Skip to main content
Top

2024 | OriginalPaper | Chapter

7. Systems with Contact Nonlinearities

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter focuses on exploiting contact nonlinearities. Dry friction and unilateral contact are ubiquitous in science and technology. Their effect cannot be properly described in a linearized way. Dry friction is often the main cause for dissipation in structural dynamics. Impulsive unilateral interactions (impacts) are ideal for cross-scale energy transfer. Contact is easy to practically realize, but the dynamics of mechanical systems undergoing contact interactions is challenging to accurately predict. This chapter is divided into friction damping, a self-adaptive system and impact absorbers. Besides illustrating the use of strong nonlinearity in those engineering applications, this chapter presents useful methodology, including predictive modeling and numerical computation techniques, and the concept of Nonlinear Modes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The name Vibro-Impact Nonlinear Energy Sink (VI-NES) is now frequently used for the impact damper (Gendelman, 2012; Lamarque et al., 2011; Vakakis et al., 2008). The impact damper dates back at least to the 1930s (Paget, 1937). In contrast, the concept of the NES and the theoretical framework for its analysis was only recently proposed in Vakakis et al. (2008).
 
2
This inherent limitation of tuned vibration absorbers applies to any passive concept that requires–by careful design–tuning to the system’s natural frequencies in order to achieve effective energy transfer. Examples are the conventional linear tuned-mass damper (Den Hartog, 1985), and the nonlinear tuned vibration absorber (Detroux et al., 2015), both of which exploit natural frequency matching (1:1 internal resonance) between the host structure and the absorber, and targeted energy transfer into sacrificial modes by exploiting sub- or super-harmonic internal resonances (see e.g. Krack et al., 2015; Quaegebeur et al., 2022).
 
3
Provided that the absorber is not placed at a vibration node, the sign of \(\boldsymbol{\varphi }\) can be selected without loss of generality such that \(\varphi _{\mathrm c}\) is positive.
 
Literature
go back to reference Abeloos, G., Müller, F., Ferhatoglu, E., Scheel, M., Collette, C., Kerschen, G., Brake, M. R. W., Tiso, P., Renson, L., & Krack, M. (2022). A consistency analysis of phase-locked-loop testing and control-based continuation for a geometrically nonlinear frictional system. Mechanical Systems and Signal Processing, 170. https://doi.org/10.1016/j.ymssp.2022.108820 Abeloos, G., Müller, F., Ferhatoglu, E., Scheel, M., Collette, C., Kerschen, G., Brake, M. R. W., Tiso, P., Renson, L., & Krack, M. (2022). A consistency analysis of phase-locked-loop testing and control-based continuation for a geometrically nonlinear frictional system. Mechanical Systems and Signal Processing, 170. https://​doi.​org/​10.​1016/​j.​ymssp.​2022.​108820
go back to reference Aboulfotoh, Noha, Twiefel, Jens, Krack, Malte, & Wallaschek, Jörg. (2017). Experimental study on performance enhancement of a piezoelectric vibration energy harvester by applying self-resonating behavior. Energy Harvesting and Systems, 4(3), 131–136. https://doi.org/10.1515/ehs-2016-0027 Aboulfotoh, Noha, Twiefel, Jens, Krack, Malte, & Wallaschek, Jörg. (2017). Experimental study on performance enhancement of a piezoelectric vibration energy harvester by applying self-resonating behavior. Energy Harvesting and Systems, 4(3), 131–136. https://​doi.​org/​10.​1515/​ehs-2016-0027
go back to reference Acary, V., & Brogliato, B. (2008). Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics. Springer Science & Business Media. ISBN 3540753923. Acary, V., & Brogliato, B. (2008). Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics. Springer Science & Business Media. ISBN 3540753923.
go back to reference Al-Shudeifat, M. A., Vakakis, A. F., & Bergman, L. A. (2015). Shock mitigation by means of low- to high-frequency nonlinear targeted energy transfers in a large-scale structure. Journal of Computational and Nonlinear Dynamics, 11(2), 1–11. Al-Shudeifat, M. A., Vakakis, A. F., & Bergman, L. A. (2015). Shock mitigation by means of low- to high-frequency nonlinear targeted energy transfers in a large-scale structure. Journal of Computational and Nonlinear Dynamics, 11(2), 1–11.
go back to reference Babitsky, V. I., & Veprik, A. M. (1993). Damping of beam forced vibration by a moving washer. Journal of Sound and Vibration, 166(1), 77–85. Babitsky, V. I., & Veprik, A. M. (1993). Damping of beam forced vibration by a moving washer. Journal of Sound and Vibration, 166(1), 77–85.
go back to reference Brake, M. R. W. (Eds.). (2018). The mechanics of jointed structures: Recent research and open challenges for developing predictive models for structural dynamics. Springer International Publishing, Cham. ISBN 978-3-319-56818-8. Brake, M. R. W. (Eds.). (2018). The mechanics of jointed structures: Recent research and open challenges for developing predictive models for structural dynamics. Springer International Publishing, Cham. ISBN 978-3-319-56818-8.
go back to reference Deaner, B. J., Allen, M. S., Starr, M. J., Segalman, D. J., & Sumali, H. (2015). Application of viscous and iwan modal damping models to experimental measurements from bolted structures. Journal of Vibration and Acoustics, 137(2), 021012–021012–12. https://doi.org/10.1115/1.4029074 Deaner, B. J., Allen, M. S., Starr, M. J., Segalman, D. J., & Sumali, H. (2015). Application of viscous and iwan modal damping models to experimental measurements from bolted structures. Journal of Vibration and Acoustics, 137(2), 021012–021012–12. https://​doi.​org/​10.​1115/​1.​4029074
go back to reference Den Hartog, J. P. (1985). Mechanical vibrations. Courier Corporation. ISBN 0486647854. Den Hartog, J. P. (1985). Mechanical vibrations. Courier Corporation. ISBN 0486647854.
go back to reference Goldsmith, W. (2001). Impact. Courier Corporation. ISBN 0486420043. Goldsmith, W. (2001). Impact. Courier Corporation. ISBN 0486420043.
go back to reference Gourc, E., Michon, G., Seguy, S., & Berlioz, A. (2015b). Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: Analytical and experimental developments. Journal of Vibration and Acoustics, 137(3), 031008–031008–7. https://doi.org/10.1115/1.4029285 Gourc, E., Michon, G., Seguy, S., & Berlioz, A. (2015b). Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: Analytical and experimental developments. Journal of Vibration and Acoustics, 137(3), 031008–031008–7. https://​doi.​org/​10.​1115/​1.​4029285
go back to reference Gross, J., & Krack, M. (2019). Multi-wave vibration caused by flutter instability and nonlinear tip shroud friction. Journal of Engineering for Gas Turbines and Power. Gross, J., & Krack, M. (2019). Multi-wave vibration caused by flutter instability and nonlinear tip shroud friction. Journal of Engineering for Gas Turbines and Power.
go back to reference Gzal, M., Fang, B., Vakakis, A. F., Bergman, L. A., & Gendelman, O. V. (2020). Rapid non-resonant intermodal targeted energy transfer (imtet) caused by vibro-impact nonlinearity. Nonlinear Dynamics, 101(4), 2087–2106. Gzal, M., Fang, B., Vakakis, A. F., Bergman, L. A., & Gendelman, O. V. (2020). Rapid non-resonant intermodal targeted energy transfer (imtet) caused by vibro-impact nonlinearity. Nonlinear Dynamics, 101(4), 2087–2106.
go back to reference Haller, G,, & Ponsioen, S. (2016). Nonlinear normal modes and spectral submanifolds: Existence, uniqueness and use in model reduction. Nonlinear Dynamics, 86(3), 1493–1534. Haller, G,, & Ponsioen, S. (2016). Nonlinear normal modes and spectral submanifolds: Existence, uniqueness and use in model reduction. Nonlinear Dynamics, 86(3), 1493–1534.
go back to reference Hartung, A., Hackenberg, H.-P., & Retze, U. (2017). More flexible damping systems for blades and vanes. Technische Mechanik-European Journal of Engineering Mechanics, 37(2–5), 258–267. ISSN 2199-9244. Hartung, A., Hackenberg, H.-P., & Retze, U. (2017). More flexible damping systems for blades and vanes. Technische Mechanik-European Journal of Engineering Mechanics, 37(2–5), 258–267. ISSN 2199-9244.
go back to reference Hartung, A., Gross, J., Heinze, T., Panning-von Scheidt, L., Krack, M., Hackenberg, H.-P. (2018). Rig and engine validation of the non-linear forced response analysis performed by the tool oragl. Journal of Engineering for Gas Turbines Power, 141(2), 9. Hartung, A., Gross, J., Heinze, T., Panning-von Scheidt, L., Krack, M., Hackenberg, H.-P. (2018). Rig and engine validation of the non-linear forced response analysis performed by the tool oragl. Journal of Engineering for Gas Turbines Power, 141(2), 9.
go back to reference Krack, M., Panning-von Scheidt, L., Wallaschek J., Hartung, A., & Siewert, C. (2013b). Reduced order modeling based on complex nonlinear modal analysis and its application to bladed disks with shroud contact. Journal of Engineering for Gas Turbines and Power, 135(10), 102502/1. https://doi.org/10.1115/1.4025002 Krack, M., Panning-von Scheidt, L., Wallaschek J., Hartung, A., & Siewert, C. (2013b). Reduced order modeling based on complex nonlinear modal analysis and its application to bladed disks with shroud contact. Journal of Engineering for Gas Turbines and Power, 135(10), 102502/1. https://​doi.​org/​10.​1115/​1.​4025002
go back to reference Krack, M., Bergman, L. A., & Vakakis, A. F. (2015). Absorption of resonant vibrations in tuned nonlinear jointed structures. ASME Journal of Vibration and Acoustics, 2015(138), 1–8. Krack, M., Bergman, L. A., & Vakakis, A. F. (2015). Absorption of resonant vibrations in tuned nonlinear jointed structures. ASME Journal of Vibration and Acoustics, 2015(138), 1–8.
go back to reference Krack, M., Salles, L., & Thouverez, F. (2017a). Vibration prediction of bladed disks coupled by friction joints. Archives of Computational Methods in Engineering, 24(3), 589–636. Krack, M., Salles, L., & Thouverez, F. (2017a). Vibration prediction of bladed disks coupled by friction joints. Archives of Computational Methods in Engineering, 24(3), 589–636.
go back to reference Krack, M., Aboulfotoh, N., Twiefel, J., Wallaschek, J., Bergman, L. A., & Vakakis, A. F. (2017b). Toward understanding the self-adaptive dynamics of a harmonically forced beam with a sliding mass. Archive of Applied Mechanics, 87(4), 699–720. Krack, M., Aboulfotoh, N., Twiefel, J., Wallaschek, J., Bergman, L. A., & Vakakis, A. F. (2017b). Toward understanding the self-adaptive dynamics of a harmonically forced beam with a sliding mass. Archive of Applied Mechanics, 87(4), 699–720.
go back to reference Leine, R. I., & Nijmeijer, H. (2004). Dynamics and bifurcations of non-smooth mechanical systems (Vol. 18). Lecture Notes in Applied and Computational Mechanics. Berlin: Springer. ISBN 3540443983. Leine, R. I., & Nijmeijer, H. (2004). Dynamics and bifurcations of non-smooth mechanical systems (Vol. 18). Lecture Notes in Applied and Computational Mechanics. Berlin: Springer. ISBN 3540443983.
go back to reference Lieber, P., Jensen, D. P., et al. (1945). An acceleration damper: development, design and some applications. Transaction of ASME, 67(10), 523–530. Lieber, P., Jensen, D. P., et al. (1945). An acceleration damper: development, design and some applications. Transaction of ASME, 67(10), 523–530.
go back to reference Mathis, A. T., Balaji, N. N., Kuether, R. J., Brink, A. R., Brake, M. R. W., & Dane Quinn, D. (2020). A review of damping models for structures with mechanical joints. Applied Mechanics Reviews, 72(4). https://doi.org/10.1115/1.4047707 Mathis, A. T., Balaji, N. N., Kuether, R. J., Brink, A. R., Brake, M. R. W., & Dane Quinn, D. (2020). A review of damping models for structures with mechanical joints. Applied Mechanics Reviews, 72(4). https://​doi.​org/​10.​1115/​1.​4047707
go back to reference Miller, L. M., Pillatsch, P., Halvorsen, E., Wright, P. K., Yeatman, E. M., & Holmes, A. S. (2013). Experimental passive self-tuning behavior of a beam resonator with sliding proof mass. Journal of Sound and Vibration, 332(26), 7142–7152. Miller, L. M., Pillatsch, P., Halvorsen, E., Wright, P. K., Yeatman, E. M., & Holmes, A. S. (2013). Experimental passive self-tuning behavior of a beam resonator with sliding proof mass. Journal of Sound and Vibration, 332(26), 7142–7152.
go back to reference Müller, F., & Krack, M. (2020). Explanation of the self-adaptive dynamics of a harmonically forced beam with a sliding mass. Archive of Applied Mechanics, 14. Müller, F., & Krack, M. (2020). Explanation of the self-adaptive dynamics of a harmonically forced beam with a sliding mass. Archive of Applied Mechanics, 14.
go back to reference Müller, F., Woiwode, L., Gross, J., Scheel, M., & Krack, M. (2022). Nonlinear damping quantification from phase-resonant tests under base excitation. Mechanical Systems and Signal Processing. Müller, F., Woiwode, L., Gross, J., Scheel, M., & Krack, M. (2022). Nonlinear damping quantification from phase-resonant tests under base excitation. Mechanical Systems and Signal Processing.
go back to reference Nacivet, S., Pierre, C., Thouverez, F., & Jezequel, L. (2003). A dynamic lagrangian frequency-time method for the vibration of dry-friction-damped systems. Journal of Sound and Vibration, 265(1), 201–219. Nacivet, S., Pierre, C., Thouverez, F., & Jezequel, L. (2003). A dynamic lagrangian frequency-time method for the vibration of dry-friction-damped systems. Journal of Sound and Vibration, 265(1), 201–219.
go back to reference Paget, A. L. (1937). Vibration in steam turbine buckets and damping by impacts. Engineering, 143, 305–307. Paget, A. L. (1937). Vibration in steam turbine buckets and damping by impacts. Engineering, 143, 305–307.
go back to reference Rosenberg, R. M. (1960). Normal modes of nonlinear dual-mode systems. Journal of Applied Mechanics, 27, 263–268.CrossRef Rosenberg, R. M. (1960). Normal modes of nonlinear dual-mode systems. Journal of Applied Mechanics, 27, 263–268.CrossRef
go back to reference Sarrouy, E., & Sinou, J.-J. (2011). Non-linear periodic and quasi-periodic vibrations in mechanical systems-on the use of the harmonic balance methods. In Advances in vibration analysis research. Intech. Sarrouy, E., & Sinou, J.-J. (2011). Non-linear periodic and quasi-periodic vibrations in mechanical systems-on the use of the harmonic balance methods. In Advances in vibration analysis research. Intech.
go back to reference Scheel, M., Kleyman, G., Tatar, A., Brake, M. R. W., Peter, S., Noël, J.-P., Allen, M. S., & Krack, M. (2020a). Experimental assessment of polynomial nonlinear state-space and nonlinear-mode models for near-resonant vibrations. Mechanical Systems and Signal Processing, 143. https://doi.org/10.1016/j.ymssp.2020.106796 Scheel, M., Kleyman, G., Tatar, A., Brake, M. R. W., Peter, S., Noël, J.-P., Allen, M. S., & Krack, M. (2020a). Experimental assessment of polynomial nonlinear state-space and nonlinear-mode models for near-resonant vibrations. Mechanical Systems and Signal Processing, 143. https://​doi.​org/​10.​1016/​j.​ymssp.​2020.​106796
go back to reference Schwarz, S., Kohlmann, L., Hartung, A., Gross, J., Scheel, M., & Krack, M. (2019). Validation of a turbine blade component test with frictional contacts by phase-locked-loop and force-controlled measurements. Journal of Engineering for Gas Turbines Power, 10. https://doi.org/10.1115/1.4044772 Schwarz, S., Kohlmann, L., Hartung, A., Gross, J., Scheel, M., & Krack, M. (2019). Validation of a turbine blade component test with frictional contacts by phase-locked-loop and force-controlled measurements. Journal of Engineering for Gas Turbines Power, 10. https://​doi.​org/​10.​1115/​1.​4044772
go back to reference Srinivasan, A. V. (1997). Flutter and resonant vibration characteristics of engine blades. Journal of Engineering for Gas Turbines and Power, 119(4), 742–775. Srinivasan, A. V. (1997). Flutter and resonant vibration characteristics of engine blades. Journal of Engineering for Gas Turbines and Power, 119(4), 742–775.
go back to reference Studer, C. (2009). Numerics of unilateral contacts and friction: Modeling and numerical time integration in non-smooth dynamics. Springer Science & Business Media. ISBN 3642011004. Studer, C. (2009). Numerics of unilateral contacts and friction: Modeling and numerical time integration in non-smooth dynamics. Springer Science & Business Media. ISBN 3642011004.
go back to reference Szemplinska-Stupnicka, W. (1979). The modified single mode method in the investigations of the resonant vibrations of non-linear systems. Journal of Sound and Vibration, 63(4), 475–489. Szemplinska-Stupnicka, W. (1979). The modified single mode method in the investigations of the resonant vibrations of non-linear systems. Journal of Sound and Vibration, 63(4), 475–489.
go back to reference Theurich, T., Vakakis, A. F., & Krack, M. (2022). Predictive design of impact absorbers for mitigating resonances of flexible structures using a semi-analytical approach. Journal of Sound and Vibration, (516), 17. Theurich, T., Vakakis, A. F., & Krack, M. (2022). Predictive design of impact absorbers for mitigating resonances of flexible structures using a semi-analytical approach. Journal of Sound and Vibration, (516), 17.
go back to reference Thomsen, J. J. (1996). Vibration suppression by using self-arranging mass: Effects of adding restoring force. Journal of Sound and Vibration, 197(4), 403–425. Thomsen, J. J. (1996). Vibration suppression by using self-arranging mass: Effects of adding restoring force. Journal of Sound and Vibration, 197(4), 403–425.
go back to reference Vakakis, A. F., Gendelman, O. V., Kerschen, G., Bergman, L. A., McFarland, D. M., & Lee, Y. S. (2008). Nonlinear targeted energy transfer in mechanical and structural systems (Vol. I and II). Berlin Heidelberg: Springer. ISBN 1402091303. Vakakis, A. F., Gendelman, O. V., Kerschen, G., Bergman, L. A., McFarland, D. M., & Lee, Y. S. (2008). Nonlinear targeted energy transfer in mechanical and structural systems (Vol. I and II). Berlin Heidelberg: Springer. ISBN 1402091303.
go back to reference Yu, L., Tang, L., & Yang, T. (2020). Piezoelectric passive self-tuning energy harvester based on a beam-slider structure. Journal of Sound and Vibration. Yu, L., Tang, L., & Yang, T. (2020). Piezoelectric passive self-tuning energy harvester based on a beam-slider structure. Journal of Sound and Vibration.
Metadata
Title
Systems with Contact Nonlinearities
Author
Malte Krack
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56902-9_7

Premium Partners