Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 3/2015

01-06-2015 | Original Paper

Synthesis of silicon dioxide, silicon, and silicon carbide mesoporous spheres from polystyrene sphere templates

Authors: Lauren S. White, Julia Migenda, Xiaonan Gao, Dustin M. Clifford, Massimo F. Bertino, Khaled M. Saoud, Christoph Weidmann, Bernd M. Smarsly

Published in: Journal of Sol-Gel Science and Technology | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Amberlite XAD 16N mesoporous polystyrene spheres were used as a template to create silicon dioxide (SiO2), silicon, and silicon carbide (SiC) mesoporous spheres. Polystyrene spheres, infiltrated with either hydrochloric acid catalyzed tetraethyl orthosilicate or dimethylethylamine catalyzed tetramethyl orthosilicate, were heated to 550 °C to induce oxidation and/or decomposition of the polystyrene template and yielded SiO2 spheres. To create Si and SiC spheres, SiO2 and SiO2-infiltrated spherical polystyrene templates, respectively, were distributed in finely grated magnesium before heating to 675 and 700 °C each in an argon atmosphere. Mg by-products in the form of magnesium silicates and residual SiO2 were removed by washing the spheres with hydrochloric acid and hydrofluoric acid, respectively. X-ray diffraction, Brunauer–Emmet–Teller model specific surface area analysis, Barrett–Joyner–Halenda model pore diameter analysis, transmission electron microscopy and scanning electron microscopy were employed to investigate the microstructure and porosity during and after synthesis of the spheres. All three types of spheres maintained high porosity and their spherical shape throughout the synthesis. SiO2 spheres had a surface area of 700 m2 g−1, Si spheres a surface area of 160 m2 g−1, and SiC spheres a surface area of 215 m2 g−1. SiO2 spheres with dispersed Ag nanoparticles were also successfully created by adding AgNO3 to the precursor solution; they had a surface area of 220 m2 g−1. To prove the versatility of this infiltration method, Dy2O3 spheres were also fabricated, though they were not porous. This infiltration method is not only versatile, as it is suitable for the preparation of numerous types of mesoporous spheres, but it is also a simple synthesis method that guarantees a well-defined spherical shape and narrow particle size distribution, primarily while maintaining a high surface area.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Zhang M, Itoh T, Abe M (1997) Ultrasonic visualization of still and flowing waters using contrast agents of magnetite-encapsulated porous silica microspheres. Jpn J Appl Phys 36:243–246. doi:10.1143/JJAP.36.243 CrossRef Zhang M, Itoh T, Abe M (1997) Ultrasonic visualization of still and flowing waters using contrast agents of magnetite-encapsulated porous silica microspheres. Jpn J Appl Phys 36:243–246. doi:10.​1143/​JJAP.​36.​243 CrossRef
6.
9.
go back to reference Comorettoa D, Marabellib F, Socib C, Gallib M, Pavarinib E, Patrinib M, Andreanib LC (2003) Morphology and optical properties of bare and polydiacetylenes-infiltrated opals. Synth Met 139:633–636. doi:10.1016/S0379-6779(03)00324-2 CrossRef Comorettoa D, Marabellib F, Socib C, Gallib M, Pavarinib E, Patrinib M, Andreanib LC (2003) Morphology and optical properties of bare and polydiacetylenes-infiltrated opals. Synth Met 139:633–636. doi:10.​1016/​S0379-6779(03)00324-2 CrossRef
11.
go back to reference Gumennik A, Wei L, Lestoquoy G, Stolyarov AM, Jia X, Rekemeyer PH, Smith MJ, Liang X, Grena BJ-B, Johnson SG, Gradečak S, Abouraddy AF, Joannopoulos JD, Fink Y (2013) Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nature Commun. doi:10.1038/ncomms3216 Gumennik A, Wei L, Lestoquoy G, Stolyarov AM, Jia X, Rekemeyer PH, Smith MJ, Liang X, Grena BJ-B, Johnson SG, Gradečak S, Abouraddy AF, Joannopoulos JD, Fink Y (2013) Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nature Commun. doi:10.​1038/​ncomms3216
12.
go back to reference Cheng J, Wang Y, Teng C, Shang Y, Ren L, Jiang B (2014) Preparation and characterization of monodisperse, micrometer-sized, hierarchically porous carbon spheres as catalyst support. Chem Eng J 242:285–293. doi:10.1016/j.cej.2013.12.089 CrossRef Cheng J, Wang Y, Teng C, Shang Y, Ren L, Jiang B (2014) Preparation and characterization of monodisperse, micrometer-sized, hierarchically porous carbon spheres as catalyst support. Chem Eng J 242:285–293. doi:10.​1016/​j.​cej.​2013.​12.​089 CrossRef
13.
14.
go back to reference Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW III, Summers CJ, Liu M, Sandhage KH (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446:172–175. doi:10.1038/nature05570 CrossRef Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW III, Summers CJ, Liu M, Sandhage KH (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446:172–175. doi:10.​1038/​nature05570 CrossRef
17.
go back to reference Sonnenburg K, Adelhelm P, Antonietti M, Smarsly B, Nöske R, Strauch P (2006) Synthesis and characterization of SiC materials with hierarchical porosity obtained by replication techniques. Phys Chem Chem Phys 8:3561–3566. doi:10.1039/B604819F CrossRef Sonnenburg K, Adelhelm P, Antonietti M, Smarsly B, Nöske R, Strauch P (2006) Synthesis and characterization of SiC materials with hierarchical porosity obtained by replication techniques. Phys Chem Chem Phys 8:3561–3566. doi:10.​1039/​B604819F CrossRef
20.
go back to reference Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. NanoLetters 11:2949–2954. doi:10.1021/nl201470j CrossRef Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. NanoLetters 11:2949–2954. doi:10.​1021/​nl201470j CrossRef
21.
go back to reference Kim M, Kim J (2014) Redox desorption of birnessite-type manganese oxide on silicon carbide microspheres for use as supercapacitor electrodes. ACS Appl Mater Interfaces 6:9036–9045. doi:10.1021/am406032y CrossRef Kim M, Kim J (2014) Redox desorption of birnessite-type manganese oxide on silicon carbide microspheres for use as supercapacitor electrodes. ACS Appl Mater Interfaces 6:9036–9045. doi:10.​1021/​am406032y CrossRef
23.
go back to reference Wingfield C, Franzel L, Bertino M, Leventis N (2011) Fabrication of functionally graded aerogels, cellular aerogels and anisotropic ceramics. J Mater Chem 21:11737–11741. doi:10.1039/C1JM10898K CrossRef Wingfield C, Franzel L, Bertino M, Leventis N (2011) Fabrication of functionally graded aerogels, cellular aerogels and anisotropic ceramics. J Mater Chem 21:11737–11741. doi:10.​1039/​C1JM10898K CrossRef
24.
go back to reference Fultz B, Howe J (2002) Transmission electron microscopy and diffractometry of materials. Springer, Berlin, New YorkCrossRef Fultz B, Howe J (2002) Transmission electron microscopy and diffractometry of materials. Springer, Berlin, New YorkCrossRef
25.
go back to reference Franzel L, Wingfield C, Bertino M, Mahadik-Khanolkarb S, Leventis N (2013) Regioselective cross-linking of silica aerogels with magnesium silicate ceramics. J Mater Chem A 1(19):6021–6029. doi:10.1039/C3TA90165C CrossRef Franzel L, Wingfield C, Bertino M, Mahadik-Khanolkarb S, Leventis N (2013) Regioselective cross-linking of silica aerogels with magnesium silicate ceramics. J Mater Chem A 1(19):6021–6029. doi:10.​1039/​C3TA90165C CrossRef
26.
go back to reference Leventis N, Vassilaras P, Fabriziob EF, Dassc A (2007) Polymer nanoencapsulated rare earth aerogels: chemically complex but stoichiometrically similar core-shell superstructures with skeletal properties of pure compounds. J Mater Chem 17:1502–1508. doi:10.1039/b612625a CrossRef Leventis N, Vassilaras P, Fabriziob EF, Dassc A (2007) Polymer nanoencapsulated rare earth aerogels: chemically complex but stoichiometrically similar core-shell superstructures with skeletal properties of pure compounds. J Mater Chem 17:1502–1508. doi:10.​1039/​b612625a CrossRef
Metadata
Title
Synthesis of silicon dioxide, silicon, and silicon carbide mesoporous spheres from polystyrene sphere templates
Authors
Lauren S. White
Julia Migenda
Xiaonan Gao
Dustin M. Clifford
Massimo F. Bertino
Khaled M. Saoud
Christoph Weidmann
Bernd M. Smarsly
Publication date
01-06-2015
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 3/2015
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-015-3636-1

Other articles of this Issue 3/2015

Journal of Sol-Gel Science and Technology 3/2015 Go to the issue

Premium Partners