. Phys. 43(18), 2617–2624 (2005)CrossRef
9.
go back to reference M.A. Bradley et al., Miniemulsion copolymerization of methyl methacrylate and butyl acrylate by ultrasonic initiation. Macromolecules 38(15), 6346–6351 (2005)CrossRef M.A. Bradley et al., Miniemulsion copolymerization of methyl methacrylate and butyl acrylate by ultrasonic initiation. Macromolecules 38(15), 6346–6351 (2005)CrossRef
10.
go back to reference H. Xia, Q. Wang, G. Qiu, Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem. Mater. 15(20), 3879–3886 (2003)CrossRef H. Xia, Q. Wang, G. Qiu, Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem. Mater. 15(20), 3879–3886 (2003)CrossRef
11.
go back to reference M. Bradley, F. Grieser, Emulsion polymerization synthesis of cationic polymer latex in an ultrasonic field. J. Colloid Interface Sci. 251(1), 78–84 (2002)CrossRefPubMed M. Bradley, F. Grieser, Emulsion polymerization synthesis of cationic polymer latex in an ultrasonic field. J. Colloid Interface Sci. 251(1), 78–84 (2002)CrossRefPubMed
12.
go back to reference F. Cavalieri et al., One-pot ultrasonic synthesis of multifunctional microbubbles and microcapsules using synthetic thiolated macromolecules. Chem. Commun. 47(14), 4096–4098 (2011)CrossRef F. Cavalieri et al., One-pot ultrasonic synthesis of multifunctional microbubbles and microcapsules using synthetic thiolated macromolecules. Chem. Commun. 47(14), 4096–4098 (2011)CrossRef
13.
go back to reference F. Cavalieri et al., Ultrasonic synthesis of stable, functional lysozyme microbubbles. Langmuir 24(18), 10078–10083 (2008)CrossRefPubMed F. Cavalieri et al., Ultrasonic synthesis of stable, functional lysozyme microbubbles. Langmuir 24(18), 10078–10083 (2008)CrossRefPubMed
14.
go back to reference F. Cavalieri et al., Influence of the Morphology of Lysozyme-Shelled Microparticles on the Cellular Association, Uptake, and Degradation in Human Breast Adenocarcinoma Cells. Part. Part. Syst. Charact. 30(8), 695–705 (2013)CrossRef F. Cavalieri et al., Influence of the Morphology of Lysozyme-Shelled Microparticles on the Cellular Association, Uptake, and Degradation in Human Breast Adenocarcinoma Cells. Part. Part. Syst. Charact. 30(8), 695–705 (2013)CrossRef
15.
go back to reference M. Zhou, F. Cavalieri, M. Ashokkumar, Tailoring the properties of ultrasonically synthesised microbubbles. Soft Matter 7(2), 623–630 (2011)CrossRef M. Zhou, F. Cavalieri, M. Ashokkumar, Tailoring the properties of ultrasonically synthesised microbubbles. Soft Matter 7(2), 623–630 (2011)CrossRef
16.
go back to reference T.D. Tran et al., Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int. J. Nanomed. 2(4), 515 (2007) T.D. Tran et al., Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int. J. Nanomed. 2(4), 515 (2007)
17.
go back to reference Y. Mine, F. Ma, S. Lauriau, Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J. Agric. Food Chem. 52(5), 1088–1094 (2004)CrossRefPubMed Y. Mine, F. Ma, S. Lauriau, Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J. Agric. Food Chem. 52(5), 1088–1094 (2004)CrossRefPubMed
18.
go back to reference D. Cosgrove, C. Harvey, Clinical uses of microbubbles in diagnosis and treatment. Med. Biol. Eng. Compu. 47(8), 813–826 (2009)CrossRef D. Cosgrove, C. Harvey, Clinical uses of microbubbles in diagnosis and treatment. Med. Biol. Eng. Compu. 47(8), 813–826 (2009)CrossRef
19.
go back to reference K. Ferrara, R. Pollard, M. Borden, Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447 (2007)CrossRefPubMed K. Ferrara, R. Pollard, M. Borden, Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447 (2007)CrossRefPubMed
21.
go back to reference P. Morse, K. Ingard, Theoretical Acoustics (McGrawHill, New York, 1968), Google Scholar: pp. 252–255 P. Morse, K. Ingard, Theoretical Acoustics (McGrawHill, New York, 1968), Google Scholar: pp. 252–255
22.
go back to reference S.H. Bloch et al., Optical observation of lipid-and polymer-shelled ultrasound microbubble contrast agents. Appl. Phys. Lett. 84(4), 631–633 (2004)CrossRef S.H. Bloch et al., Optical observation of lipid-and polymer-shelled ultrasound microbubble contrast agents. Appl. Phys. Lett. 84(4), 631–633 (2004)CrossRef
23.
go back to reference N. de Jong et al., Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. Ultrasonics 30(2), 95–103 (1992)CrossRefPubMed N. de Jong et al., Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. Ultrasonics 30(2), 95–103 (1992)CrossRefPubMed
24.
go back to reference N. de Jong, L. Hoff, Ultrasound scattering properties of Albunex microspheres. Ultrasonics 31(3), 175–181 (1993)CrossRefPubMed N. de Jong, L. Hoff, Ultrasound scattering properties of Albunex microspheres. Ultrasonics 31(3), 175–181 (1993)CrossRefPubMed
25.
go back to reference W.-S. Chen et al., A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents. J. Acoust. Soc. Am. 113(1), 643–651 (2003)CrossRefPubMed W.-S. Chen et al., A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents. J. Acoust. Soc. Am. 113(1), 643–651 (2003)CrossRefPubMed
26.
go back to reference F. Cavalieri et al., Antimicrobial and biosensing ultrasound-responsive lysozyme-shelled microbubbles. ACS Appl. Mater. Interfaces 5(2), 464–471 (2013)CrossRefPubMed F. Cavalieri et al., Antimicrobial and biosensing ultrasound-responsive lysozyme-shelled microbubbles. ACS Appl. Mater. Interfaces 5(2), 464–471 (2013)CrossRefPubMed
27.
go back to reference S. Chapalamadugu, G.R. Chaudhry, Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Crit. Rev. Biotechnol. 12(5–6), 357–389 (1992)CrossRefPubMed S. Chapalamadugu, G.R. Chaudhry, Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Crit. Rev. Biotechnol. 12(5–6), 357–389 (1992)CrossRefPubMed
28.
go back to reference M.S. Ayyagari et al., Controlled free-radical polymerization of phenol derivatives by enzyme-catalyzed reactions in organic solvents. Macromolecules 28(15), 5192–5197 (1995)CrossRef M.S. Ayyagari et al., Controlled free-radical polymerization of phenol derivatives by enzyme-catalyzed reactions in organic solvents. Macromolecules 28(15), 5192–5197 (1995)CrossRef
29.
go back to reference A. Nozoe et al., Germanium recovery using polyphenol microspheres prepared by horseradish peroxidase reaction. J. Chem. Technol. Biotechnol. 86(11), 1374–1378 (2011)CrossRef A. Nozoe et al., Germanium recovery using polyphenol microspheres prepared by horseradish peroxidase reaction. J. Chem. Technol. Biotechnol. 86(11), 1374–1378 (2011)CrossRef
31.
go back to reference S. Dubey, D. Singh, R. Misra, Enzymatic synthesis and various properties of poly (catechol). Enzyme Microb. Technol. 23(7), 432–437 (1998)CrossRef S. Dubey, D. Singh, R. Misra, Enzymatic synthesis and various properties of poly (catechol). Enzyme Microb. Technol. 23(7), 432–437 (1998)CrossRef
32.
go back to reference F.F. Bruno et al., Novel enzymatic polyethylene oxide-polyphenol system for ionic conductivity. J. Macromol. Sci. Part A 39(10), 1061–1068 (2002)CrossRef F.F. Bruno et al., Novel enzymatic polyethylene oxide-polyphenol system for ionic conductivity. J. Macromol. Sci. Part A 39(10), 1061–1068 (2002)CrossRef
33.
go back to reference Y.-J. Kim, H. Uyama, S. Kobayashi, Regioselective synthesis of poly (phenylene) as a complex with poly (ethylene glycol) by template polymerization of phenol in water. Macromolecules 36(14), 5058–5060 (2003)CrossRef Y.-J. Kim, H. Uyama, S. Kobayashi, Regioselective synthesis of poly (phenylene) as a complex with poly (ethylene glycol) by template polymerization of phenol in water. Macromolecules 36(14), 5058–5060 (2003)CrossRef
34.
go back to reference Y.J. Kim, H. Uyama, S. Kobayashi, Peroxidase-catalyzed oxidative polymerization of phenol with a nonionic polymer surfactant template in water. Macromol. Biosci. 4(5), 497–502 (2004)CrossRefPubMed Y.J. Kim, H. Uyama, S. Kobayashi, Peroxidase-catalyzed oxidative polymerization of phenol with a nonionic polymer surfactant template in water. Macromol. Biosci. 4(5), 497–502 (2004)CrossRefPubMed
35.
go back to reference T. Heck et al., Enzyme-catalyzed protein crosslinking. Appl. Microbiol. Biotechnol. 97(2), 461–475 (2013)CrossRefPubMed T. Heck et al., Enzyme-catalyzed protein crosslinking. Appl. Microbiol. Biotechnol. 97(2), 461–475 (2013)CrossRefPubMed
36.
go back to reference Z. Chen et al., Biocompatible, functional spheres based on oxidative coupling assembly of green tea polyphenols. J. Am. Chem. Soc. 135(11), 4179–4182 (2013)CrossRefPubMed Z. Chen et al., Biocompatible, functional spheres based on oxidative coupling assembly of green tea polyphenols. J. Am. Chem. Soc. 135(11), 4179–4182 (2013)CrossRefPubMed
37.
go back to reference J. Fei et al., One-pot ultrafast self-assembly of autofluorescent polyphenol-based core@ shell nanostructures and their selective antibacterial applications. ACS Nano 8(8), 8529–8536 (2014)CrossRefPubMed J. Fei et al., One-pot ultrafast self-assembly of autofluorescent polyphenol-based core@ shell nanostructures and their selective antibacterial applications. ACS Nano 8(8), 8529–8536 (2014)CrossRefPubMed
38.
go back to reference C. Houée-Lévin et al., Exploring oxidative modifications of tyrosine: an update on mechanisms of formation, advances in analysis and biological consequences. Free Radical Res. 49(4), 347–373 (2015)CrossRef C. Houée-Lévin et al., Exploring oxidative modifications of tyrosine: an update on mechanisms of formation, advances in analysis and biological consequences. Free Radical Res. 49(4), 347–373 (2015)CrossRef
39.
go back to reference T. Michon et al., Horseradish peroxidase oxidation of tyrosine-containing peptides and their subsequent polymerization: a kinetic study. Biochemistry 36(28), 8504–8513 (1997)CrossRefPubMed T. Michon et al., Horseradish peroxidase oxidation of tyrosine-containing peptides and their subsequent polymerization: a kinetic study. Biochemistry 36(28), 8504–8513 (1997)CrossRefPubMed
40.
go back to reference F. Cavalieri et al., Sono-assembly of nanostructures via tyrosine–tyrosine coupling reactions at the interface of acoustic cavitation bubbles. Materials Horizons 3, 563–567 (2016)CrossRef F. Cavalieri et al., Sono-assembly of nanostructures via tyrosine–tyrosine coupling reactions at the interface of acoustic cavitation bubbles. Materials Horizons 3, 563–567 (2016)CrossRef
41.
go back to reference M. Ashokkumar, T.J. Mason, Sonochemistry. Kirk-Othmer Encycl. Chem. Technol. y On-Line, Wiley Interscience (2007) M. Ashokkumar, T.J. Mason, Sonochemistry. Kirk-Othmer Encycl. Chem. Technol. y On-Line, Wiley Interscience (2007)
42.
go back to reference J. Berthelot, Y. Benammar, C. Lange, A mild and efficient sonochemical bromination of alkenes using tetrabutylammonium tribromide. Tetrahedron Lett. 32(33), 4135–4136 (1991)CrossRef J. Berthelot, Y. Benammar, C. Lange, A mild and efficient sonochemical bromination of alkenes using tetrabutylammonium tribromide. Tetrahedron Lett. 32(33), 4135–4136 (1991)CrossRef
43.
go back to reference S.K. Bhangu, M. Ashokkumar, Theory of sonochemistry. Top. Curr. Chem. 374(4), 56 (2016)CrossRef S.K. Bhangu, M. Ashokkumar, Theory of sonochemistry. Top. Curr. Chem. 374(4), 56 (2016)CrossRef
44.
go back to reference M.H. Entezari, C. Pétrier, A combination of ultrasound and oxidative enzyme: sono-enzyme degradation of phenols in a mixture. Ultrason. Sonochem. 12(4), 283–288 (2005)CrossRefPubMed M.H. Entezari, C. Pétrier, A combination of ultrasound and oxidative enzyme: sono-enzyme degradation of phenols in a mixture. Ultrason. Sonochem. 12(4), 283–288 (2005)CrossRefPubMed
45.
go back to reference S. Okouchi, O. Nojima, T. Arai, Cavitation-induced degradation of phenol by ultrasound. Water Sci. Technol. 26(9–11), 2053–2056 (1992)CrossRef S. Okouchi, O. Nojima, T. Arai, Cavitation-induced degradation of phenol by ultrasound. Water Sci. Technol. 26(9–11), 2053–2056 (1992)CrossRef
46.
go back to reference C. Petrier et al., Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz. J. Phys. Chem. 98(41), 10514–10520 (1994)CrossRef C. Petrier et al., Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz. J. Phys. Chem. 98(41), 10514–10520 (1994)CrossRef
47.
go back to reference N. Serpone et al., Sonochemical oxidation of phenol and three of its intermediate products in aqueous media: catechol, hydroquinone, and benzoquinone. Kinetic and mechanistic aspects. Res. Chem. Intermed. 18(2), 183–202 (1992)CrossRef N. Serpone et al., Sonochemical oxidation of phenol and three of its intermediate products in aqueous media: catechol, hydroquinone, and benzoquinone. Kinetic and mechanistic aspects. Res. Chem. Intermed. 18(2), 183–202 (1992)CrossRef
48.
go back to reference C. Wu et al., Photosonochemical degradation of phenol in water. Water Res. 35(16), 3927–3933 (2001)CrossRefPubMed C. Wu et al., Photosonochemical degradation of phenol in water. Water Res. 35(16), 3927–3933 (2001)CrossRefPubMed
49.
go back to reference S.K. Bhangu, M. Ashokkumar, F. Cavalieri, A simple one-step ultrasonic route to synthesize antioxidant molecules and fluorescent nanoparticles from phenol and phenol-like molecules. ACS Sustain. Chem. Eng. 5(7), 6081–6089 (2017)CrossRef S.K. Bhangu, M. Ashokkumar, F. Cavalieri, A simple one-step ultrasonic route to synthesize antioxidant molecules and fluorescent nanoparticles from phenol and phenol-like molecules. ACS Sustain. Chem. Eng. 5(7), 6081–6089 (2017)CrossRef
50.
go back to reference F.F. Bruno et al., Polymerization of water-soluble conductive polyphenol using horseradish peroxidase. J. Macromol. Sci. Part A 38(12), 1417–1426 (2001)CrossRef F.F. Bruno et al., Polymerization of water-soluble conductive polyphenol using horseradish peroxidase. J. Macromol. Sci. Part A 38(12), 1417–1426 (2001)CrossRef
52.
go back to reference D.A. Malencik et al., Dityrosine: preparation, isolation, and analysis. Anal. Biochem. 242(2), 202–213 (1996)CrossRefPubMed D.A. Malencik et al., Dityrosine: preparation, isolation, and analysis. Anal. Biochem. 242(2), 202–213 (1996)CrossRefPubMed
53.
go back to reference G.J. Smith, T.G. Haskell, The fluorescent oxidation products of dihydroxyphenylalanine and its esters. J. Photochem. Photobiol., B 55(2), 103–108 (2000)CrossRef G.J. Smith, T.G. Haskell, The fluorescent oxidation products of dihydroxyphenylalanine and its esters. J. Photochem. Photobiol., B 55(2), 103–108 (2000)CrossRef
54.
go back to reference J. Chandrapala et al., Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason. Sonochem. 18(5), 951–957 (2011)CrossRefPubMed J. Chandrapala et al., Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason. Sonochem. 18(5), 951–957 (2011)CrossRefPubMed
55.
go back to reference A.K. Goard, E.K. Rideal, CCXXI—The surface tensions of aqueous phenol solutions. Part II. Activity and surface tension. J. Chem. Soc. Trans. 127, 1668–1676 (1925)CrossRef A.K. Goard, E.K. Rideal, CCXXI—The surface tensions of aqueous phenol solutions. Part II. Activity and surface tension. J. Chem. Soc. Trans. 127, 1668–1676 (1925)CrossRef
57.
go back to reference S.K. Bhangu et al., Sono-transformation of tannic acid into biofunctional ellagic acid micro/nanocrystals with distinct morphologies. Green Chem. 20, 816–821 (2018)CrossRef S.K. Bhangu et al., Sono-transformation of tannic acid into biofunctional ellagic acid micro/nanocrystals with distinct morphologies. Green Chem. 20, 816–821 (2018)CrossRef
58.
go back to reference I. Mueller-Harvey, Analysis of hydrolysable tannins. Anim. Feed Sci. Technol. 91(1), 3–20 (2001)CrossRef I. Mueller-Harvey, Analysis of hydrolysable tannins. Anim. Feed Sci. Technol. 91(1), 3–20 (2001)CrossRef
59.
go back to reference L. Pouységu et al., Synthesis of ellagitannin natural products. Nat. Prod. Rep. 28(5), 853–874 (2011)CrossRefPubMed L. Pouységu et al., Synthesis of ellagitannin natural products. Nat. Prod. Rep. 28(5), 853–874 (2011)CrossRefPubMed
60.
go back to reference H. Ejima et al., One-step assembly of coordination complexes for versatile film and particle engineering. Science 341(6142), 154–157 (2013)CrossRefPubMed H. Ejima et al., One-step assembly of coordination complexes for versatile film and particle engineering. Science 341(6142), 154–157 (2013)CrossRefPubMed
61.
go back to reference S. Quideau et al., Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 50(3), 586–621 (2011)CrossRef S. Quideau et al., Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 50(3), 586–621 (2011)CrossRef
62.
go back to reference N. Bertleff-Zieschang et al., Biofunctional metal–phenolic films from dietary flavonoids. Chem. Commun. 53(6), 1068–1071 (2017)CrossRef N. Bertleff-Zieschang et al., Biofunctional metal–phenolic films from dietary flavonoids. Chem. Commun. 53(6), 1068–1071 (2017)CrossRef
63.
go back to reference A. Brune, B. Schink, Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid. Arch. Microbiol. 157(5), 417–424 (1992)CrossRef A. Brune, B. Schink, Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid. Arch. Microbiol. 157(5), 417–424 (1992)CrossRef
64.
go back to reference L. Mingshu et al., Biodegradation of gallotannins and ellagitannins. J. Basic Microbiol. 46(1), 68–84 (2006)CrossRef L. Mingshu et al., Biodegradation of gallotannins and ellagitannins. J. Basic Microbiol. 46(1), 68–84 (2006)CrossRef
65.
go back to reference Q. Sun, J. Heilmann, B. König, Natural phenolic metabolites with anti-angiogenic properties–a review from the chemical point of view. Beilstein J. Org. Chem. 11, 249 (2015)CrossRefPubMedPubMedCentral Q. Sun, J. Heilmann, B. König, Natural phenolic metabolites with anti-angiogenic properties–a review from the chemical point of view. Beilstein J. Org. Chem. 11, 249 (2015)CrossRefPubMedPubMedCentral
66.
go back to reference S. Kaur Bhangu, M. Ashokkumar, J. Lee, Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control. Cryst. Growth Des. 16(4), 1934–1941 (2016)CrossRef S. Kaur Bhangu, M. Ashokkumar, J. Lee, Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control. Cryst. Growth Des. 16(4), 1934–1941 (2016)CrossRef
67.
go back to reference V.S. Nalajala, V.S. Moholkar, Investigations in the physical mechanism of sonocrystallization. Ultrason. Sonochem. 18(1), 345–355 (2011)CrossRefPubMed V.S. Nalajala, V.S. Moholkar, Investigations in the physical mechanism of sonocrystallization. Ultrason. Sonochem. 18(1), 345–355 (2011)CrossRefPubMed
68.
go back to reference H.-M. Zhang et al., Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol. Med. 11(2), 92 (2014)PubMedPubMedCentral H.-M. Zhang et al., Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol. Med. 11(2), 92 (2014)PubMedPubMedCentral
69.
go back to reference N. Wang et al., Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Res. Treat. 134(3), 943–955 (2012)CrossRefPubMedPubMedCentral N. Wang et al., Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Res. Treat. 134(3), 943–955 (2012)CrossRefPubMedPubMedCentral
70.
go back to reference L. Tang et al., Inhibition of angiogenesis and invasion by DMBT is mediated by downregulation of VEGF and MMP-9 through Akt pathway in MDA-MB-231 breast cancer cells. Food Chem. Toxicol. 56, 204–213 (2013)CrossRefPubMed L. Tang et al., Inhibition of angiogenesis and invasion by DMBT is mediated by downregulation of VEGF and MMP-9 through Akt pathway in MDA-MB-231 breast cancer cells. Food Chem. Toxicol. 56, 204–213 (2013)CrossRefPubMed
Metadata
Title
Synthesis of Micro-nanoparticles Using Ultrasound-Responsive Biomolecules
Authors
Kenji Okitsu
Francesca Cavalieri
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-96734-9_3

Premium Partners