Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 2/2018

21-07-2018 | Original Paper: Sol-gel and hybrid materials with surface modification for applications

Synthesis of superhydrophobic fluoro-containing silica sol coatings for cotton textile by one-step sol–gel process

Authors: Chi Jiang, Weiqu Liu, Maiping Yang, Sha He, Yankun Xie, Zhengfang Wang

Published in: Journal of Sol-Gel Science and Technology | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Superhydrophobic coatings were successfully fabricated on cotton textiles through a simple one-step sol–gel process. A fluorinated copolymer (PHFA-MPS), as a precursor in the sol–gel reaction, was prepared by copolymerization of hexafluorobutyl methacrylate (HFA) and 3-methacryloxypropyltrimethoxysilane (MPS) as monomers. Then, the fluoro-containing silica sols were formed by alkaline hydrolysis of tetraethylorthosilicate (TEOS) and PHFA-MPS solution in an ethanol solution, which was used to impart the cotton textiles with excellent superhydrophobicity via a facile dip-coating method. The effects of ammonium hydroxide solution (NH4OH) and PHFA-MPS concentration on the structure of the fluoro-containing silica sols, as well as the wetting behavior, surface morphology, and surface composition of the as-prepared cotton textiles were characterized. The results show that the resultant cotton textiles exhibited excellent superhydrophobicity with a WCA of 153.4° and satisfied stability, which offers a simple procedure to generate the superhydrophobicity on cotton textiles for use in a wide range of fields.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang S, Huang J, Chen Z, Lai Y (2017) Bioinspired special wettability surfaces: From fundamental research to water harvesting applications. Small 13(3):1602992CrossRef Zhang S, Huang J, Chen Z, Lai Y (2017) Bioinspired special wettability surfaces: From fundamental research to water harvesting applications. Small 13(3):1602992CrossRef
2.
go back to reference Zhang YB, Chen Y, Shi L, Li J, Guo ZG (2012) Recent progress of double-structural and functional materials with special wettability. J Mater Chem 22(3):799–815CrossRef Zhang YB, Chen Y, Shi L, Li J, Guo ZG (2012) Recent progress of double-structural and functional materials with special wettability. J Mater Chem 22(3):799–815CrossRef
3.
go back to reference Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20(9):3517–3519CrossRef Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20(9):3517–3519CrossRef
4.
go back to reference Roach P, Shirtcliffe NJ, Newton MI (2008) Progess in superhydrophobic surface development. Soft Matter 4(2):224–240CrossRef Roach P, Shirtcliffe NJ, Newton MI (2008) Progess in superhydrophobic surface development. Soft Matter 4(2):224–240CrossRef
5.
go back to reference Zhi JH, Zhang LZ, Yang YY, Zhu J (2017) Mechanical durability of superhydrophobic surfaces: The role of surface modification technologies. Appl Surf Sci 392:286–296CrossRef Zhi JH, Zhang LZ, Yang YY, Zhu J (2017) Mechanical durability of superhydrophobic surfaces: The role of surface modification technologies. Appl Surf Sci 392:286–296CrossRef
6.
go back to reference Zhou BP, Tian JX, Wang C, Gao YB, Wen WJ (2016) A facile and cost-effective approach to engineer surface roughness for preparation of large-scale superhydrophobic substrate with high adhesive force. Appl Surf Sci 389:679–687CrossRef Zhou BP, Tian JX, Wang C, Gao YB, Wen WJ (2016) A facile and cost-effective approach to engineer surface roughness for preparation of large-scale superhydrophobic substrate with high adhesive force. Appl Surf Sci 389:679–687CrossRef
7.
go back to reference Shi F, Wang Z, Zhang X (2005) Combining a layer‐by‐layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders. Adv Mater 17(8):1005–1009CrossRef Shi F, Wang Z, Zhang X (2005) Combining a layer‐by‐layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders. Adv Mater 17(8):1005–1009CrossRef
8.
go back to reference Xiao X, Cao G, Chen F, Tang Y, Liu X, Xu W (2015) Durable superhydrophobic wool fabrics coating with nanoscale Al2O3 layer by atomic layer deposition. Appl Surf Sci 349:876–879CrossRef Xiao X, Cao G, Chen F, Tang Y, Liu X, Xu W (2015) Durable superhydrophobic wool fabrics coating with nanoscale Al2O3 layer by atomic layer deposition. Appl Surf Sci 349:876–879CrossRef
9.
go back to reference Li Y, Liu F, Sun J (2009) A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings. Chem Commun 19(19):2730–2732CrossRef Li Y, Liu F, Sun J (2009) A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings. Chem Commun 19(19):2730–2732CrossRef
10.
go back to reference Choi D, Yoo J, Sang MP, Dong SK (2017) Facile and cost-effective fabrication of patternable superhydrophobic surfaces via salt dissolution assisted etching. Appl Surf Sci 393:449–456CrossRef Choi D, Yoo J, Sang MP, Dong SK (2017) Facile and cost-effective fabrication of patternable superhydrophobic surfaces via salt dissolution assisted etching. Appl Surf Sci 393:449–456CrossRef
11.
go back to reference He Y, Jiang C, Yin H, Chen J, Yuan W (2011) Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching. J Colloid Interface Sci 364(1):219–229CrossRef He Y, Jiang C, Yin H, Chen J, Yuan W (2011) Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching. J Colloid Interface Sci 364(1):219–229CrossRef
12.
go back to reference Liu J, Xiao X, Shi Y, Wan C (2014) Fabrication of a superhydrophobic surface from porous polymer using phase separation. Appl Surf Sci 297(4):33–39CrossRef Liu J, Xiao X, Shi Y, Wan C (2014) Fabrication of a superhydrophobic surface from porous polymer using phase separation. Appl Surf Sci 297(4):33–39CrossRef
13.
go back to reference Kato S, Sato A (2012) Micro/nanotextured polymer coatings fabricated by UV curing-induced phase separation: creation of superhydrophobic surfaces. J Mater Chem 22(17):8613–8621CrossRef Kato S, Sato A (2012) Micro/nanotextured polymer coatings fabricated by UV curing-induced phase separation: creation of superhydrophobic surfaces. J Mater Chem 22(17):8613–8621CrossRef
14.
go back to reference Zheng Z, Gu Z, Huo R, Ye Y (2009) Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution. Appl Surf Sci 255(16):7263–7267CrossRef Zheng Z, Gu Z, Huo R, Ye Y (2009) Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution. Appl Surf Sci 255(16):7263–7267CrossRef
15.
go back to reference Ming Z, Chengheng F, Chunxia W, Weiwei M, Lan C (2009) Superhydrophobic multi-scale ZnO nanostructures fabricated by chemical vapor deposition method. J Nanosci Nanotechnol 9(7):4211–4214CrossRef Ming Z, Chengheng F, Chunxia W, Weiwei M, Lan C (2009) Superhydrophobic multi-scale ZnO nanostructures fabricated by chemical vapor deposition method. J Nanosci Nanotechnol 9(7):4211–4214CrossRef
16.
go back to reference Ma M, Mao Y, Gupta M, And KKG, Rutledge GC (2005) Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 38(23):9742–9748CrossRef Ma M, Mao Y, Gupta M, And KKG, Rutledge GC (2005) Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 38(23):9742–9748CrossRef
17.
go back to reference Shi Y, Wang Y, Feng X, Yue G, Yang W (2012) Fabrication of superhydrophobicity on cotton fabric by sol–gel. Appl Surf Sci 258(20):8134–8138CrossRef Shi Y, Wang Y, Feng X, Yue G, Yang W (2012) Fabrication of superhydrophobicity on cotton fabric by sol–gel. Appl Surf Sci 258(20):8134–8138CrossRef
18.
go back to reference Zhu Q, Gao QW, Guo YL, Yang CQ, Shen L (2011) Modified silica sol coatings for highly hydrophobic cotton and polyester fabrics using a one-step procedure. Ind Eng Chem Res 50(10):5881–5888CrossRef Zhu Q, Gao QW, Guo YL, Yang CQ, Shen L (2011) Modified silica sol coatings for highly hydrophobic cotton and polyester fabrics using a one-step procedure. Ind Eng Chem Res 50(10):5881–5888CrossRef
19.
go back to reference Taurino R, Fabbri E, Messori M, Pilati F, Pospiech D, Synytska A (2008) Facile preparation of superhydrophobic coatings by sol–gel processes. J Colloid Interface Sci 325(1):149–156CrossRef Taurino R, Fabbri E, Messori M, Pilati F, Pospiech D, Synytska A (2008) Facile preparation of superhydrophobic coatings by sol–gel processes. J Colloid Interface Sci 325(1):149–156CrossRef
20.
go back to reference Shi Y-L, Feng X-J, Yang W, Wang F, Han Y-Q (2011) Preparation of super-hydrophobic titanium oxide film by sol–gel on substrate of common filter paper. J Sol-Gel Sci Technol 59(1):43–47CrossRef Shi Y-L, Feng X-J, Yang W, Wang F, Han Y-Q (2011) Preparation of super-hydrophobic titanium oxide film by sol–gel on substrate of common filter paper. J Sol-Gel Sci Technol 59(1):43–47CrossRef
21.
go back to reference Wang FJ, Yu S, Ou JF, Xue MS, Li W (2013) Mechanically durable superhydrophobic surfaces prepared by abrading. J Appl Phys 114(12):124902CrossRef Wang FJ, Yu S, Ou JF, Xue MS, Li W (2013) Mechanically durable superhydrophobic surfaces prepared by abrading. J Appl Phys 114(12):124902CrossRef
22.
go back to reference Fresnais J, Chapel JP, Benyahia L, Poncin-Epaillard F (2009) Plasma-treated superhydrophobic polyethylene surfaces: Fabrication, wetting and dewetting properties. J Adhes Sci Technol 23(3):447–467CrossRef Fresnais J, Chapel JP, Benyahia L, Poncin-Epaillard F (2009) Plasma-treated superhydrophobic polyethylene surfaces: Fabrication, wetting and dewetting properties. J Adhes Sci Technol 23(3):447–467CrossRef
23.
go back to reference Cortese B, Caschera D, Padeletti G, Ingo GM, Gigli G (2013) A brief review of surface-functionalized cotton fabrics. Surf Innov 1(3):140–156CrossRef Cortese B, Caschera D, Padeletti G, Ingo GM, Gigli G (2013) A brief review of surface-functionalized cotton fabrics. Surf Innov 1(3):140–156CrossRef
24.
go back to reference Li SH, Huang JY, Chen Z, Chen GQ, Lai YK (2017) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5(1):31–55CrossRef Li SH, Huang JY, Chen Z, Chen GQ, Lai YK (2017) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5(1):31–55CrossRef
25.
go back to reference Zimmermann J, Reifler FA, Fortunato G, Gerhardt LC, Seeger S (2008) A simple, one-step approach to durable and robust superhydrophobic textiles. Adv Funct Mater 18(22):3662–3669CrossRef Zimmermann J, Reifler FA, Fortunato G, Gerhardt LC, Seeger S (2008) A simple, one-step approach to durable and robust superhydrophobic textiles. Adv Funct Mater 18(22):3662–3669CrossRef
26.
go back to reference Wang T, Hu X, Dong S (2007) A general route to transform normal hydrophilic cloths into superhydrophobic surfaces. Chem Commun (Camb) (18):1849–1851 Wang T, Hu X, Dong S (2007) A general route to transform normal hydrophilic cloths into superhydrophobic surfaces. Chem Commun (Camb) (18):1849–1851
27.
go back to reference Hoefnagels HF, Wu D, de With G, Ming W (2007) Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir 23(26):13158–13163CrossRef Hoefnagels HF, Wu D, de With G, Ming W (2007) Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir 23(26):13158–13163CrossRef
28.
go back to reference Xu B, Cai ZS (2008) Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Appl Surf Sci 254(18):5899–5904CrossRef Xu B, Cai ZS (2008) Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Appl Surf Sci 254(18):5899–5904CrossRef
29.
go back to reference Xu LH, Wang LM, Shen Y, Ding Y, Cai ZS (2015) Preparation of Hexadecyltrimethoxysilane-modified silica nanocomposite hydrosol and superhydrophobic cotton coating. Fibers Polym 16(5):1082–1091CrossRef Xu LH, Wang LM, Shen Y, Ding Y, Cai ZS (2015) Preparation of Hexadecyltrimethoxysilane-modified silica nanocomposite hydrosol and superhydrophobic cotton coating. Fibers Polym 16(5):1082–1091CrossRef
30.
go back to reference Zhang M, Wang SL, Wang CY, Li J (2012) A facile method to fabricate superhydrophobic cotton fabrics. Appl Surf Sci 261:561–566CrossRef Zhang M, Wang SL, Wang CY, Li J (2012) A facile method to fabricate superhydrophobic cotton fabrics. Appl Surf Sci 261:561–566CrossRef
31.
go back to reference Afzal S, Daoud WA, Langford SJ (2014) Superhydrophobic and photocatalytic self-cleaning cotton. J Mater Chem A 2(42):18005–18011CrossRef Afzal S, Daoud WA, Langford SJ (2014) Superhydrophobic and photocatalytic self-cleaning cotton. J Mater Chem A 2(42):18005–18011CrossRef
32.
go back to reference Ortelli S, Costa AL (2018) Nanoencapsulation techniques as a “safer by (molecular) design” tool. Nano-Struct. Nano-Objects 13:155–162CrossRef Ortelli S, Costa AL (2018) Nanoencapsulation techniques as a “safer by (molecular) design” tool. Nano-Struct. Nano-Objects 13:155–162CrossRef
33.
go back to reference Zou HL, Lin SD, Tu YY, Liu GJ, Hu JW, Li F, Miao L, Zhang GW, Luo HS, Liu F, Hou CM, Hu ML (2013) Simple approach towards fabrication of highly durable and robust superhydrophobic cotton fabric from functional diblock copolymer. J Mater Chem A 1(37):11246–11260CrossRef Zou HL, Lin SD, Tu YY, Liu GJ, Hu JW, Li F, Miao L, Zhang GW, Luo HS, Liu F, Hou CM, Hu ML (2013) Simple approach towards fabrication of highly durable and robust superhydrophobic cotton fabric from functional diblock copolymer. J Mater Chem A 1(37):11246–11260CrossRef
34.
go back to reference Shi S, Allonas X, Croutxé-Barghorn C, Chemtob A (2015) Activation of the sol–gel process by visible light-emitting diodes (LEDs) for the synthesis of inorganic films. New J Chem 39(7):5686–5693CrossRef Shi S, Allonas X, Croutxé-Barghorn C, Chemtob A (2015) Activation of the sol–gel process by visible light-emitting diodes (LEDs) for the synthesis of inorganic films. New J Chem 39(7):5686–5693CrossRef
35.
go back to reference Tan J, Liu W, Wang Z (2016) Waterborne UV-curable comb-shaped (meth)acrylate graft copolymer containing long fluorinated and/or polysiloxane side chains. RSC Adv 6(41):34364–34375CrossRef Tan J, Liu W, Wang Z (2016) Waterborne UV-curable comb-shaped (meth)acrylate graft copolymer containing long fluorinated and/or polysiloxane side chains. RSC Adv 6(41):34364–34375CrossRef
36.
go back to reference Luo ZH, He TY, Yu HJ, Dai LZ (2008) A novel ABC triblock copolymer with very low surface energy: Poly(dimethylsiloxane)-block-poly(methyl methacrylate)-block-poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate). Macromol React Eng 2(5):398–406CrossRef Luo ZH, He TY, Yu HJ, Dai LZ (2008) A novel ABC triblock copolymer with very low surface energy: Poly(dimethylsiloxane)-block-poly(methyl methacrylate)-block-poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate). Macromol React Eng 2(5):398–406CrossRef
37.
go back to reference Luo ZH, Yu HJ, Zhang W (2009) Microphase separation behavior on the surfaces of poly(dimethylsiloxane)-block-poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate) diblock copolymer coatings. J Appl Polym Sci 113(6):4032–4041CrossRef Luo ZH, Yu HJ, Zhang W (2009) Microphase separation behavior on the surfaces of poly(dimethylsiloxane)-block-poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate) diblock copolymer coatings. J Appl Polym Sci 113(6):4032–4041CrossRef
38.
go back to reference Sun Y, Liu W (2011) Preparation and properties of an organic–inorganic hybrid materials based on fluorinated block copolymer. J Mater Sci 47(4):1803–1810CrossRef Sun Y, Liu W (2011) Preparation and properties of an organic–inorganic hybrid materials based on fluorinated block copolymer. J Mater Sci 47(4):1803–1810CrossRef
39.
go back to reference Gürsoy M, Karaman M (2016) Hydrophobic coating of expanded perlite particles by plasma polymerization. Chem Eng J 284:343–350CrossRef Gürsoy M, Karaman M (2016) Hydrophobic coating of expanded perlite particles by plasma polymerization. Chem Eng J 284:343–350CrossRef
Metadata
Title
Synthesis of superhydrophobic fluoro-containing silica sol coatings for cotton textile by one-step sol–gel process
Authors
Chi Jiang
Weiqu Liu
Maiping Yang
Sha He
Yankun Xie
Zhengfang Wang
Publication date
21-07-2018
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 2/2018
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-018-4750-7

Other articles of this Issue 2/2018

Journal of Sol-Gel Science and Technology 2/2018 Go to the issue

Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Silylation of sodium silicate-based silica aerogel using trimethylethoxysilane as alternative surface modification agent

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Mesoporous TiO2 thin films prepared from hydrothermally treated precursor powder sols

Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Preparation and characterization of silicagel from silicate solution obtained by autoclave treatment of copper slag

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Evaluation of temperature-dependent microstructural and nanomechanical properties of phase pure V2O5

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Aqueous solution-based synthesis and deposition of crystalline In-Ga-Zn-oxide films with an enhanced mobility

Premium Partners