Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Journal of Nanoparticle Research 7/2022

01-07-2022 | Research paper

Synthetic 2D tellurium nanosheets with intense TE wave polarization absorption by employing the PVD method

Authors: Junjie Yuan, Guowei Liu, Yi Xin, Xinyu Wang, Yiping Liu, Xue Han, Shenggui Fu, Zhongsheng Man, Fei Xing, Fang Zhang

Published in: Journal of Nanoparticle Research | Issue 7/2022

Login to get access
share
SHARE

Abstract

Tellurium (Te), as one of the chalcogens, is an emerging single-element non-layered p-type semiconductor material. Two-dimensional (2D) Te has shown great application potential in environmental stability, piezoelectric effect, high carrier mobility, and other fields. However, 2D Te is much less known compared to other traditional 2D materials. Herein, 2D Te nanosheets with the thickness of 20–40 nm and 10–20 nm growing under different temperatures and pressure were manufactured successfully by the physical vapor deposition (PVD) method. And the polarization-dependent optical absorption through the polarization-dependent coupling structure (Te/Mica sandwich structure) on a quartz prism was investigated. The results show that the 2D Te nanosheets have intense absorption of TE waves in the visible band. This work provides an experimental basis for the preparation of 2D Te in the future and points the way for its application in optical polarization devices.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669 CrossRef Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669 CrossRef
2.
go back to reference Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9:9451–9469 CrossRef Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9:9451–9469 CrossRef
3.
go back to reference Tan C, Cao X et al (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331 CrossRef Tan C, Cao X et al (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331 CrossRef
4.
go back to reference Wang C, Zhang G, Huang S et al (2020) The optical properties and plasmonics of anisotropic 2d materials. Adv Opt Mater 8:1900996 CrossRef Wang C, Zhang G, Huang S et al (2020) The optical properties and plasmonics of anisotropic 2d materials. Adv Opt Mater 8:1900996 CrossRef
5.
go back to reference Glavin NR, Rao R, Varshney V et al (2020) Emerging applications of elemental 2D materials. Adv Mater 32:1904302 CrossRef Glavin NR, Rao R, Varshney V et al (2020) Emerging applications of elemental 2D materials. Adv Mater 32:1904302 CrossRef
6.
go back to reference Hu X, Huang P, Jin B et al (2018) Halide-induced self-limited growth of ultrathin nonlayered Ge flakes for high-performance phototransistors. J Am Chem Soc 140:12909–12914 CrossRef Hu X, Huang P, Jin B et al (2018) Halide-induced self-limited growth of ultrathin nonlayered Ge flakes for high-performance phototransistors. J Am Chem Soc 140:12909–12914 CrossRef
7.
go back to reference Li L, Wang W, Chai Y et al (2017) Few-layered PtS 2 phototransistor on h-BN with high gain. Adv Func Mater 27:1701011 CrossRef Li L, Wang W, Chai Y et al (2017) Few-layered PtS 2 phototransistor on h-BN with high gain. Adv Func Mater 27:1701011 CrossRef
8.
go back to reference Hafeez M, Gan L, Li H et al (2016) Chemical vapor deposition synthesis of ultrathin hexagonal ReSe 2 flakes for anisotropic raman property and optoelectronic application. Adv Mater 28:8296–8301 CrossRef Hafeez M, Gan L, Li H et al (2016) Chemical vapor deposition synthesis of ultrathin hexagonal ReSe 2 flakes for anisotropic raman property and optoelectronic application. Adv Mater 28:8296–8301 CrossRef
9.
go back to reference Li L, Han W, Pi L et al (2019) Emerging in-plane anisotropic two-dimensional materials. InfoMat 1:54–73 CrossRef Li L, Han W, Pi L et al (2019) Emerging in-plane anisotropic two-dimensional materials. InfoMat 1:54–73 CrossRef
10.
go back to reference Muller GA, Cook JB, Kim H-S et al (2015) High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett 15:1911–1917 CrossRef Muller GA, Cook JB, Kim H-S et al (2015) High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett 15:1911–1917 CrossRef
11.
go back to reference Sun H, Mei L, Liang J et al (2017) Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356:599–604 CrossRef Sun H, Mei L, Liang J et al (2017) Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356:599–604 CrossRef
12.
go back to reference Geng S, Zhou T, Jia M et al (2021) Carbon-coated WS 2 nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors. Energy Environ Sci 14:3184–3193 CrossRef Geng S, Zhou T, Jia M et al (2021) Carbon-coated WS 2 nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors. Energy Environ Sci 14:3184–3193 CrossRef
13.
go back to reference Chen X, Zhou Y, Liu Q et al (2012) Ultrathin, single-crystal WO 3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO 2 into hydrocarbon fuels under visible light. ACS Appl Mater Interfaces 4:3372–3377 CrossRef Chen X, Zhou Y, Liu Q et al (2012) Ultrathin, single-crystal WO 3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO 2 into hydrocarbon fuels under visible light. ACS Appl Mater Interfaces 4:3372–3377 CrossRef
14.
go back to reference Ostadhossein A, Guo J, Simeski F et al (2019) Functionalization of 2D materials for enhancing oer/orr catalytic activity in li–oxygen batteries. Commun Chem 2:1–11 CrossRef Ostadhossein A, Guo J, Simeski F et al (2019) Functionalization of 2D materials for enhancing oer/orr catalytic activity in li–oxygen batteries. Commun Chem 2:1–11 CrossRef
15.
go back to reference Lee G-D, Robertson AW, Lee S et al (2020) Direct observation and catalytic role of mediator atom in 2D materials. Sci Adv 6:eaba4942 CrossRef Lee G-D, Robertson AW, Lee S et al (2020) Direct observation and catalytic role of mediator atom in 2D materials. Sci Adv 6:eaba4942 CrossRef
16.
go back to reference Xu M, Liang T, Shi M et al (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798 CrossRef Xu M, Liang T, Shi M et al (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798 CrossRef
17.
go back to reference Zhou X, Hu X, Yu J et al (2018) 2D layered material-based van der waals heterostructures for optoelectronics. Adv Func Mater 28:1706587 CrossRef Zhou X, Hu X, Yu J et al (2018) 2D layered material-based van der waals heterostructures for optoelectronics. Adv Func Mater 28:1706587 CrossRef
18.
go back to reference Autere A, Jussila H, Dai Y et al (2018) Nonlinear optics with 2D layered materials. Adv Mater 30:1705963 CrossRef Autere A, Jussila H, Dai Y et al (2018) Nonlinear optics with 2D layered materials. Adv Mater 30:1705963 CrossRef
19.
go back to reference Mazumder S, Catalan JA, Delgado A et al (2019) Opto-electro-mechanical percolative composites from 2D layered materials: properties and applications in strain sensing. Compos Sci Technol 182:107687 CrossRef Mazumder S, Catalan JA, Delgado A et al (2019) Opto-electro-mechanical percolative composites from 2D layered materials: properties and applications in strain sensing. Compos Sci Technol 182:107687 CrossRef
20.
go back to reference Guo B, Ql X, Wang Sh et al (2019) 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photonics Rev 13:1800327 CrossRef Guo B, Ql X, Wang Sh et al (2019) 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photonics Rev 13:1800327 CrossRef
21.
go back to reference Zhao X, Song P, Wang C et al (2020) Engineering covalently bonded 2D layered materials by self-intercalation. Nature 581:171–177 CrossRef Zhao X, Song P, Wang C et al (2020) Engineering covalently bonded 2D layered materials by self-intercalation. Nature 581:171–177 CrossRef
22.
go back to reference Chen P, Li N, Chen X et al (2017) The rising star of 2D black phosphorus beyond graphene: Synthesis, properties and electronic applications. 2D Materials 5:014002 CrossRef Chen P, Li N, Chen X et al (2017) The rising star of 2D black phosphorus beyond graphene: Synthesis, properties and electronic applications. 2D Materials 5:014002 CrossRef
23.
go back to reference Wu S, Hui KS, Hui KN (2018) 2D black phosphorus: from preparation to applications for electrochemical energy storage. Adv Sci 5:1700491 CrossRef Wu S, Hui KS, Hui KN (2018) 2D black phosphorus: from preparation to applications for electrochemical energy storage. Adv Sci 5:1700491 CrossRef
24.
go back to reference Zhang M, Wu Q, Zhang F et al (2019) 2D black phosphorus saturable absorbers for ultrafast photonics. Adv Opt Mater 7:1800224 CrossRef Zhang M, Wu Q, Zhang F et al (2019) 2D black phosphorus saturable absorbers for ultrafast photonics. Adv Opt Mater 7:1800224 CrossRef
25.
go back to reference Pumera M, Sofer Z (2017) 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv Mater 29:1605299 CrossRef Pumera M, Sofer Z (2017) 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv Mater 29:1605299 CrossRef
26.
go back to reference Lu L, Tang X, Cao R et al (2017) Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical kerr media with enhanced stability. Adv Opt Mater 5:1700301 CrossRef Lu L, Tang X, Cao R et al (2017) Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical kerr media with enhanced stability. Adv Opt Mater 5:1700301 CrossRef
27.
go back to reference Ares P, Palacios JJ, Abellán G et al (2018) Recent progress on antimonene: a new bidimensional material. Adv Mater 30:1703771 CrossRef Ares P, Palacios JJ, Abellán G et al (2018) Recent progress on antimonene: a new bidimensional material. Adv Mater 30:1703771 CrossRef
28.
go back to reference Zhang Q, Liao B, Lan Y et al (2013) High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci 110:13261–13266 CrossRef Zhang Q, Liao B, Lan Y et al (2013) High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci 110:13261–13266 CrossRef
29.
go back to reference Yashina LV, Leute V, Shtanov VI et al (2006) Comprehensive thermodynamic description of the quasiternary system PbTe–GeTe–SnTe. J Alloy Compd 413:133–143 CrossRef Yashina LV, Leute V, Shtanov VI et al (2006) Comprehensive thermodynamic description of the quasiternary system PbTe–GeTe–SnTe. J Alloy Compd 413:133–143 CrossRef
30.
go back to reference Bauer Pereira P, Sergueev I, Gorsse S et al (2013) Lattice dynamics and structure of GeTe, SnTe and PbTe. Phys Status Solidi (b) 250:1300–1307 CrossRef Bauer Pereira P, Sergueev I, Gorsse S et al (2013) Lattice dynamics and structure of GeTe, SnTe and PbTe. Phys Status Solidi (b) 250:1300–1307 CrossRef
31.
go back to reference Tung Y, Cohen ML (1969) Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe. Phys Rev 180:823 CrossRef Tung Y, Cohen ML (1969) Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe. Phys Rev 180:823 CrossRef
32.
go back to reference Zhang F, Liu G, Wang Z et al (2019) Broadband nonlinear absorption properties of two-dimensional hexagonal tellurene nanosheets. Nanoscale 11:17058–17064 CrossRef Zhang F, Liu G, Wang Z et al (2019) Broadband nonlinear absorption properties of two-dimensional hexagonal tellurene nanosheets. Nanoscale 11:17058–17064 CrossRef
33.
go back to reference Guo J, Zhao J, Huang D et al (2019) Two-dimensional tellurium–polymer membrane for ultrafast photonics. Nanoscale 11:6235–6242 CrossRef Guo J, Zhao J, Huang D et al (2019) Two-dimensional tellurium–polymer membrane for ultrafast photonics. Nanoscale 11:6235–6242 CrossRef
34.
go back to reference Shi Z, Cao R, Khan K et al (2020) Two-dimensional tellurium: Progress, challenges, and prospects. Nano-Micro Letters 12:1–34 CrossRef Shi Z, Cao R, Khan K et al (2020) Two-dimensional tellurium: Progress, challenges, and prospects. Nano-Micro Letters 12:1–34 CrossRef
35.
go back to reference Wu L, Huang W, Wang Y et al (2019) 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv Func Mater 29:1806346 CrossRef Wu L, Huang W, Wang Y et al (2019) 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv Func Mater 29:1806346 CrossRef
36.
go back to reference Gupta N, Voloshinov VB, Knyazev GA et al (2011) Optical transmission of single crystal tellurium for application in acousto-optic cells. J Opt 13:055702 CrossRef Gupta N, Voloshinov VB, Knyazev GA et al (2011) Optical transmission of single crystal tellurium for application in acousto-optic cells. J Opt 13:055702 CrossRef
37.
go back to reference Qiao J, Pan Y, Yang F et al (2018) Few-layer tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci Bull 63:159–168 CrossRef Qiao J, Pan Y, Yang F et al (2018) Few-layer tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci Bull 63:159–168 CrossRef
38.
go back to reference Qiu G, Si M, Wang Y et al (2018) High-performance few-layer tellurium CMOS devices enabled by atomic layer deposited dielectric doping technique. In: 2018 76th device research conference (DRC). IEEE, Santa Barbara, pp 1–2 Qiu G, Si M, Wang Y et al (2018) High-performance few-layer tellurium CMOS devices enabled by atomic layer deposited dielectric doping technique. In: 2018 76th device research conference (DRC). IEEE, Santa Barbara, pp 1–2
39.
go back to reference Liu G, Yuan J, Wu T et al (2020) Ultrathin 2D nonlayered tellurene nanosheets as saturable absorber for picosecond pulse generation in all-fiber lasers. IEEE J Sel Top Quantum Electron 27:1–6 Liu G, Yuan J, Wu T et al (2020) Ultrathin 2D nonlayered tellurene nanosheets as saturable absorber for picosecond pulse generation in all-fiber lasers. IEEE J Sel Top Quantum Electron 27:1–6
40.
go back to reference Sharma S, Singh N, Schwingenschlögl U (2018) Two-dimensional tellurene as excellent thermoelectric material. ACS Appl Energy Mater 1:1950–1954 CrossRef Sharma S, Singh N, Schwingenschlögl U (2018) Two-dimensional tellurene as excellent thermoelectric material. ACS Appl Energy Mater 1:1950–1954 CrossRef
41.
go back to reference Ran S, Glen TS, Li B et al (2019) Mechanical properties and piezoresistivity of tellurium nanowires. J Phys Chem C 123:22578–22585 CrossRef Ran S, Glen TS, Li B et al (2019) Mechanical properties and piezoresistivity of tellurium nanowires. J Phys Chem C 123:22578–22585 CrossRef
42.
go back to reference Wang Q, Safdar M, Xu K et al (2014) Van der waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8:7497–7505 CrossRef Wang Q, Safdar M, Xu K et al (2014) Van der waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8:7497–7505 CrossRef
43.
go back to reference Yang S, Chen B, Qin Y et al (2018) Highly crystalline synthesis of tellurene sheets on two-dimensional surfaces: Control over helical chain direction of tellurene. Phys Rev Mater 2:104002 CrossRef Yang S, Chen B, Qin Y et al (2018) Highly crystalline synthesis of tellurene sheets on two-dimensional surfaces: Control over helical chain direction of tellurene. Phys Rev Mater 2:104002 CrossRef
44.
go back to reference Métraux C, Grobéty B (2004) Tellurium nanotubes and nanorods synthesized by physical vapor deposition. J Mater Res 19:2159–2164 CrossRef Métraux C, Grobéty B (2004) Tellurium nanotubes and nanorods synthesized by physical vapor deposition. J Mater Res 19:2159–2164 CrossRef
45.
go back to reference Ratsch C, Venables JA (2003) Nucleation theory and the early stages of thin film growth. J Vac Sci Technol, A: Vac, Surf Films 21:S96–S109 CrossRef Ratsch C, Venables JA (2003) Nucleation theory and the early stages of thin film growth. J Vac Sci Technol, A: Vac, Surf Films 21:S96–S109 CrossRef
46.
go back to reference Wang Y, Qiu G, Wang R et al (2018) Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electron 1:228–236 CrossRef Wang Y, Qiu G, Wang R et al (2018) Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electron 1:228–236 CrossRef
47.
go back to reference Pine A, Dresselhaus G (1971) Raman spectra and lattice dynamics of tellurium. Phys Rev B 4:356 CrossRef Pine A, Dresselhaus G (1971) Raman spectra and lattice dynamics of tellurium. Phys Rev B 4:356 CrossRef
Metadata
Title
Synthetic 2D tellurium nanosheets with intense TE wave polarization absorption by employing the PVD method
Authors
Junjie Yuan
Guowei Liu
Yi Xin
Xinyu Wang
Yiping Liu
Xue Han
Shenggui Fu
Zhongsheng Man
Fei Xing
Fang Zhang
Publication date
01-07-2022
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 7/2022
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-022-05512-5

Other articles of this Issue 7/2022

Journal of Nanoparticle Research 7/2022 Go to the issue

Premium Partners