Skip to main content
Top

2019 | OriginalPaper | Chapter

System approach for future diesel blends with sustainable fuels

Authors : G. Rösel, Giovanni Avolio, J. Grimm, O. Kastner, T. Swigon, M. Weisse

Published in: Internationaler Motorenkongress 2019

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

In the Paris Climate Agreement of 2015, the not-to-exceed limit of 2 °C global warming until 2050 was defined and in Katowice, 2018, measures were agreed how to control the activities of participating nations. To meet the mentioned target of global warming limitation, worldwide CO2 emitting processes must be improved in all industry and life sectors. Hence, transport industry and therefore propulsion systems of passenger cars and trucks must reduce their CO2 emissions as well. The European Union just recently defined the CO2 reduction targets to 15% and 37.5% for 2025 and 2030, respectively, for passenger cars (based on the 2021 CO2 emissions value for 100 km driving distance).Beside full electrical and hybrid vehicles, the application of sustainable fuels in combustion engines is supposed to become an important brick for the required CO2 reduction. These fuels can be based on bio sources or synthetically produced. CO2 must be the carbon source for any of these sustainable fuels. This is taken either from bio sources or from industry gases or directly captured from atmosphere. Hence, during fuel production process CO2 is captured (Well-to-Tank) and during the usage in any combustion process and therefore also for usage in propulsion systems (Tank-to-Wheel) this CO2 is released again to the atmosphere. Overall, the CO2 is moved in closed loop without any climate impact. If H2 is used in the production process of the fuel, it has to be produced from green electricity, the same is valid for any energy required in the production process.Continental, as an FIE system supplier, evaluated the bio fuel R33 and the synthetical fuel OME15% with respect to its fossil partner (B7 reference diesel fuel) on a diesel car. The fuels were tested on the Super Clean Electrified Diesel Vehicle (SCED) developed at Continental under WLTC and RDE driving conditions. The SCED (C-segment vehicle) shows very low NOx emissions below 25 mg/km in WLTC and below 35 mg/km under all ambient temperature and driving conditions, due to the integration of Continental components (48 V Belt-starter-generator, EMICAT®, FIE System) and sophisticated engine and after treatment system management strategies, all developed by Continental.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Metadata
Title
System approach for future diesel blends with sustainable fuels
Authors
G. Rösel
Giovanni Avolio
J. Grimm
O. Kastner
T. Swigon
M. Weisse
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-658-26528-1_18

Premium Partner