Skip to main content
Top

2023 | OriginalPaper | Chapter

31. Systems Design Concepts Mimicking Bio-inspired Self-assembly

Authors : O. V. Sanjay Sarma, Cameron Ardoin, Israr M. Ibrahim, Ramviyas Parasuraman, Ramana M. Pidaparti

Published in: Design in the Era of Industry 4.0, Volume 3

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Design of complex self-assembly systems requires intelligent solutions that can be manufactured effectively and efficiently. Self-organization is the spontaneous formation of organized structures that can dynamically reconfigure with changing environments. These processes are primarily observed in chemical and biological processes that resemble large-scale ecosystems and in environments as small as biological cells. Inspired by these natural processes, there is also a growing research interest in developing 4D design and printing technologies in which 3D structures reconfigure with changing stimuli. The 4D design process requires appropriate design, computational, and simulation tools aimed at building structures at larger scales that can augment the current engineering design and manufacturing processes. This study presents a new multi-agent framework with two new paradigms called agents-as-blocks and free-agent. We present further details on these new strategies in the form of preliminary case studies applied to simulating micro-environments of microtubules’ self-organization process and through a vibration simulation platform. Our simulation results closely follow the real formation patterns in the microtubules process and show some interesting self-organizing and self-assembling patterns that change with varying geometries, rules, and stimuli in a vibration platform environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mitchison, T.J., Field, C.M.: Self-organization of cellular units. In: Annual Review of Cell and Developmental Biology, vol. 37, p. 23 (2021) Mitchison, T.J., Field, C.M.: Self-organization of cellular units. In: Annual Review of Cell and Developmental Biology, vol. 37, p. 23 (2021)
2.
go back to reference Misteli, T.: The concept of self-organization in cellular architecture. J. Cell Biol. 155(2), 181 (2001) Misteli, T.: The concept of self-organization in cellular architecture. J. Cell Biol. 155(2), 181 (2001)
3.
go back to reference Bonabeau, E., et al.: Self-organization in social insects. Trends Ecol. Evol. 12(5), 188–193 (1997) Bonabeau, E., et al.: Self-organization in social insects. Trends Ecol. Evol. 12(5), 188–193 (1997)
4.
go back to reference Odum, H.T.: Self-organization, transformity, and information. Science 242(4882), 1132–1139 (1988) Odum, H.T.: Self-organization, transformity, and information. Science 242(4882), 1132–1139 (1988)
5.
go back to reference Kennedy, J.: Swarm intelligence. In: Handbook of Nature-Inspired and Innovative Computing, pp. 187–219. Springer, Berlin (2006) Kennedy, J.: Swarm intelligence. In: Handbook of Nature-Inspired and Innovative Computing, pp. 187–219. Springer, Berlin (2006)
6.
go back to reference Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent Systems: A Survey. IEEE Access 6, 28573–28593 (2018) Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent Systems: A Survey. IEEE Access 6, 28573–28593 (2018)
7.
go back to reference Liu, Y., Passino, K.M.: Swarm Intelligence: Literature Overview. Department of Electrical Engineering, The Ohio State University (2000) Liu, Y., Passino, K.M.: Swarm Intelligence: Literature Overview. Department of Electrical Engineering, The Ohio State University (2000)
8.
go back to reference Veiga, J.T., et al.: Intelligent manufacturing systems: self-organization in the I4.0 context. In: 2021 14th IEEE International Conference on Industry Applications (INDUSCON), pp. 153–160. IEEE (2021) Veiga, J.T., et al.: Intelligent manufacturing systems: self-organization in the I4.0 context. In: 2021 14th IEEE International Conference on Industry Applications (INDUSCON), pp. 153–160. IEEE (2021)
9.
go back to reference Leitao, P.: Self-organization in manufacturing systems: challenges and opportunities. In: 2008 Second IEEE International Conference on Self Adaptive and Self-organizing Systems Workshops, pp. 174–179. IEEE (2008) Leitao, P.: Self-organization in manufacturing systems: challenges and opportunities. In: 2008 Second IEEE International Conference on Self Adaptive and Self-organizing Systems Workshops, pp. 174–179. IEEE (2008)
10.
go back to reference Shahbazi, M.N., Siggia, E.D., Zernicka-Goetz, M.: Self organization of stem cells into embryos: a window on early mammalian development. Science 364(6444), 948–951 (2019) Shahbazi, M.N., Siggia, E.D., Zernicka-Goetz, M.: Self organization of stem cells into embryos: a window on early mammalian development. Science 364(6444), 948–951 (2019)
11.
go back to reference Tibbits, S.: Self-assembly Lab: Experiments in Programming Matter. Routledge, Milton Park (2016) Tibbits, S.: Self-assembly Lab: Experiments in Programming Matter. Routledge, Milton Park (2016)
12.
go back to reference Pelesko, J.A.: Self Assembly: The Science of Things that Put Themselves Together. Chapman and Hall/CRC (2007) Pelesko, J.A.: Self Assembly: The Science of Things that Put Themselves Together. Chapman and Hall/CRC (2007)
13.
go back to reference Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008) Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008)
14.
go back to reference Papadopoulou, A., Laucks, J., Tibbits, S.: From self-assembly to evolutionary structures. Archit. Des. 87(4), 28–37 (2017) Papadopoulou, A., Laucks, J., Tibbits, S.: From self-assembly to evolutionary structures. Archit. Des. 87(4), 28–37 (2017)
15.
go back to reference Tibbits, S.: Autonomous Assembly: Designing for a New Era of Collective Construction. Wiley, New York (2017) Tibbits, S.: Autonomous Assembly: Designing for a New Era of Collective Construction. Wiley, New York (2017)
16.
go back to reference Chu, H., et al.: 4D printing: a review on recent progresses. Micromachines 11(9), 796 (2020) Chu, H., et al.: 4D printing: a review on recent progresses. Micromachines 11(9), 796 (2020)
17.
go back to reference Kretzer, M., et al.: Resonance: A (SMART) Material Ecology (2013) Kretzer, M., et al.: Resonance: A (SMART) Material Ecology (2013)
18.
go back to reference Zhang, Z., Demir, K.G., Gu, G.X.: Developments in 4D printing: a review on current smart materials, technologies, and applications. Int. J. Smart Nano Mater. 10(3), 205–224 (2019) Zhang, Z., Demir, K.G., Gu, G.X.: Developments in 4D printing: a review on current smart materials, technologies, and applications. Int. J. Smart Nano Mater. 10(3), 205–224 (2019)
19.
go back to reference Kaivo-oja, J., et al.: Google big data trend index analysis of industry 4.0 technologies: technology and key concept trends of global landscape in 2004–2021. In: International Conference on Knowledge Management in Organizations, pp. 193–206. Springer, Berlin (2022) Kaivo-oja, J., et al.: Google big data trend index analysis of industry 4.0 technologies: technology and key concept trends of global landscape in 2004–2021. In: International Conference on Knowledge Management in Organizations, pp. 193–206. Springer, Berlin (2022)
20.
go back to reference Deepak Kumar, S., et al.: 3D and 4D printing in industry 4.0: trends, challenges, and opportunities. In: Next Generation Materials and Processing Technologies, pp. 579–587 (2021) Deepak Kumar, S., et al.: 3D and 4D printing in industry 4.0: trends, challenges, and opportunities. In: Next Generation Materials and Processing Technologies, pp. 579–587 (2021)
21.
go back to reference Demoly, F., et al.: The status, barriers, challenges, and future in design for 4D printing. Mater. Des. 212, 110193 (2021) Demoly, F., et al.: The status, barriers, challenges, and future in design for 4D printing. Mater. Des. 212, 110193 (2021)
22.
23.
go back to reference Sanjay Sarma, O.V., Parasuraman, R., Pidaparti, R.: Impact of heterogeneity in multi-robot systems on collective behaviors studied using a search and rescue problem. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 290–297. IEEE (2020) Sanjay Sarma, O.V., Parasuraman, R., Pidaparti, R.: Impact of heterogeneity in multi-robot systems on collective behaviors studied using a search and rescue problem. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 290–297. IEEE (2020)
24.
go back to reference Pidaparti, R.M.: Design Engineering Journey. Synthesis Lectures on Mechanical Engineering, vol. 2.1, pp. 1–157 (2018) Pidaparti, R.M.: Design Engineering Journey. Synthesis Lectures on Mechanical Engineering, vol. 2.1, pp. 1–157 (2018)
25.
go back to reference Cooper, G.M., Hausman, R.E.: The Cell: A Molecular Approach, vol. 4. ASM Press, Washington, D.C. (2007) Cooper, G.M., Hausman, R.E.: The Cell: A Molecular Approach, vol. 4. ASM Press, Washington, D.C. (2007)
26.
go back to reference Burbank, K.S., Mitchison, T.J.: Microtubule dynamic instability. Curr. Biol. 16(14), R516–R517 (2006) Burbank, K.S., Mitchison, T.J.: Microtubule dynamic instability. Curr. Biol. 16(14), R516–R517 (2006)
27.
go back to reference Drewes, G., Ebneth, A., Mandelkow, E.-M.: MAPs, MARKs and microtubule dynamics. Trends Biochem. Sci. 23(8), 307–311 (1998) Drewes, G., Ebneth, A., Mandelkow, E.-M.: MAPs, MARKs and microtubule dynamics. Trends Biochem. Sci. 23(8), 307–311 (1998)
28.
go back to reference Roostalu, J., et al.: The speed of GTP hydrolysis determines GTP cap size and controls microtubule stability. Elife 9, e51992 (2020) Roostalu, J., et al.: The speed of GTP hydrolysis determines GTP cap size and controls microtubule stability. Elife 9, e51992 (2020)
29.
go back to reference Sanjay Sarma, O.V., Palaparthi, S., Pidaparti, R.: Mimicking sub structures self-organization in microtubules. Biomimetics 4(4), 71 (2019) Sanjay Sarma, O.V., Palaparthi, S., Pidaparti, R.: Mimicking sub structures self-organization in microtubules. Biomimetics 4(4), 71 (2019)
30.
go back to reference Colledanchise, M., Ögren, P.: Behavior Trees in Robotics and AI: An Introduction. CRC Press (2018) Colledanchise, M., Ögren, P.: Behavior Trees in Robotics and AI: An Introduction. CRC Press (2018)
31.
go back to reference Colledanchise, M., Parasuraman, R., Ögren, P.: Learning of behavior trees for autonomous agents. IEEE Trans. Games 11(2), 183–189 (2018) Colledanchise, M., Parasuraman, R., Ögren, P.: Learning of behavior trees for autonomous agents. IEEE Trans. Games 11(2), 183–189 (2018)
Metadata
Title
Systems Design Concepts Mimicking Bio-inspired Self-assembly
Authors
O. V. Sanjay Sarma
Cameron Ardoin
Israr M. Ibrahim
Ramviyas Parasuraman
Ramana M. Pidaparti
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-0428-0_31

Premium Partners